
Syst. Biol. 60(5):668–675, 2011
c© The Author(s) 2011. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.

For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syr028
Advance Access publication on April 11, 2011

Improved Least Squares Topology Testing and Estimation

EDWARD SUSKO∗

Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5;
∗Correspondence to be sent to: Department of Mathematics and Statistics, Dalhousie University,

Halifax, Nova Scotia, Canada B3H 3J5; E-mail: susko@mathstat.dal.ca.

Received 1 September 2010; reviews returned 11 November 2010; accepted 6 January 2011
Associate Editor: Cecile Ane

Abstract.—Generalized least squares (GLS) methods provide a relatively fast means of constructing a confidence set of
topologies. Because they utilize information about the covariances between distances, it is reasonable to expect additional
efficiency in estimation and confidence set construction relative to other least squares (LS) methods. Difficulties have been
found to arise in a number of practical settings due to estimates of covariance matrices being ill conditioned or even non-
invertible. We present here new ways of estimating the covariance matrices for distances that are much more likely to be
positive definite, as the actual covariance matrices are. A thorough investigation of performance is also conducted. An al-
ternative to GLS that has been proposed for constructing confidence sets of topologies is weighted least squares (WLS). As
currently implemented, this approach is equivalent to the use of GLS but with covariances set to zero rather than being
estimated. In effect, this approach assumes normality of the estimated distances and zero covariances. As the results here
illustrate, this assumption leads to poor performance. A 95% confidence set is almost certain to contain the true topology
but will contain many more topologies than are needed. On the other hand, the results here also indicate that, among LS
methods, WLS performs quite well at estimating the correct topology. It turns out to be possible to improve the performance
of WLS for confidence set construction through a relatively inexpensive normal parametric bootstrap that utilizes the same
variances and covariances of GLS. The resulting procedure is shown to perform at least as well as GLS and thus provides
a reasonable alternative in cases where covariance matrices are ill conditioned. [Confidence sets of trees; distance methods;
generalized least squares; topology tests; weighted least squares.]

Least squares (LS) estimation and weighted least
squares (WLS) estimation have a long history in phylo-
genetics (Cavalli-Sforza and Edwards 1967; Fitch and
Margoliash 1967). Given a set of distances, dij, and
weights, wij, the WLS statistic for a tree is obtained
by choosing the distances δij on that tree that minimize

∑

i<j

wij(dij − δij)
2. (1)

More specifically, δij is the sum of the branch lengths
along the path from i to j, and it is the branch lengths
that are chosen to minimize Equation (1). Because the
choice of δij is topology dependent, the test statistic cal-
culated in Equation (1) depends on topology. LS meth-
ods choose as an estimate the topology that gives the
minimum value of Equation (1). For LS estimation, the
wij = 1, whereas for conventional WLS estimation, wij is
set to an estimate of the inverse variance for the pair of
taxa i and j.

It will be convenient to express Equation (1) in vector
notation. Let y denote the vector of estimated distances,
(d12, . . . , d1T, d23, . . . , dT−1T). The distances, δij can be ex-
pressed as the sum of the edge lengths αl in the path
from i to j. Alternatively,

δij =
∑

l

xij,lαl, (2)

where xij,l = 1 or 0 according to whether or not the lth
branch is in the path from i to j. Let X be the matrix
with xij,l being the entry in the lth column for the row
corresponding to the pair of taxa i and j. Then in matrix

notation, δδδ= Xααα, and the WLS test statistic is

(y− Xα)TW( y− Xααα), (3)

where the W matrix is diagonal with the wij entries along
its diagonal. GLS methods are the same as WLS meth-
ods except that W is replaced by an estimate of V−1, the
inverse of the covariance matrix of the distances.

According to the theory for regression analysis, if
the entries of the y vector are normally distributed and
uncorrelated, the WLS estimates of α are of uniformly
minimum variance among unbiased estimators when
the weights in W are taken as the inverse variances of
the y vector (cf. Theorem 6.1.4 of Bickel and Doksum
2007 after transformation to so-called canonical form).
In the case that the entries are correlated, however,
the optimal choice of W is the inverse of the covari-
ance matrix for the y vector. Because of the shared path
lengths of pairs, distances are indeed correlated. Bulmer
(1991) was the first to investigate the use of GLS and,
for distances obtained through maximum likelihood
(ML) methods, Susko (2003) provided general formulae
for calculation of V and showed that distances have,
for large sequence lengths, an approximate normal dis-
tribution. Optimality here refers to optimality of edge
length estimation for the correct topology that may only
be loosely related to good topological estimation. More-
over, the theoretical optimality results assume a known,
rather than estimated, covariance matrix is used in GLS
calculations.

A different reason for interest in GLS over other LS
methods is that, for the correct tree, if W gives a consis-
tent approximation to V−1, the GLS statistic Equation
(3) has an approximate chi-squared distribution with
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T(T − 1)/2 − (2T − 3) degrees of freedom (Susko 2003).
This allows one to construct a 95% confidence set of
trees as the set of all trees that have a GLS test statistic
value less than the 95th percentile of the chi-squared
distribution with T(T − 1)/2 − (2T − 3) degrees of free-
dom. There is an equivalence to testing topologies here.
Any tree that is not in the 95% confidence set can be
rejected at the 5% level. Alternatively, a P value for the
hypothesis that the given tree is the correct tree, is the
probability that a chi-squared random variable is larger
than that given tree’s GLS statistic. In any case, because
of the chi-squared distribution of the GLS statistic, test-
ing rather than estimation was the focus of Susko (2003)
and GLS was shown to have reasonable performance in
a number of cases involving a relatively small number
of taxa. A software implementation was made available
at http://www.mathstat.dal.ca/tsusko. A major diffi-
culty with the software implementation turned out to
be that, with small numbers of sites or almost identical
sequences, the estimated covariance matrix was often
ill conditioned or even not invertible. That this can lead
to poor performance or even an inability to calculate
the GLS statistic has been illustrated in Shi et al. (2005),
Sanjuán and Wróbel (2005), and Czarna et al. (2006).

Because of the difficulties with matrix inversion that
sometimes arise in computing the GLS statistic, Czarna
et al. (2006) proposed using WLS for confidence set con-
struction. Although estimates of the variances need to be
inverted to obtain the WLS weights, those variances will
only be small for very small distances, a case that can
be dealt with through removal of almost identical se-
quences. The WLS statistic is consequently more stable
than the GLS statistic. The difficulty that arises is that
the WLS statistic no longer has a known chi-squared
distribution, under the null hypothesis that a given
topology is correct, that can be used to convert test
statistics into P values. Czarna et al. (2006) nevertheless
use a chi-squared distribution with T(T−1)/2− (2T−3)
degrees of freedom to calculate P values. This would
only be truly justified if distances are independent. Dis-
tances are not, however, independent, particularly in
settings where the covariance matrix is approximately
singular as singularity of the covariance matrix can only
arise if a distance has zero variance or if one of the
distances is linearly related to the others; the latter is a
case of strong dependence. Simulations conducted here
confirm that using chi-squared approximations for P
value calculation gives resulting WLS confidence sets
with poor statistical properties relative to GLS methods.

In Susko (2003), GLS was presented mainly as a tool
for testing rather than estimation. Although an arbi-
trary set of trees could be input, tree searching was
not conducted and edge lengths were not output. This
has changed in the new version of the software that
includes routines that allow estimation through subtree
prune and regraft (SPR) topology searching. The rou-
tines can output all trees encountered during searching
that are in a confidence set. Similar simulations as were
used for investigating testing performance are used here
to compare estimation performance. Surprisingly, given

its poor testing performance, WLS performs well in
estimation. This suggests that the poor test performance
of WLS was due to an inappropriate assumption of
independent distances. Moreover, the solid estimation
performance suggests that the WLS test statistic might
do well at discriminating between different topologies
if a correct distribution is used in calculating P values.
Although a closed-form distribution for the WLS test
statistic is not available, it is known from Susko (2003)
that the distances used to construct it are approximately
multivariate normally distributed and what their ap-
proximate covariances are. This leads to a normal para-
metric bootstrap approach to calculating WLS P values
that is much less computationally intensive than usual
bootstrapping.

METHODS

A More Robust Covariance Matrix Estimator

The fundamental difficulty with the covariance ma-
trix estimator given in Susko (2003) is that it might be
singular. Consequently, the GLS statistic may not even
be defined. What is desired is to obtain an estimator that
maintains the property of converging upon the correct
covariance matrix with large sequence lengths yet is less
likely to be singular. This is accomplished in two ways.
First, different formulae are used for covariance matrix
construction that are asymptotically equivalent to the
formulae in Susko (2003) but guaranteed to be nonneg-
ative definite as is always the case for actual, rather
than estimated, covariance matrices. Second, weighting
of the contributions to the covariance matrix in Susko
(2003), which was by the observed proportions of times
patterns arose, is replaced by weighting through the
probabilities of patterns under a fitted model. Let x de-
note a site pattern that will implicitly depend on the
taxa under consideration. For instance, with four taxa,
x = AACG would be a pattern for Taxa 1–4, whereas
x = CG would be the corresponding site pattern for
Taxa 3 and 4. The variance of the estimated ML distance
given in Susko (2003) can be expressed as

V̂jj =

[∑

x

p̂x

{ ∂
∂d p(x ; dj)

p(x ; dj)

}2

−
∑

x

p̂x

∂2

∂d2 p(x ; dj)

p(x ; dj)

]−1

/n,

(4)

where sums are over all patterns for the pair, p̂x is the
frequency with which the xth pattern arose for the jth
pair and p(x ; dj) is the probability of pattern x for the jth
pair under the model of evolution and evaluated at the
jth estimated distance. The covariance between the jth
distance and the kth distance can be expressed as

V̂jk = nV̂jjV̂kk

∑

x

p̂x

{ ∂
∂d p(x ; dj)

p(x ; dj)

}

∙

{ ∂
∂d p(x ; dk)

p(x ; dk)

}

, (5)

where now the sum is over all patterns for the taxa in
the pair j and in the pair k. For instance, if j was the pair
of Taxa 1 and 2, and k was 1 and 3, the sum would be
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over terms like x = ACG giving the character states for
1, 2, and 3. We also use xj and xk to denote the patterns
for the jth and kth pair; in the above example, xj = AC
and xk = AG. As discussed in Susko (2003), these co-
variance matrix estimators will be statistically consis-
tent: they will converge upon the true covariance matrix
as sequence length gets large.

The first correction to avoid badly behaved estimates
is to ignore the second term in the sum in Equation (4).
This adjustment does not alter the statistical consistency
properties because the second term can be shown to be
approximately zero with large sequence lengths. At the
same time, it produces a covariance matrix estimator
that is guaranteed to be nonnegative definite. The rea-
son for this is that the new covariance matrix estimator,
V̂∗ can now be expressed as

V̂∗ =
∑

x

p̂xaxaT
x , (6)

where the sum is now over patterns for all the taxa
jointly and ax is a vector with jth component

axj = V̂∗jj
∂
∂d p(x ; dj)

p(x ; dj)
.

A matrix V is nonnegative definite if bTV b > 0 for any
vector b. We have

bTV̂∗b=
∑

x

p̂x[ b
Tax]

2 > 0, (7)

so that V̂∗ is guaranteed to be nonnegative definite,
whereas the original estimator was not.

Equation (7) also suggests a second way of adjusting
the estimate of the covariance matrix so that it is more
likely to be nonsingular. The estimate V̂∗ will be singu-
lar only if Equation (7) is zero for some nonzero vector b.
Although the sum in Equation (7) is over all patterns x,
the only patterns that contribute are those with p̂x > 0.
The more terms there are with p̂x > 0, the less likely
it is that the sum will be zero. With a small number of
sites or closely related taxa, it will frequently be the case
that many of the p̂x are zero. This is one of the reasons
that singular matrix estimates had arisen with the pre-
vious estimate. One way of maintaining the statistical
consistency properties while increasing the number of
patterns for which p̂x > 0 is to replace p̂x with the es-
timated probability of the pattern x under the model.
This may, at first sight, seem computationally infeasible
as the number of patterns grows exponentially with the
number of taxa. However, there are at most four taxa in-
volved in the expressions for each pair in Equation (4)
or each set of pairs in Equation (5).

What is needed to implement this second adjustment
is an estimated tree. In practice, this is achieved in two
ways. The first, which we refer to as single weighting
uses the neighbor-joining (Saitou and Nei 1987) topol-
ogy (NJ topology) with constrained LS edge length

estimates. In order to ensure that pattern probabilities
are positive for any pattern, zero edge lengths are set to
a small but positive constant; this was 1.0×10−12 for the
results reported here. The second approach, which we
refer to as multiple weighting, uses different weights
for each hypothesized topology. Pattern probabilities
are determined using the hypothesized tree with con-
strained LS edge length estimates.

In summary, the covariance matrix estimates are ob-
tained through

V̂∗jj =

[∑

x

px

{ ∂
∂d p(x ; dj)

p(x ; dj)

}2]−1

/n (8)

and

V̂∗jk = nV̂∗jj V̂
∗
kk

∑

x

px

{ ∂
∂d p(x ; dj)

p(x ; dj)

}

∙

{ ∂
∂d p(x ; dk)

p(x ; dk)

}

, (9)

where px is the estimated probability of pattern x.
That the new form of covariance matrix is less likely

to suffer from singularity problems can be illustrated
with a four taxa example. Roux (2009) established that
the covariance matrix becomes almost singular in the
case of a Jukes–Cantor model (Jukes and Cantor 1969)
with all small edge lengths. This can be expected to be
a problematic setting for GLS because estimated edge
lengths will often be close to zero. Table 1 gives the
means and variances of the old and new covariance
matrix estimates after 1000 simulations from a Jukes–
Cantor model and four taxa tree with all equal edge
lengths. For comparison, the actual observed covariance
matrix entries were also calculated for the 1000 simu-
lated sets of estimated distances. With edge lengths
t = 0.001 and sequence length n = 1000, estimation is

TABLE 1. Means and standard deviations (multiplied by 106) of
covariance matrix estimates for 1000 data sets simulated from four-
taxa trees with all equal edge lengths, t. The simulated column gives
the sample covariance matrix entries over the 1000 data sets

Old New

Setting Entry Simulated Mean SD Mean SD

n= 1000 Var(d12) 2.10 −351.94 969.06 2.06 1.46
t= 0.001 Var(d13) 2.85 −153.04 667.11 2.96 1.70

Cov(d12, d13) 1.03 181.01 1260.48 1.01 1.00
Cov(d12, d34) 0.03 144.00 1129.84 0.00 0.02
Cov(d12, d14) 0.96 181.01 1260.48 1.01 1.00
Cov(d13, d24) 1.01 81.98 850.29 0.98 0.95

n= 1000 Var(d12) 20.57 20.36 4.73 20.36 4.73
t= 0.01 Var(d13) 31.24 30.82 5.94 30.83 5.94

Cov(d12, d13) 9.98 10.01 3.18 10.03 3.16
Cov(d12, d34) −0.16 −0.02 0.63 0.00 0.00
Cov(d12, d14) 9.26 10.03 3.17 10.03 3.16
Cov(d13, d24) 8.92 10.08 3.25 10.10 3.17

n= 10000 Var(d12) 0.21 0.20 0.05 0.20 0.05
t= 0.001 Var(d13) 0.30 0.30 0.06 0.30 0.06

Cov(d12, d13) 0.11 0.10 0.03 0.10 0.03
Cov(d12, d34) 0.00 0.00 0.00 0.00 0.00
Cov(d12, d14) 0.11 0.10 0.03 0.10 0.03
Cov(d13, d24) 0.10 0.10 0.03 0.10 0.03
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improved dramatically with the new covariances. The
reasons for this are clear because of the simplicity of
the setting. Neighboring taxa expect substitutions only
once in 1000 sites. It is thus not uncommon that two or
more sequences will be identical in which case the old
form gives a singular matrix and even gives a negative
variance estimate. The setting with 1000 sites and edge
lengths of 0.001 push the limits of what is achievable
for variance approximation. The other settings listed in
Table 1 illustrate that the two variance approximations
are comparable in settings where the variance matri-
ces are more stable. However, even in the setting with
t = 0.001 and n = 10, 000, where estimation was good,
the estimated covariance matrix with the old approxi-
mation was not positive definite 26.8% of the time. In
the settings t = 0.001, n = 1000, and t = 0.01, n = 1000,
the estimated matrix was not positive definite 36.3%
and 5.1% of the time. In contrast, the estimated covari-
ance matrix using the new approximations was always
positive definite.

WLS Testing

Sanjuán and Wróbel (2005) and Czarna et al. (2006)
considered the use of WLS rather than GLS for confi-
dence set construction. There are reasons to suspect that
WLS may perform better than GLS in cases where the
covariance matrix is close to singular. This can most eas-
ily be seen by restating GLS as a form of WLS. Let ui
denote the ith eigenvector of the covariance matrix, hav-
ing associated eigenvalue λi. Then, letting d∗i =

∑
i uijdj be

the distances linearly transformed by the ith eigenvec-
tor, the eigenvalue λi can be interpreted as the estimated
variance of d∗i . GLS estimation is equivalently WLS esti-
mation with the d∗i as variables and the 1/λi as weights.
WLS, by comparison, used the distances di directly as
variables and weights by the inverse of their estimated
variances. In both cases, small errors in the estimated
variances may result in large errors in test statistics be-
cause these invert the variances. In cases where the co-
variance matrix is almost singular, eigenvalues will be
close to zero, whereas the variance of distances need not
be, thus making the WLS statistic more stable with re-
spect to small errors in variance estimates. To illustrate,
in the case of a four-taxon tree with equal edge lengths
of 0.001 and sequence length 1000, the smallest variance
for a distance is approximately 2 × 10−5, whereas the
smallest variance for an eigen transformed distance is
approximately 2× 10−7, 100 times as small.

Although WLS statistics can be expected to be better
behaved, they do not have a known distribution under
the null hypothesis that a given tree is correct. Accord-
ingly, it is difficult to determine cutoffs for P values for
tests. Czarna et al. (2006) deal with this by assuming
independence of the distances. If true, this assumption
would lead to the same approximate large-sequence
length distribution that applies to GLS. In some cases,
the assumption of independence is reasonable. For in-
stance, the observed correlation of d12 and d34 in Table 1

are close to zero. In fact, for the Jukes–Cantor model,
this correlation is exactly zero. (This follows from, for
instance, the results in Steel et al. 2000; the covariances
reported in Table 1 vary from zero because they are
based on a finite number of simulated data sets.) How-
ever, in many more cases, it is a poor approximation.
For instance, the observed correlation was 0.40 for the
distances d12 and d13 over 1000 simulations with t=0.01.
The correlations for d12, d14, d13, d23, and other pairs of
distances were similarly close to 0.40. As pointed out
in Czarna et al. (2006), the end effect on the properties
of the WLS test that assumes independence is to make
the test conservative: a 95% confidence set of trees has
probability larger than 95% of containing the true tree
and consequently contains more trees than if the actual
(albeit unknown) distribution for the WLS statistic is
used.

Although the actual limiting distribution of the WLS
statistic is not available in closed form, the availability
of the covariance estimates (8) and (9) make it possible
to obtain appropriate thresholds and P values through a
simple parametric bootstrap. To see this, it is valuable to
note that the WLS statistic can be expressed as

yT[W −WX(XTWX)−1XtW]y. (10)

It follows from the results in Susko (2003) that y has
an approximate multivariate normal distribution with
mean vector Xδ and covariance matrix V that can be es-
timated through Equations (8) and (9). Because

[W −WX(XTWX)−1XTW]Xδ = 0

the same WLS statistic is obtained in Equation (10) if y
is replaced by y∗ = y − Xδ. The advantage with using
y∗ is that it has an approximate multivariate normal dis-
tribution with means zero and covariance matrix V; the
only unknown in the distribution is V that can be esti-
mated through Equations (8) and (9). Thus, the follow-
ing parametric bootstrap can be used to approximate the
distribution of the WLS statistic.

1. Generate y1, . . . , yB from a multivariate normal
distribution with means zero and covariance ma-
trix V̂∗ given by Equations (8) and (9).

2. Substitute y1, . . . , yB in Equation (10) to obtain B
generated WLS statistics, WLS1, . . . ,WLSB.

3. If WLSo is the observed WLS statistic for the
data, an approximate P value is the proportion
of WLSi >WLSo.

Note that the bootstrapping here is much less computa-
tionally intensive than conventional bootstrapping that
requires repeated generation of alignments, repeated
ML estimation of all distances, and repeated WLS test
statistic calculation for these distances.

We will refer to the WLS test that uses 1–3 as the
WLSN test; the N indicates normal simulation is being
used. Because of the differing choices for estimation,
there are several versions that will be considered. First,
in calculating observed WLS statistics, estimation can
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either constrain edge lengths to be positive or not. Sec-
ond, single or multiple covariance matrices can be used.
Single matrices are constructed from Equations (8) and
(9) using pattern probabilities calculated for an NJ tree
with LS edge lengths. Multiple matrices use separate
pattern probabilities for each hypothesized tree under
consideration. Together, these options give rise to four
different versions of the test. Similarly, there are four
versions of the GLS test. The weights in the observed
WLS statistics are the inverse variance estimates (8),
where the px are the probabilities of pairwise patterns
calculated using the estimated distances for the pair
under consideration.

RESULTS

Simulation Settings

Simulations were conducted with the five through
eight taxa topologies given in Figure 1 as well as with
the 10, 15, and 20 taxa trees that are given there. For
the five through eight taxa simulations, terminal edge
lengths for each simulation were generated from a
U(0.01, 0.1) distribution and internal edge lengths were
set to 0.01. The substitution model used was the F84
model (Felsenstein (2005), DNAML program since 1984,
PHYLIP Version 2.6) with all equal frequencies and
transition–transversion ratio set to 2. The 10, 15, and 20
taxon trees are the same trees that were used in Shi et al.
(2005); these are listed in the appendix of that reference.
The same substitution model was used for simulation

FIGURE 1. The trees used in simulation. The four topologies on
the first row are for the examples involving five through eight taxa;
internal edge lengths were set to 0.01 and terminal edge lengths were
generated uniformly in the range 0.01 through 0.1. The bottom 3 trees
were used for 10, 15, and 20 taxa.

as in Shi et al. (2005): an HKY model (Hasegawa et al.
1985) with transition–transversion ratio set to 2.93 and
frequencies of A, C, G, and T equal to 0.37, 0.24, 0.12,
and 0.27.

The five through eight taxa simulations have the ad-
vantage that all trees can be searched for estimation, and
all trees can be tested for inclusion in a confidence set;
the total number of possible eight taxa trees is 10,395.
For the 10, 15, and 20 taxa simulations that consider
estimation, an NJ tree was used as a starting tree and
SPR searching was conducted. Given a current tree, the
test statistic (either GLS or WLS) was calculated for SPR
trees, in order of distance from the current tree, until
a tree was found giving a better test statistic value, at
which point a new SPR search started from this new
tree; if no such tree could be found, the SPR search was
stopped. For simulations considering confidence set
construction performance, all trees within one SPR of
the generating tree were considered for inclusion in the
confidence set. For the WLSN test, B= 1000 simulations
were used in Steps 1 and 2.

Simulation Results

We first consider estimation performance. Table 2
gives the numbers of times a given Robinson–Foulds
distance was obtained for the five through eight taxa
simulations. The first thing that is apparent is that, for
any of the LS methods, improvements in topological es-
timation are attainable by constraining edge lengths to
be nonnegative. Because the computational cost of do-
ing so is not substantial, we only consider LS methods
with constrained edge length estimation in what fol-
lows. None of the LS methods give consistently better
performance than the baseline method, NJ. This is per-
haps not that surprising as the probabilities of correct
reconstruction are relatively high and all the methods
are comparable in performance. As Table 3 indicates,
in the 10, 15, and 20 taxa simulations, where estima-
tion is more difficult, performance is still comparable
to NJ.

Next, we consider testing performance. Table 4 gives
results for the five through eight taxa simulations.
The first observation of note is that the performance
of WEIGHTLESS program version 2.93 (Sanjuán and
Wróbel 2005) and WLS are almost identical; a minor
bug in the WEIGHTLESS implementation had the WLS
statistics being twice as large as they should be which
was corrected for. The difference between WLS and
WEIGHTLESS is only in the estimation of the variances
used for weighting. For WEIGHTLESS, these are con-
structed using bootstrapping, whereas for WLS, they are
calculated using Equation (8). Because bootstrapping is
much more computationally intensive, the similarity of
the results suggest that it is better to use Equation (8);
these are consequently the only choices considered in
the 10 through 20 taxa simulations.

WLSN refers to the confidence set constructed us-
ing the WLS statistic but with normal simulations to
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2011 SUSKO—LEAST SQUARES METHODS 673

TABLE 2. The numbers of times a given Robinson–Foulds (RF) distance was obtained between the generating and estimated tree over 1000
simulations with and without nonnegativity constraints on edge lengths

RF Distance
Five Taxa Six Taxa Seven Taxa Eight Taxa

0 2 4 0 2 4 6 0 2 4 > 6 0 2 4 > 6

No Constraint
LS 832 161 7 776 214 9 1 728 245 27 0 735 234 21 4
WLS 842 151 7 790 200 10 0 740 235 25 0 764 211 23 2
GLS(single) 728 245 27 644 306 47 3 543 342 98 14 569 298 92 42
GLS(multiple) 834 159 7 782 206 11 1 734 234 31 1 772 201 23 4

Nonnegative
LS 970 30 0 971 29 0 0 957 43 0 0 944 50 5 1
WLS 973 26 1 973 27 0 0 958 42 0 0 950 45 5 0
GLS(single) 956 41 3 942 57 1 0 924 67 9 0 918 70 10 2
GLS(multiple) 973 26 1 975 25 0 0 959 41 0 0 956 42 2 0

NJ 970 30 0 971 29 0 0 958 42 0 0 964 32 3 1

determine critical values. The test statistics for WLS and
WLSN were exactly the same for each of the simulated
data sets. These two methods differ only in the way in
which cutoffs for inclusion in the confidence set are de-
termined. The reason for the poor performance of WLS
is thus clear and indicated by its coverage. Although
the WLSN confidence sets usually have approximate
95% coverage, the WLS sets always contain the gener-
ating tree. Thus, for WLS, thresholds for inclusion in
the confidence set have been set much larger than is
required for a 95% confidence set, and consequently,
the confidence set tends to include many more trees
than it needs to. The two methods WLSN and GLS give
coverages that are reasonably comparable to 95% over
1000 simulations. They also exhibit similar confidence
set sizes in the five through eight taxa simulations.
WLSN, however, has a substantially higher proportion
of cases where the generating tree is the only tree in the
confidence set.

Because of the similarity of the results between WLS
and WEIGHTLESS, the less computationally intensive

TABLE 3. Estimation results over 1000 simulations from each of the
10,15, and 20 taxa trees. Given are the proportion of times the gener-
ating topology was estimated and other summary statistics for the RF
distances between estimated and generating trees over the 1000 sim-
ulations. Except for NJ, nonnegativity constraints were imposed on
edge lengths.

Number RF Distance
of taxa Method Proportion Mean Median SD Max

LS 0.278 1.966 2.000 1.538 6.000
WLS 0.272 1.978 2.000 1.533 6.000
GLS(single) 0.240 2.206 2.000 1.677 8.000

10 GLS(multiple) 0.271 2.000 2.000 1.545 6.000
NJ 0.262 2.042 2.000 1.556 8.000
LS 0.121 3.270 4.000 2.029 10.000
WLS 0.132 3.232 4.000 2.037 10.000
GLS(single) 0.095 3.872 4.000 2.325 12.000

15 GLS(multiple) 0.115 3.428 4.000 2.062 10.000
NJ 0.112 3.418 4.000 2.076 10.000
LS 0.024 5.756 6.000 2.640 14.000
WLS 0.029 5.600 6.000 2.606 14.000
GLS(single) 0.031 5.940 6.000 2.863 18.000

20 GLS(multiple) 0.032 5.538 6.000 2.642 14.000
NJ 0.024 5.622 6.000 2.581 14.000

WLS routine was used for the 10, 15, and 20 taxa simula-
tions reported in Table 5. As with the five through eight
taxa simulations, the thresholds used by WLS cause
many more trees to be included in the confidence sets
than is necessary. In the 10, 15, and 20 taxa simulations,
the WLS and GLS tests tend to undercover. WLSN tends
to give smaller regions with GLS including one to three
more trees on average. The results reported in Tables 4
and 5 were for the GLS and WLSN methods separately
estimating covariance matrices for each topology tested.
As Table 6 indicates, it is always better to use multiple
matrices when testing. However, the performance of
GLS degrades much more than performance of WLS
when single covariance matrices are used. The results
with larger numbers of taxa, in particular, suggest that
GLS should usually be used with multiple covariance
matrices.

TABLE 4. Properties of 95% confidence sets of trees. Given are the
proportions of time the generating tree was the only tree in the set, the
mean number of trees in the set and the proportions of time the gener-
ating tree was in the set (Coverage). Results were obtained for the WLS
with variances estimated through bootstrapping and chi-squared crit-
ical values (WEIGHTLESS), WLS with variance formulae (WLS), WLS
with nonnegativity restriction on edge lengths and normal simulation
to obtain critical values (WLSN) and GLS; covariance matrices were
calculated with probability weighting done separately for each tree
tested

Taxa Method Proportion Mean size Coverage

WEIGHTLESS 0.000 13.666 1.000
WLS 0.000 13.676 1.000

5 WLSN 0.724 1.468 0.943
GLS 0.685 1.540 0.937
WEIGHTLESS 0.000 78.316 1.000
WLS 0.000 78.556 1.000

6 WLSN 0.574 1.889 0.942
GLS 0.511 2.077 0.935
WEIGHTLESS 0.000 436.131 1.000
WLS 0.000 438.490 1.000

7 WLSN 0.508 2.767 0.951
GLS 0.416 3.163 0.945
WEIGHTLESS 0.000 6523.393 1.000
WLS 0.000 6557.942 1.000

8 WLSN 0.412 4.054 0.952
GLS 0.360 4.504 0.948
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TABLE 5. Properties of 95% confidence sets of trees for simulations
with 10, 15, and 20 taxa. Given are the proportions of time the gen-
erating tree was the only tree in the set, the mean number of trees in
the set and the proportion of times the generating tree was in the set
(Coverage). Results were obtained for the WLS which chi-squared crit-
ical values, WLS with nonnegativity restriction on edge lengths and
matrices were calculated with probability weighting done separately
for each tree tested

Taxa Method Proportion Mean size Coverage

10 WLS 0.000 60.242 1.000
WLSN 0.000 9.871 0.945
GLS 0.006 10.833 0.925

15 WLS 0.000 241.090 1.000
WLSN 0.000 14.757 0.924
GLS 0.002 19.503 0.889

20 WLS 0.000 711.350 1.000
WLSN 0.000 35.372 0.957
GLS 0.000 38.668 0.921

DISCUSSION

We have presented here modifications of the variance
formulae of Susko (2003) that are asymptotically equiv-
alent to the previous formulae but much less likely to
have the difficulties of the previous GLS test statistic
that were due to ill behaved, almost singular covariance
matrix estimates. These matrices can be used in GLS
statistic calculation or to determine cutoffs for inclusion
in confidence sets for the WLS statistics. What was a bit
surprising in the estimation and testing simulations was
that WLSN had a consistently better performance than
GLS; although often the improvement was marginal.
Both methods performed much better than the WLS
approach suggested by Czarna et al. (2006) that effec-
tively applies the GLS test with covariances set to zero.
The simulations here make clear that the resulting chi-
squared thresholds for inclusion in a confidence set are
much too large and cause many more topologies to be
included in the confidence region than is needed.

Although the WLSN test was the best performer, this
performance improvement comes with a computational
cost. To illustrate that, CPU times were obtained on the
same machine and for the same 7 and 20 taxon data sets.
In the seven taxa case, WLSN and GLS P values were
obtained for 945 trees, and in the 20 taxa case, P val-
ues were obtained for 100 trees. The times required for
GLS were 13.2 s and 2 min 52 s for 7 and 20 taxa cases,

TABLE 6. The proportions of time the generating tree was the only
tree in the set and the mean number of trees in the set when using
single or multiple (one for every hypothesized tree) covariance matrix
estimates

Number of Taxa
Weighting Method 5 6 7

Single WLSN Proportion 0.589 0.419 0.362
Mean size 1.874 2.667 3.425

GLS Proportion 0.335 0.114 0.062
Mean size 2.798 7.352 18.221

Multiple WLSN Proportion 0.710 0.591 0.519
Mean size 1.530 1.931 2.421

GLS Proportion 0.686 0.530 0.417
Mean size 1.578 2.127 2.932

whereas for WLSN, they were 55.5 s and 7 min 42 s. The
additional time required is primarily due to the normal
simulation required for P value determination. For esti-
mation alone, WLS can be expected to be faster.

The CPU times reported are for multiple covariance
matrices and nonnegativity constraints. Estimation can
constrain edge lengths or not and covariance matrices
can be calculated for a single pilot tree estimate or sepa-
rately for each tree tested. In terms of performance, the
results here indicate that it is better to constrain edge
length estimates. This comes with only a slightly higher
computational cost. In fact, CPU times with nonnega-
tivity constraints were sometimes shorter than without.
This is likely due to an inefficient implementation of the
unconstrained approach by comparison with the non-
negative LS routine that was used and due to Lawson
and Hanson (1974). Nevertheless, the similarity of the
times suggest that constraints are worth the computa-
tional cost. Leaving edge lengths unconstrained does
not usually greatly affect the GLS or WLS test score of
the true tree but the added flexibility of negative edge
lengths allows poor trees to fit distances better and thus
deflates GLS or WLS scores for these trees. Although
using separate covariance matrices also gave better test
performance, it comes with a more substantial computa-
tional cost than nonnegativity constraints. For the 7 and
20 taxon examples where CPU times were obtained, the
CPU times for GLS with a single covariance matrix were
0.1 s and 3 s for the 7 and 20 taxa examples by compar-
ison with the 13.2 s and 2min 52 s times obtained with
multiple covariance matrices. For WLSN, the times
were 14 s and 3 min 33 s by comparison with the
55.5 s and 7 min 42 s obtained with multiple covariance
matrices.

For the GLS test, results with a larger number of
taxa suggest that, for final results, multiple covariance
matrices should be used in spite of the additional com-
putational cost. For WLSN, however, the performance
improvements were not as substantial and the addi-
tional computational cost might reasonably be avoided
in cases where a larger number of trees are tested for
inclusion in the confidence set. An alternative practical
approach to dealing with larger data sets is to use a
single matrix, and the GLS test on a large initial set of
hypothesized trees and then rerun with multiple covari-
ance matrices on a reduced set. It should be emphasized
that by large data sets, we mean that the number of
taxa are large. Because site patterns for between 2 and 4
taxa are being summed over in covariance calculations
and distance estimation, increasing the number of sites
does not appreciably increase computational cost. At
the same time, as is illustrated by contrasting the Table
1 results for t = 0.001 and n = 100 with n = 10, 000, the
behavior of covariance approximations can be expected
to improve.

Software for the methods is available at http://www
.mathstat.dal.ca/ tsusko. Separate programs are used
for GLS and WLSN, and for each of these there are sep-
arate programs available for estimation and for testing.
All the programs use a PAML-style (Yang 1997, 2007)
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control file. The testing routines require a set of trees as
input and output the trees with P values. The estima-
tion routines use SPR searches starting from an NJ or
user input tree and output all trees encountered with
P values larger than a threshold. If that threshold is set
as 95%, for instance, the output is the set of trees in the
95% confidence set, among those encountered. By run-
ning the routine with several starting points, one can
approximate the 95% confidence set in cases where it is
impossible to list all trees.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found at http://www.
sysbio.oxfordjournals.org/.
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