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Abstract

An important but di-cult problem in .tting .nite mixture models is estimating and testing
the number of components in the mixture. Regularity conditions do not hold for large sample
likelihood theory so that likelihood ratio tests cannot easily be implemented. However, a number
of homogeneity tests have been developed to test for the presence of a mixture. Weighted
versions of homogeneity tests are presented that can be used to test for the presence of additional
components in a mixture. These tests are easily implemented, do not require long computational
times and can incorporate covariates. Examples are given to illustrate the methodology and
simulation results are presented that suggest that the tests have power comparable to the bootstrap
likelihood ratio test.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Finite mixtures of distributions have been widely used to model data from a popula-
tion that is suspected to be composed of several homogeneous subpopulations (see Do
and McLachlan, 1984; Izenman and Sommer, 1988; Aitkin, 1999 for examples). The
observations x1; : : : ; xn are assumed to be a random sample from a mixture density

f(x;  ) =
m∑

k=1

	kf(x; 
k): (1)
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The subpopulation model that is frequently used as motivation for this density supposes
that there are m subpopulations, that 	j is the probability of selecting an individual from
subpopulation j and that f(x; 
j), the component density, is the conditional density for
X given that the observation is from the jth subpopulation. Since the true classi.cation
of observations into subpopulations is unobserved, the marginal density (1) must be
used for the observations. Examples of common component densities f(x; 
) include
normal, Poisson and binomial densities. Here  = (	1; : : : ; 	m−1; 
1; : : : ; 
m), the param-
eter 	m being 1 −∑m−1

k=1 	k . The number of components m in the mixture is also a
parameter and is what is of primary concern here.
The problem of estimating and testing the number of components has been considered

by a number of authors. Part of the motivation for considering novel testing methods is
that the likelihood ratio statistic for a test of H0: m=m0 against HA: m¿m0 does not
satisfy the regularity conditions for large sample likelihood theory and usually does not
have a �2 limiting distribution (Hartigan, 1985). McLachlan (1987) proposes simulation
to obtain the null distribution of the likelihood ratio statistic. While frequently useful,
the repeated simulation required makes the test more computationally intensive than the
methods proposed here and practical di-culties arise in implementing the test (Seidel
et al., 2000) due to the likelihood frequently having multiple local maxima; these
problems become more pronounced as m0 increases. For estimation of the number of
components, m, penalized model selection criteria such as AIC and BIC have been used
(Bozdogan, 1987; Leroux, 1992) although the exact penalty terms are better motivated
in regular parametric models (Kass and Raftery, 1995). Other methods have been
developed such as Fowlkes (1979) and Roeder (1994) that are graphical in nature and
apply to speci.c component densities.
The problem of testing for heterogeneity or overdispersion has received more atten-

tion than tests of the number of components. In most cases such homogeneity tests
can be viewed as a test of H0: m = 1 against HA: m¿ 1. Note that under the null
hypothesis the model for the data is a parametric one with density f(x; 
). Examples
of tests include PotthoG and Whittinghill (1966a, b) and the C(�) test of Neyman and
Scott (1966). In the case that 
 is known under the null, such tests reject when

n∑
i=1

t(xi; 
)¿c;

where t(x; 
) is a zero mean statistic under the null hypothesis. To extend these tests to
a multicomponent null hypothesis we propose consideration of weighted homogeneity
tests that reject the hypothesis H0: m= m0 at the jth component if

n∑
i=1

p(j|xi;  ̂ ) t(xi; 
j)¿c;

where the weights for the jth component, p(j|xi;  ̂ ) are of the form

p(j|x;  ̂ ) = 	̂jf(x; 
̂j)

/
m0∑
k=1

	̂kf(x; 
̂k) :
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In the subpopulation model that usually underlies the .nite mixture model these weights
are the chances that the observation came from the jth subpopulation.

2. Weighted homogeneity tests

The weighted homogeneity tests that we present require only the existence of a
function t(x; 
) with E
[t(X; 
)] = 0 where expectation is with respect to the density
f(x; 
). In order to expect reasonable power from the test, t(x; 
) should be chosen so
that

∑
i t(xi; 
) provides a test statistic for a test of H0: m= 1 (with 
 known) against

HA: m¿ 1 in (1). Neyman and Scott’s C(�) test for homogeneity (Neyman and Scott,
1966; Lindsay, 1995, pp. 70) can be used to construct homogeneity test statistics. It
gives

t(x; 
) =
@2

@
 2 f(x; 
)=f(x; 
) (2)

and rejects if the test statistic is large. This test statistic is locally most powerful against
a wide range of alternatives.

2.1. The component-wise test statistic and standard error

Given the function t(x; 
), the weighted homogeneity test statistic for the jth sub-
population is of the form

n−1=2
n∑

i=1

p(j|xi;  ̂ ) t(xi; 
̂j); (3)

where  ̂ is the maximum likelihood estimate of  and the weights for the jth compo-
nent are of the form

p(j|x;  ) = 	jf(x; 
j)

/
m0∑
k=1

	kf(x; 
k) : (4)

The motivation for the weighted homogeneity test is that these weights would tend to
weight most heavily observations that are, in relative terms, most likely to have come
from the jth homogeneous subpopulation and hence would give an approximate test of
homogeneity for observations from this subpopulation. In the case that the observations
are discrete∑

xi=y

p(j|xi;  ̂ ) ≈ nyj;

where nyj is the unknown number of observations from the jth population that equal
y. Thus (3) is approximately

n−1=2
n∑

i=1

p(j|xi;  ̂ ) t(xi; 
̂j) = n−1=2
∑
y

t(y; 
̂j)
∑
xi=y

p(j|xi;  ̂ )

≈ n−1=2
∑
y

t(y; 
̂j)nyj
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or, up to a constant multiple, the test statistic for homogeneity for the jth population.
Generally, under the null hypothesis, taking expectation with respect to the mixture
density (1)

E

[∑
i

p(j|Xi;  )t(Xi; 
j)

]
= n	jE
j [t(Xi; 
j)] = 0:

The actual test statistic weights are based upon estimated parameters but if these are
consistent estimators, up to .rst order the expectation under the null is 0.
We use maximum likelihood estimation to estimate  . Because estimation is under

the null hypothesis, the problems with regularity conditions under the alternative that
give rise to non-standard results for likelihood ratio tests do not arise here. With
appropriate regularity conditions on the component densities standard likelihood theory
applies and we have that

√
n( ̂ −  ) →d N (0; I−1( ))

and that

n−1=2
∑

u(xi;  ) →d N (0; I( ))):

Here u(x;  ) is the gradient of log[f(x;  )] and I( ) is the expectation of minus the
second derivative matrix of log[f(x;  )]. In practice we replace I( ) by an asymptotic
equivalent

n−1
∑

u(xi;  )u(xi;  )T:

One can show that, under the null hypothesis, (3) has a normal distribution with mean
0 and variance

E[{p(j|X ;  )t(x; 
j)}2]− rj( )TI−1( )rj( ); (5)

where

rj( ) = E[u(X;  )t(X;  )p(j|X ;  )]:

If  were not estimated, the .rst component in this expression would give the large
sample variance. The eGect of estimation is to make statistic (3) smaller in magnitude,
on average, than it would be without estimation. Subtraction of the second term, which
is always non-negative, adjusts for the estimation. In practice this variance can be
approximated by substituting  ̂ and taking sample averages as approximations to the
corresponding expectations. A more sophisticated approach might estimate standard
errors based on simulation from the null model. Note that the mixing distribution
would not have to be re-estimated in the simulations. An � level test of H0: m = m0

against H0: m¿m0 would then reject at the jth component if
n∑

i=1

p(j|xi;  ̂ ) t(xi; 
̂j)

/
se

{
n∑

i=1

p(j|xi;  ̂ ) t(xi; 
̂j)

}
¿z�:
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2.2. Aggregate weighted homogeneity tests

The sum of the component-wise weighted homogeneity test statistics

n−1=2
∑
j

∑
i

p(j|xi;  ̂ )t(xi; 
j) (6)

gives a natural aggregate test statistic. Similarly as with the individual test statistics,
with appropriate regularity conditions, this test statistic has a normal distribution with
mean 0 and variance

E

[∑
j

{p(j|X ;  ̂ )t(x; 
j)}2
]
−
(∑

j

rj( )

)T
I−1( )

(∑
j

rj( )

)
: (7)

An � level test of H0: m = m0 against HA: m¿m0 rejects when the test statistic (6)
divided by an estimate of its standard deviation (7) is larger than z�.

2.3. Two-sided tests

In some cases it may be valuable to consider two sided component-wise tests; the
test statistic used in the normal simulations provides an example. An appropriate ag-
gregate test should then reject when the magnitude of the individual component-wise
test statistics are large, taking into account their variances and the correlation between
them. Let ta be the vector of component-wise test statistics: the jth entry of ta is

n−1=2
∑

i

p(j|xi;  ̂ )t(xi; 
̂j):

Then the aggregate test we propose rejects at the alpha level if

tTa Cov(ta)
−1ta ¿�2�;m0

;

where Cov(ta) is the covariance matrix for ta. One can show that

Cov(ta)ij = E[p(i|X ;  ̂ )p(j|X ;  ̂ )t(X; 
i)t(X; 
j)]− rj( )TI−1( )rj( ): (8)

In practice we have estimated all expectations in standard errors using sample averages
and the estimated mixing distribution parameters  ̂

2.4. Incorporating structural parameters

In some statistical settings one is interested in a model with component density
f(x; 
; �). Here � is a structural parameter, common to each observation regardless of
which subpopulation it came from. As an example, the beta-blocker data considered in
Section 3 models the log-odds of the probability of death as 
i + � for the treatment
group at center i. Here 
i is a random eGect for the centers in the study and � is a
.xed structural parameter.

susko
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The component-wise test statistic becomes

n−1=2
∑

i

p(j|xi;  ̂ ; �̂)t(xi; 
̂j; �̂):

The statistic t(x; 
j; �) should be chosen so that
∑

i t(xi; 
̂j; �̂) provides a good test
statistic for a test of homogeneity. If � were known the C(�) test would be based on

t(x; 
; �) =
@2

@
 2 f(x; 
; �)=f(x; 
; �): (9)

So a natural choice is (9) with �̂ plugged in. The standard error for an individual
component-wise test statistic is

E[{p(j|X ;  ; �)t(X; 
j; �)}2]− rj( ; �)TI−1( ; �)rj( ; �);

where

rj( ; �) = E[u(X;  ; �)t(X;  ; �)p(j|X ;  ; �)]:

Here u(X;  ; �) and I( ; �) are the scores and information matrices for the parameter
vector ( ; �). Similar expressions as those given in (7) and (8) can be obtained for
the standard errors for the aggregate test statistics.

2.5. Homogeneity test statistics

Common component densities for mixture models include the Poisson, binomial and
normal densities. For the Poisson mixture model with component density

f(x; 
) = 
 x exp(−
)=x!; x = 0; 1; : : : (10)

we use t(x; 
) = (x − 
)2 − x to construct the test statistic (3). A test of homogeneity
based on t(x; 
) is equivalent to a C(�) test since t(x; 
) = 
 2(@2=@
 2)f(x; 
)=f(x; 
).
In PotthoG and Whittinghill (1966b) it is shown that the one-sided test that rejects
when

∑
i t(xi; 
̂) is large is asymptotically optimal against the alternative that the data

come from a mixture density with gamma mixing density. For the binomial component
density

f(xi; 
) =

(
mi

xi

)

 xi(1− 
)mi−xi ; xi = 0; : : : ; mi

we use

t(xi; 
) = xi(xi − 1)=
+ (mi − xi)(mi − xi − 1)=(1− 
)− mi(mi − 1) (11)

to construct the test statistic (3). A test of homogeneity based on t(x; 
) is equivalent to
a C(�) test since t(x; 
)= 
(1− 
)(@2=@
 2)f(x; 
)=f(x; 
). In PotthoG and Whittinghill
(1966a) it is shown that the one-sided test that rejects when

∑
i t(xi; 
̂) is large is

asymptotically optimal against the alternative that the data come from a mixture density
with beta mixing density.
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Test statistics for the normal component density,

exp(−(x −  )2=2!2)=
√
2	!

need to adjust for the eGects of estimation. In the case that !2 is a known .xed
parameter common to each of the subpopulations so that 
=  ; t(x; 
) = (x− 
)2 − !2

can be used. However, in the case 
=( ; !2), estimation of the !2 parameters implies
that (3) is identically zero. We use

t(x; 
) = (x −  )=!3 − 3(x −  )=!: (12)

Since the alternative has an additional normal component, the expectation is that this
should be detectable as skewness at one of the .tted components under the null hy-
pothesis.

3. Beta-blocker data example

The data, given in Aitkin (1999), considered in this example are the numbers of
deaths among people involved in a clinical trial of beta-blockers at 22 centers and
has been analyzed previously in Yusaf et al. (1985), Gelman et al. (1995) and Aitkin
(1999). We adopt a constant log-odds ratio binomial model for the data:

log[P(Death)] =

{

i; center i; control;


i + �; center i; treatment:

The 
i are assumed independent and identically distributed from an unknown mixing
distribution. Our interest is in determining an appropriate number of components for
the mixture by successively using the weighted homogeneity test. The homogeneity test
statistic is (9) and we use a one sided test. The weighted homogeneity tests rejected
the null at both components for the model with 2 components and the p-value for the
aggregate test statistic was 0.005. The deviance for the model with 2 components was
145.23. With 3 components the aggregate test statistic had a p-value of 0.005. The
p-values and the three components in the mixture were estimated as


 −1:61 −2:25 −2:834

Probability 0:249 0:512 0:239

p-value 0:000 0:144 0:011

The deviance was 101.29 and the � parameter was estimated as −0:2582. The small
p-value for the largest component suggests that there may be an additional component
nearby. Fitting an additional component gave


 −1:44 −1:787 −2:258 −2:833

Probability 0:18 0:099 0:481 0:24

p-value 1:000 1:000 0:161 0:011

susko
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a deviance of 94.07726 and an estimated � of −0:2584. An additional component is
suggested by the small p-value near the smallest component. However, the p-values
for the aggregate test was 0.228. Fitting an additional component gave


 −1:440 −1:787 −2:258 −2:684 −2:975

Probability 0:180 0:099 0:481 0:076 0:164

p-value 1:000 1:000 0:156 1:000 1:000

a deviance of 92.96 and a � of −0:2579. The p-value for the aggregate test statistic was
0.390. Thus a maximum of 5 components is suggested by the weighted homogeneity
test with the 4 component .t being favoured by the aggregate test.

4. Simulation results

We consider here the power of tests of 2 components. The proportions of rejections
for �= 0:05 level weighted homogeneity and bootstrap likelihood ratio tests are given
in Tables 2–4 for three common component densities: Poisson, binomial and normal.
In the normal simulations the mean was allowed to vary and a common variance
parameter was estimated (
j =  j). The distributions used in each of the simulations
are given in Table 1. For each of the resulting mixture densities, fA, an approximation
to the Kullback–Leibler divergence

inf
f0∈H0

∫
log[fA=f0]fA

is given and provides a measure of how distant the alternative distribution is from the
null.
The weighted homogeneity tests were conducted using the homogeneity test statistics

given in Section 2.5. The number of simulated data sets in each case was 1000. The
proportion of rejections at either of the components can be expected to be larger
than � = 0:05 when the null hypothesis is true. These proportions are reported since
they provide an upper bound on the power one might expect from any other form of
aggregation than that proposed here.
The results for the bootstrap likelihood ratio test are based on parametric bootstrap-

ping with 100 bootstrap samples for each simulated sample. The results reported are
proportions of rejections over 100 simulated samples.
For each of the simulations, distribution 1 is a null distribution. Asymptotic critical

values were used for the weighted homogeneity tests and critical values calculated from
100 bootstrap samples were used in the bootstrap likelihood ratio test. The results for
distribution 1 give an indication of the size of these tests. No adjustment was made to
make the sizes equal since none would be made in practice.
For the binomial and Poisson simulations the aggregate test gives smaller numbers of

rejections than those at either component using component-wise tests but the diGerence
is not substantial suggesting that not much is lost due to the aggregation. The power of
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Table 1
The mixing distributions used in the simulations

Dist Components Probabilities KL divergence

Poisson simulations
1 1.00 7.00 0.50 0.50
2 1.00 7.00 10.00 0.25 0.50 0.25 0.007
3 1.00 7.00 10.00 0.50 0.40 0.10 0.003
4 1.00 7.00 8.00 0.50 0.25 0.25 0.000
5 1.00 5.00 10.00 0.50 0.45 0.05 0.013

Normal simulations
1 −2:00 2.00 0.50 0.50
2 −2:00 0.00 2.00 0.33 0.33 0.33 0.002
3 −2:50 0.00 2.50 0.33 0.33 0.33 0.012
4 −2:50 0.00 2.50 0.50 0.40 0.10 0.012

Dist Components Probabilities Size KL divergence
parameter

Binomial simulations
1 0.25 0.75 0.50 0.50 40
2 0.25 0.75 0.90 0.50 0.25 0.25 40 0.169
3 0.25 0.75 0.90 0.50 0.40 0.10 20 0.022
4 0.25 0.75 0.90 0.50 0.45 0.05 10 0.002
5 0.33 0.50 0.67 0.33 0.33 0.33 20 0.004

the weighted homogeneity tests was comparable to the power of the bootstrap likelihood
ratio tests for both the binomial and Poisson simulations.
The results for distribution 1 for the normal simulations indicate that the size of the

weighted homogeneity test is inPated which is likely due to the approximate nature
of the asymptotics giving rise to its implementation. This makes comparison with the
bootstrap likelihood ratio test which has the right size more complicated. Nevertheless
the suggestion is that the size of the weighted homogeneity test is not grossly inPated
and the power is large relative to the bootstrap likelihood ratio test. The proportions
of rejections for the aggregate test is often larger than those at either component. This
may in part be due to the approximate nature of the asymptotics but also has to do
with the nature of the solution under the null. The two components in the estimated
null distribution had the additional component of the alternative in the middle. Thus
it was detectable at either component and consequently the aggregate test which may
have involved more stable standard error estimation was able to out-perform the test
at either component.

4.1. Forward selection

The weighted homogeneity tests can be used with forward selection to estimate
the number of components much like in a regression setting. To investigate this, we
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Table 2
The proportions of rejections for Poisson mixtures .t with two components

Distn. n Either component Aggregate test Bootstrap lr

1 250 0.058 0.025 0.03
500 0.061 0.026 0.04
1000 0.068 0.031 0.07

2 250 0.540 0.492 0.48
500 0.803 0.784 0.71
1000 0.976 0.974 0.97

3 250 0.272 0.237 0.25
500 0.458 0.415 0.35
1000 0.726 0.695 0.74

4 250 0.081 0.036 0.06
500 0.102 0.063 0.06
1000 0.122 0.079 0.14

5 250 0.644 0.612 0.71
500 0.872 0.865 0.89
1000 0.990 0.989 1.00

Table 3
The proportions of rejections for binomial mixtures .t with two components

Distn. n Either component Aggregate test Bootstrap lr

1 250 0.060 0.026 0.04
500 0.067 0.034 0.05
1000 0.065 0.035 0.09

2 250 1.000 1.000 0.91
500 1.000 1.000 0.97
1000 1.000 1.000 1.00

3 250 0.836 0.612 0.79
500 0.984 0.890 0.91
1000 1.000 0.995 0.95

4 250 0.157 0.098 0.20
500 0.295 0.190 0.18
1000 0.429 0.289 0.39

5 250 0.359 0.298 0.35
500 0.623 0.552 0.49
1000 0.874 0.845 0.82

generated 1000 samples of size 500 each from two Poisson mixtures and used for-
ward selection with 0.1 level tests to estimate the number of components. When data
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Table 4
The proportions of rejections for normal mixtures .t with two components (single variance parameter)

Distn. n Either component Aggregate test Bootstrap lr

1 250 0.186 0.135 0.02
500 0.166 0.107 0.04
1000 0.124 0.067 0.03

2 250 0.360 0.415 0.10
500 0.352 0.467 0.31
1000 0.477 0.632 0.39

3 250 0.705 0.789 0.50
500 0.811 0.919 0.80
1000 0.971 0.994 0.99

4 250 0.803 0.785 0.58
500 0.942 0.919 0.93
1000 0.999 0.995 0.99

was generated from a mixture with rate parameters 1 and 7, and with equal 	j the
distribution of estimated components over 1000 simulated samples was

1 2 3 4 5 6 7+
0.000 0.879 0.095 0.025 0.010 0.000 0.000

When data was generated from a mixture with rate parameters 1, 7 and 10, with
probabilities 0.5, 0.25 and 0.25, respectively, the distribution was

1 2 3 4 5 6 7+
0.000 0.218 0.728 0.047 0.006 0.001 0.000

4.2. Concluding remarks

The weighted homogeneity test described here is computationally e-cient and easily
implemented. Simulations suggest that it has power comparable to that of the much
more computationally intensive bootstrap likelihood ratio test.
The component-wise tests were motivated as approximate separate homogeneity tests

for the unobserved subpopulations in the mixture. Thus rejection at a particular com-
ponent should suggest the presence of an additional component nearby which did seem
to be the case in the simulations. The aggregate test statistic adjusts for the inPation
of type I error that would occur if the null was rejected whenever any one of the
component-wise tests rejected. The simulations suggest that there is not much loss in
power due to aggregation.
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An S-Plus function to compute the test statistic based upon an input component
density and homogeneity function t(x; 
) is available upon request from the author.
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