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ABSTRACT

Data mining methods can be used to predict the presence of cartilage delamination in patients with femoroacetabular
impingement. Logistic regression, LASSO logistic regression and random forest statistical learning prediction models were
built on a dataset of 229 FAI patients. When training a random forest model on an imputed dataset, a delamination prediction
rate of 77.86% was achieved. It is unlikely that BMI, alpha angle in frog view, grade of kellgren lawrence system on hip
ap audiographs, the presence of two anchors, the presence of four anchors, or sagittal length are able to contribute to the
prediction of delamination, upon inspection of the LASSO models.

1 Introduction
Patients suffering from femoroacetabular impingement (FAI) are forced to sustain hip pain and early development of osteoarthri-
tis. In order to establish appropriate treatment of FAI patients, it is essential to be able to identify which of them are at risk of
developing significant hip cartilage damage.1 Hip cartilage delamination has a direct relationship to FAI surgical outcomes,
and it is very difficult to detect, mainly because of limited joint distensibility.1 This paper attempts to construct a method of
predicting hip cartilage delamination in FAI patients, and identify the predictors that are most strongly linked to the forecasting
of cartilage delamination.

Data from the magnetic resonance arthrography images and anteroposterior radiographs of 229 FAI patients has been converted
into an easily computable format, and subsequently analyzed. This data along with the medical records of the patients forms
the dataset that has been examined. Included in the medical records for every patient is a post-operative surgical observation of
whether or not they have some form of cartilage delamination. This delamination variable, or response variable is encoded
in a categorical format, where a 1 signifies that the patient does have delamination, and a 0 signifies that they do not have
delamination. All of the medical data factors are referred to as regressor variables, which can be used to try and help prediction
of delamination. They are encoded as numerical data, or as discrete variables that can assume 2 or more possible values, similar
to the delamination response variable. The first goal of the analysis is to construct a function of the regressor variables which
can accurately predict the output response variable. The secondary goal is to identify which of the regressors are most strongly
linked to the prediction of the output.

2 Methods
Statistical learning methods were used to build a function of the regressor variables that can accurately predict the output of the
delamination response variable. The observations contained in the dataset correspond to input-output pairs for the prediction
function. To construct, or in other words train a prediction function, a statistical learning algorithm needs to be run on the
dataset to fit the function to the data. Statistical learning methods we will use to create a model include the logistic regression,
LASSO (least absolute shrinkage and selection operator) logistic regression, and random forest algorithms.

Due to the large amount of incomplete observations in the training dataset, data imputation methods were used to estimate
missing regressor variable values. Data imputation algorithms that were used include multiple imputation by chained equations
(MICE), k-nearest neighbors imputation and random forest imputation. To infer which of the regressor variables are most likely
able to be used for prediction of the response, an inspection of the LASSO feature selection algorithm output for each model
trained using that algorithm was completed. All data processing was done in R, and all algorithms, plots, and models were
implemented in R, making use of the packages mice2, caret3, MissForest4, glmnet5 6, and DMwR7.



2.1 Logistic Regression
A logistic regression model can be trained to predict the output of discrete response variables that take on a maximum of two
values. The model makes use of the logistic function, which is defined as follows:
Definition 1: Let x = (x1,x2, . . . ,xk) be a vector of k real numbers, and let β0,β1, . . . ,βk ∈ R. The logistic function is then:

π(x) =
eβ0+β1x1+...+βkxk

1+ eβ0+β1x1+...+βkxk
=

1
1+ e−(β0+β1x1+...+βkxk)

We assume that for any given input vector of regressor variables X , the output response variable y will follow a Bernoulli
distribution with probability parameter π(X). As a result, at any given point X , y will have an expected value of π(X) and
variance of π(X) ·(1−π(X)). The model parameters that are found by inspecting the data are the coefficients β0,β1, . . . ,βk ∈R.

One thing that must be considered when using a logistic regression model is how the logistic function only accepts real number
input values, while our true set of regressors includes discrete variables. To combat this, every discrete regressor xdiscrete that
could take on N possible values was encoded using N−1 real valued replacement regressor variables x1,x2, . . . ,xN−1 in the
following way: In observations that xdiscrete took on its mth possible value where 1≤ m≤ N−1, we would set all of the real
valued replacement regressors to be equal to zero, and set xm = 1. Alternatively, if xdiscrete took on it’s Nth possible value, we
would set every one of the real valued replacement regressors to be equal to zero. This way we created an encoding of all the
possible categorical values that the discrete regressor can assume such that each of the values have a real number coefficient
contributing to the model.

Our goal when constructing a logistic regression model is to choose coefficient parameters that will minimize the probability of
making a prediction error for any future observation. One method of coefficient estimation is maximum likelihood estimation,
which chooses parameter values that maximize the probability of observing what constituted our collected random sample. We
assume that our sampled data points are independent of one another and identically distributed according to the density described
earlier in order to find the following likelihood function that describes the probability of finding our set of observations:

L(β0,β1, . . . ,βk) =
n

∏
i=1

π(xi)
yi(1−π(xi))

1−yi

The set of coefficients which maximize the easier to work with logarithm of the likelihood function, or log-likelihood will
equivalently maximize the original likelihood function. We have the following expression for the log-likelihood:

l(β0,β1, . . . ,βk) =
n

∑
i=0

[yilog(π(xi))+(1− yi)log(1−π(xi))]

To maximize the log-likelihood function, we differentiate it with respect to each model parameter, and set each derivative equal
to zero. The coefficient values that solve that system of nonlinear equations will maximize the likelihood. The set of derivative
equations that need to solved are:

n

∑
i=1

[yi−π(xi)] = 0

n

∑
i=1

[xi j(yi−π(xi))] = 0, j = 1,2, . . . ,k

There isn’t an explicit solution for the coefficient values satisfying this set of nonlinear equations, so we approximate the
solution using a numerical method. As we let a beta vector βt represent a vector of all the model parameters at time t, we use
the Newton-Raphson method to iteratively solve the equations. It takes an initial guess of the beta vector, β0 and then uses the
gradient of the log-likelihood function with respect to the coefficient variables to iteratively construct beta vectors close to the
true solution until getting adequately close, using the following scheme:

βt = βt−1− (l′′(βt−1))
−1(l′(βt−1))

2.2 LASSO Logistic Regression
A logistic regression model trained using LASSO will have the same model structure as one constructed without using LASSO,
however the method of coefficient estimation is different. The LASSO method first standardizes the values of all regressor
variables in order to constrain the absolute value sum of model coefficients. It inserts a penalization of large coefficient values
into the logistic regression training process, with the penalization strength controllable using a tuning parameter λ . Instead of
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trying to maximize the log-likelihood function, LASSO equivalently aims to choose coefficients that minimize the negative
log-likelihood. We can refer to this negative log-likelihood as a loss function L:

L =−l(β0,β1, . . . ,βk) =−
n

∑
i=0

[yilog(π(xi))+(1− yi)log(1−π(xi))]

L =
n

∑
i=0

[
−yilog

(
π(xi)

1−π(xi)

)
− log(1−π(xi))

]

L =
n

∑
i=0

[
−yi

k

∑
j=1

(β jxi j)− log(1−π(xi))

]
In addition to this loss function from the unchanged logistic regression method of training, LASSO adds the absolute value
coefficient sum term to form its own loss function LLASSO. The LASSO operator seeks to minimize the LASSO loss function,
and by following that policy, we are left with an expression for the model parameters:

LLASSO = L+λ

p

∑
j=1
|β j|

β̂λ = argmin
β

(LLASSO)

To find the regression coefficient values which minimize the LASSO loss function, the glmnet package uses a numerical
optimization method called cyclical coordinate descent.6 The λ tuning parameter is chosen by iteratively building LASSO
models using many lambda values, and choosing the one that minimizes prediction error. Depending on the size of the tuning
parameter choice, LASSO will shrink some model coefficients to 0, removing certain regressors from being considered if
they don’t have a significant enough correlation with the response. This process of variable selection gives a view of which
regressors most likely contribute to the true underlying prediction model. By getting rid of the use of non-contributing variables
and preventing overfitting to the data, LASSO can also increase the model prediction accuracy.

2.3 Random Forest
Random forest is another method of supervised learning that makes use of multiple classification and regression trees (CART)
to partition the space of input data into discrete areas. Each area is represented using a leaf in a binary tree and is assigned a
label corresponding to the predicted output response for any input vector that happens to be there. The response labels are
constructed by generalizing the output behaviour from observations that fall in each area.

Figure 1. Example partition of a two-dimensional input space8

To help ensure a high prediction accuracy of a CART, it is important for it to choose a partition of the input space such that each
disjoint area will have a consistent output labeling. The Gini impurity can be defined to establish a measure of how consistent,
or pure any given labeling is for a partition:
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Definition 2: Let P be a partition of sampled observations, and p1, p2, . . . , pk be the fraction of items in that partition labelled
with class 1,2, . . . ,k in the set. The gini impurity is defined to be:

IG(P) = 1−
k

∑
i=1

p2
i

To build the partition, we can iteratively split up the input space in two by choosing a variable and splitting point such that the
resulting partition will have a minimized Gini impurity. The partition process will iteratively run until we reach some sort of
stopping criteria that we define. An example of a stopping point would be to finish training once each disjoint area has no more
than 5 observations. Once a partition has been established, it can be generalized to cover the entire input space and encoded into
a binary tree with each leaf representing a specific set of inputs. A probability density for the response variable is established at
each leaf, with the probability of any classification label being the proportion of observations in that area which have the label.

Predictions from a random forest model will come from merging the output predictions of many CART models as illustrated in
Figure 2. Samples of the set of observations are repeatedly made (with replacement) to train many classification trees. Every
tree only regresses on a subset of the k available regressors. It is commont to force each tree to randomly choose b

√
kc of the

available features to consider. To make a new response prediction given an input vector, a probability density for the input is
constructed by averaging the proportions of each possible response from each of the classification trees. The predicted response
will be the value that has the highest probability of occurring in the combined probability density. Random forest models reduce
the variance of prediction in comparison to classification trees, while retaining low bias.9 Consequently, random forest models
have a lower mean squared error than classification trees, and they are more effective in prediction of the response.

Figure 2. Random forest makes use of many decision trees to build a prediction policy.10

2.4 Data Imputation
Data imputation algorithms estimate the values of missing regressor data in incomplete observations. There were many missing
data points in the delamination training set, which left the dataset having nearly only half of its original size in complete
observations. Having a large number of contributing observations is important for building an accurate model, and estimation
of missing data points can allow for many more valid observations to be used in the training set. Data imputation amounts to
modeling the variables with missing values as response variables, and training a model on the remaining regressors in order to
make an accurate estimation of missing data points. The three data imputation methods that were used were multiple imputation
by chained equations (MICE)2, k-nearest neighbor imputation7, and random forest imputation4.

MICE Imputation: MICE is a technique that operates by imputing missing data many times over, in an attempt to get
iteratively better estimations for the missing values. Firstly, a simple imputation technique such as imputing the mean (for
numerical regressors) is used to provide placeholder estimates for the value of every missing data point for every variable
except for one. The missing values for the excluded variable are then estimated by using a supervised learning model dependent
on all the other regressors. The type of supervised learning model that is chosen will depend on the form of the regressor being
estimated. For instance, if the variable containing the missing values is categorical, then logistic regression (if it takes on a
maximum of two values) or polytomous regression can be used to impute it. Conversely, linear regression can be used on
numerical regressors.11

Once the first set of missing values has been imputed, the placeholder estimates are deleted for the second variable that had
missing values, and the regression process is repeated to get a new estimation for each of the missing values of the second
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variable. This is done for all variables that had missing data points so that each of them benefit from the use of a regression
model. After that is complete, the entire process is repeated a number of times (5-10 iterations is common) using the imputed
dataset as the new placeholder estimation values.11

K-Nearest Neighbor and Random Forest Imputation: K-nearest neighbor imputation is an imputation method that makes
use of local input space to infer missing regressor values. For each regressor, only a certain number of points, (k ∈ N) that are
closest to the missing observation according to a user defined distance metric will be considered for the regression. A common
choice for k is 10, and an example of an acceptable distance metric for use is the Euclidean distance between observations.
When predicting a categorical variable, the category that appears most often in the response from the k nearest observations will
assume the value of the missing response. Missing numerical values are estimated by taking the arithmetic mean of the response
from the k nearest observations. Random forest imputation, as suggested by the title will construct random forest models
for each of the variables with missing values to estimate their missing data points. A proximity matrix defining the distance
between two observations as the fraction of trees in which both observations fall in the same terminal node is constructed to
provide a weighted average for predicting missing values. Random forest imputation methods have the option of operating
iteratively to constitute a multiple imputation algorithm, similar in operation to the MICE algorithm.

2.5 Model Assessment
To assess the accuracy of each built model, 10-fold cross validation was used. 10-fold cross validation first partitions the
training data into ten subsets. It then trains a model and evaluates the prediction error rate 10 different times, each time using
one partition as a validation set to test the predictions, and the remaining partitions as the training set. After completing all the
evaluations, we inspect the average of the resulting errors from all ten models to get an estimation of the true prediction error.

Cross validation guarantees that any influential observation will be left out of exactly one training set from our 10 different
prediction models. This increases the prediction error of that particular model, but it will not strongly affect the overall
prediction error, since it is constructed as an average using 9 other models which do include use of that influential observation.
Cross validation gives a good overall look at how our model performs, and it is resistant to potential mistakes that could be
made in manually choosing a training and validation set. In order to alleviate some of the inconsistency from the assessment of
models that trained on imputed data, the data imputation process was repeated 10 times to get 10 complete imputed datasets.
An average of the cross validation error was then recorded from the models that trained on each set.

3 Results
On the reduced dataset that did not contain any imputed data, but only had half of its size worth of complete observations, all the
regression models discussed earlier were trained on it and assessed. LASSO logistic regression and random forest models were
trained and assessed using the imputed datasets that resulted from the three imputation methods mentioned before. A summary
of the performance of each model is visible in the tables below. The models that were trained on imputed datasets performed
better in comparison to those that trained on the dataset with incomplete observations. A random forest model trained on an
imputed dataset using the random forest imputation method gave the largest estimated prediction accuracy of about 77.86%.

No Imputation
Model type Estimated prediction accuracy

Logistic Regression 0.6410839
LASSO 0.7179487

Random Forest 0.7595685

MICE Imputation
Model type Estimated prediction accuracy Standard deviation

LASSO 0.70131 0.01724753
Random Forest 0.7755731 0.01440532

KNN Imputation
Model type Estimated prediction accuracy Standard deviation

LASSO 0.710917 0.01591875
Random Forest 0.7764756 0.01280231
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RF Imputation
Model type Estimated prediction accuracy Standard deviation

LASSO 0.7213974 0.01196786
Random Forest 0.7785804 0.01224433

A roundup of which variables were selected from each of the LASSO models was collected, and it followed that none of the
following regressors ended up being chosen in any of the LASSO models: BMI, alpha angle in frog view, grade of kellgren
lawrence system on hip ap audiographs, the presence of two anchors, the presence of four anchors, and sagittal length.

4 Discussion
The results of delamination prediction accuracy for the models is acceptably good, with the best model having a success rate
of 77.86%. If there was a larger dataset available with more complete observations, a model with even higher prediction
accuracy could potentially be built. The data imputation for estimation of missing data points did not give a hugely significant
improvement to the models, only giving an estimated increase in prediction rate of approximately 1.9% when comparing the
best model that used imputation to the best model that did not. It is not likely that the regressors that were not chosen in any
LASSO model can contribute to the prediction of cartilage delamination very well.

Computer vision algorithms that use deep learning could be useful for this and other diagnoses prediction problems, given the
raw medical images. It would get rid of potential human errors that could have come up while researchers were inspecting the
images. Computer vision also alleviates the pressure that was put on the researchers of this study to sample such a wide set of
variables, since the only resource that would be required for analysis would be the images and the post-operative examination
of delamination presence. This could help get rid of the problem of missing data points from the provided dataset. Computer
vision algorithms often require a large sample of data to be useful, so a large amount of images could potentially be needed for
the method to be more effective than what was done in this study. It would also be more difficult to implement, and the image
data could carry a large amount of distortion and noise, which would make it difficult to get accurate prediction results.
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