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Abstract 

Terminal remission – also known as epileptic seizure freedom at the end of follow-up by a 

pediatrician – will be analyzed using data analysis tools such as generalized linear models with 

Binomial distribution, classification trees, and random forests due to the binary nature of the 

response variable. The status of terminal remission is a binary data with no missing values and 

two levels: in remission and not in remission. The above data analysis techniques will be used to 

determine which factors – patient’s sex, age at first seizure, health condition, types of seizures, 

socio-economic status of their family, etc. – are important in predicting terminal remission status. 

While trying to identify the key factors that affect the outcome of epilepsy, the said techniques will 

be discussed in depth by looking at their similarities, differences, advantages, and disadvantages. 

 

Introduction 

Children who have epilepsy can outgrow the condition or can control the condition with 

medication; thus, the main purpose of the analysis is to identify the key factors that affect the 

outcome of epilepsy. The dataset that will be used to answer that scientific question of interest is 

a collection of records on 554 children diagnosed with epilepsy provided by two retired 

pediatricians from the IWK Health Centre in Halifax, Nova Scotia. When in it comes keeping 

clinical records, it is a common practice to record all observations made during a clinical 

encounter. Although there are 451 variables in the data, only few of them carry some explanatory 

value; thus, a careful variable exploration and selection are required when working with medical 

data. In this case, the Exploratory Data Analysis will be the first step in making “an educated 

guess” and selecting the variables that might potentially be correlated with the terminal remission 

status. Later, the preselected variables will be used to fit a logistic regression model, to build a 

classification tree, and to grow a random forest. 
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Methods 

 

Exploratory Data Analysis 

Exploratory Data Analysis (EDA) should always be the first step taken in any data analysis project. 

It involves using graphical and descriptive tools that help to better understand the data before 

beginning any analysis. It tells what kind of model to use and what kind of assumptions to make. 

Examining the variables helps to catch mistakes, find patterns, discover potential outliers, and 

determine whether any of the assumptions made have been violated.  

Although the analysis will be mainly carried out in Python, Excel is an efficient tool that can be 

used for visual inspection of the data due to its substantial size. Once the process of variable 

selection is done, the data visualization tools, such as bar plots, histograms, and boxplots, will be 

used to visualize the data. Most of the explanatory variables are categorical, but there are some 

continuous measures as well. The variable ‘aedend’ which stores the status of terminal remission 

should be inspected for any missing values.  

 

Generalized Logistic Regression  

The logistic regression – more specifically a generalized linear model with Binomial distribution – 

will be used to make a suitable model for predicting the response variable and to test the 

significance of the preselected input variables. First, all of the variables will be used to fit a so 

called full or null model, and then all of the redundant variables will be removed – one at a time 

based on the largest p-value – in order to arrive to the simplest yet the most efficient model based 

on AIC criterion. It is crucial to note that AIC by itself does not tell anything about the 

quality/goodness of a single model. It becomes useful in comparing several models between each 

other to identify the most effective one. The lower the AIC, the better the fit. AIC is calculated 

using the following formula:  

AIC = 2k – 2(log-likelihood), where k is the number of parameters used in the model 

The AIC criterion is very similar to R-squared, which penalizes the use of too many explanatory 

variables to improve the fit. Similarly, AIC goes up in case the model is too complex.  

The model assumptions, such as observation independence, absence of multicollinearity, and 

balanced sample, should be checked after the model is fit. Splitting the data into train and test 

sets will allow us to calculate the classification accuracy rate, which will later be used to compare 

the three data analysis techniques. The goal is essentially to use the train set to train a model, 

and then use the test set to test the previously trained model.  
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Classification Tree  

Classification tree, also known as CART, is a data analysis technique used to classify 

observations into classes of a categorical response variable based on the values of the input 

variables. When one fits linear models and GLMs, they need to make sure that appropriate 

distributional assumptions are made. They need to check that the residuals are independent and 

identically distributed from a normal distribution with mean zero and constant standard deviation 

for linear models; and need to specify the distribution of the response variable for GLMs. The 

main advantage of the CARTs is that they do not require making any distributional assumptions 

such as the ones mentioned above. In addition, the CARTs are easier to interpret and visualize, 

and they have a way to use observations with missing values (using surrogate splits) instead of 

simply removing them. The first step will be using the train set to build a classification tree, and 

then test the performance of the classification tree on the test set. 

Further, the said classification tree can be pruned in order to reduce overfitting. Pruning a decision 

tree reduces its size by removing branches that “contribute the least”; thus, making it less complex 

and increasing its (test) classification accuracy. Although, the pruned classification tree might not 

fit or predict the train set as well as before, it will be easer to interpret a simpler tree.  

 

Random Forest  

In theory, random forest does a better job than classification trees because it consists of 500 

reasonably uncorrelated trees and it uses the most frequent classification (something like majority 

vote) out of these 500 trees to make predictions. Due to the fact that every tree is trained on a 

different sample of data, the random forest is good at the reduction of overfitting.  

As mentioned previously, decision trees are quite prone to overfitting; therefore, we use random 

forests in order to reduce the risk of overfitting. Since every tree in a random forest is trained on 

a different/random subset of the data, the trees are relatively uncorrelated and altogether produce 

a higher classification accuracy than a single decision tree. At the same time, single decision trees 

are easier to interpret and plot; and they can be plotted rather quickly. Unlike single classification 

trees, random forests cannot handle missing values and simply removes them. 
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Results 

Symptomatic epilepsy is a type of epilepsy that caused by an injury to the brain as a result of 
significant head injury, CNS infection, stroke, brain tumor, surgery, etc. The bar charts in Figure 
1 demonstrate that a significant proportion of patients who were diagnosed with symptomatic 
epilepsy are in remission; thus, this suggests that there might be a significant relationship which 
should be investigated further. The following frequency table clearly illustrates that relationship 
as well: 

 Non-symptomatic Symptomatic 

In remission 156 57 

Not in remission 315 26 

 

 

Figure 1. The bar charts for terminal remission status and  

symptomatic seizure status  

 

Although most of the input variables are categorical, the ‘agefirst’ variable is a continuous variable 
which indicates the age of a patient at first seizure which can be a variable of interest. The side-
by-side boxplots in Figure 2 suggest that, on average, the patients in remission experience their 
first seizures at a slightly younger age and the spread of the ages is much larger for them; this 
also suggests a potential relationship.  
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Figure 2. The side-by-side boxplots of age at first seizure (in months) 
for two levels of terminal remission status 

The previously mentioned variables and six more were chosen to be included in the null logistic 
regression model and the model summary is displayed in Figure 3. As it was predicted, the 
variables ‘symptomatic’ and ‘agefirst’ are significant at the significance level of alpha = 0.01; in 
addition, the variables ‘generalized’ – indicator variable for a type of epilepsy that occurs 
throughout the whole brain – and ‘fu’ – total follow-up from first seizure to last contact in months 
– show some potential to be significant in a reduced model. The summary of the null model is 
illustrated in Figure 3.  

 

Figure 3. The summary of the null GLM model 
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The said reduced model is obtained by manually removing the insignificant variables one at a 
time and its summary is displayed in Figure 4. Unfortunately, the variables ‘fu’ and ‘generalized’ 
did not prove to be significant and the reduced model only contain two variables: ‘symptomatic’ 
and ‘agefirst’, but it is the best model based on the AIC criterion. The AIC for two models is shown 
in the table below: 

Model AIC 

Full 126960.6128 

Reduced 122936.9132 

Reduced  
(with an interaction term) 

123637.9815 
 

 

 

Figure 4. The summary of the reduced GLM model 

The side-by-side boxplots in Figure 5 demonstrate a potential relationship between the 
symptomatic epilepsy status and the age at first seize; therefore, the possibility of interaction 
between ‘symptomatic’ and ‘agefirst’ should not be ignored. An additional model with the 
interaction term was constructed; however, the interaction term has a huge p-value, shown in 
Figure 6, and almost no contribution to the model (increase in AIC), thus will not be included in 
the reduced model. 
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Figure 5. The side-by-side boxplots of age at first seizure (in months) 
for two levels of symptomatic epilepsy status 

 

 

Figure 6. The summary of the GLM with an interaction term 
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Since the patients are independent of each other and the diagnostic plot (Residuals vs. Fitted) in 
Figure 7 shows no anomalies – the residuals are randomly scattered around the mean – the 
model assumptions are satisfied, so it is valid to proceed with predicting the remission status 
using the reduced model. The prediction accuracy will be displayed later in the analysis after the 
prediction accuracies for other techniques are obtained as well.  

 

Figure 7. The residuals versus fitted plot 

Unlike the logistic model which uses only two variables, the classification tree finds the two other 
variables to be important: ‘fu’, total follow-up from first seizure to last contact in months, and 
‘edum’, the education level of mother.  

 

Figure 8. The original classification tree 

Although, the decision trees are prone to overfitting and perhaps that is the reason why these 
variables are included in the tree, but it is important to understand why ‘fu’ can be quite misleading: 
as it is usually the case with medical trials, some patients tend to withdraw from a study if they 
recover or instead if they did not, but stopped attending doctor’s appointments because they do 
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not help anymore. For that reason, it is reasonable to use a pruned tree which also relies on 
‘symptomatic’ in predicting the terminal remission which confirms the results of the logistic 
regression 

 

Figure 9. The pruned classification tree 

The last step will be to grow a random forest: unlike the decision trees, a random forest’s 
implementation in Python is not able to handle missing values. For that reason, the size of the 
train set is slightly reduced by removing the ‘fu’ and ‘generalized’ variables which have lots of 
missing values and were previously proven to have no explanatory power. The classification 
accuracy rates are given in the following table: 

Technique Classification Accuracy 
Rate 

Logistic Regression 68.345% 

Classification Tree 61.871% 

Classification Tree (Pruned) 67.625% 

Random Forest 62.589% 

 

It is important to note that the above techniques all provide similar results, and all agree on the 
important variables. 

A classification modelling problem involves classifying observations into classes of a categorical 
response. At the same time, a model could predict the probability of assigning an observation to 
each of the possible classes. The logistic regression returns well calibrated predictions by default 
as it directly optimizes log-loss, shown in Figure 8. 
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Figure 10. The calibration plots 

 

Conclusion 

The three techniques used in the analysis – Logistic Regression, Classification Tree, and Random 
Forest – all agree on that the terminal remission status is highly affected by two major factors: the 
status of symptomatic epilepsy, whether epilepsy was caused by an injury to the brain or not; and 
the age at the first seizure, which is recorded in months. A patient is more likely to recover from 
epilepsy if they are diagnosed with symptomatic epilepsy, and if the first seizure occurs at a 
younger age. The three techniques all provided quite similar classification accuracy rates, 
meaning that the results are quite stable and reliable. 



Data Analysis for Epileptic Seizure Prediction: Python
code
Arman Kerimbek Supervisor: Dr. Bruce Smith Dalhousie University, Halifax, Nova Scotia

In [3]: #this is a package used to silence warnings
import warnings
warnings.filterwarnings('ignore')

In [4]: #importing packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import statsmodels.api as sm
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
from patsy import dmatrices
import sklearn
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.calibration import calibration_curve
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier  
from sklearn import metrics
from sklearn import tree
from sklearn.externals.six import StringIO   
from IPython.display import Image   
from sklearn.tree import export_graphviz
import pydotplus

Exploratory Data Analysis



In [5]: #reading in the data from a camfield.csv file
data = pd.read_csv('camfield.csv', header = 0)
#exploring the dataset
data.head()

In [6]: #getting the dimensions
data.shape
#removing the first column
data = data.drop(columns = "Column1")
#checking
data.shape

In [7]: #some visualization tools 
%matplotlib inline 
table = pd.crosstab(data.symptomatic, data.aedend)
table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True)
plt.title('Bar Charts of aedend and symptomatic')
plt.savefig('aedend_and_symptomatic')

Out[5]:
Column1 groupID nogroup dob sex cas

0 1 700.0 NaN NaN female 515

1 2 NaN NaN ##############################################... male 80

2 3 NaN NaN 12421987200 female 250

3 4 NaN NaN ##############################################... female 6

4 5 777.0 NaN NaN female 478

5 rows × 462 columns

Out[6]: (554, 461)



In [8]: #getting the needed columns
small_data = pd.concat([data.aedend, data.agefirst], axis = 1)
#making some boxplots
sns.boxplot(x = data.aedend, y = data.agefirst, palette = "Blues")
plt.show()
sns.boxplot(x = data.symptomatic, y = data.agefirst, palette = "Blues")
plt.show()

Generalized Logistic Regression
In [9]: #modifying the variables

data.aedend = pd.get_dummies(data.aedend).yes
data.sex = pd.get_dummies(data.sex).male
data['intercept'] = 1
data['interaction'] = data.agefirst*data.symptomatic



In [17]: #the logistic regression model with all the variables
logit_model = sm.Logit(data.aedend.to_numpy(), data[['intercept','agefirst', 
'symptomatic',  
                                                    'sex', 'focal', 'fu', 'po
or', 'adequate', 'generalized']].to_numpy())
result = logit_model.fit()
print(result.summary2(xname = ['intercept','agefirst', 'symptomatic',  
                                                    'sex', 'focal', 'fu', 'po
or', 'adequate', 'generalized']))

Optimization terminated successfully. 
         Current function value: 114.569145 
         Iterations 5 
                          Results: Logit 
================================================================== 
Model:              Logit            Pseudo R-squared: inf         
Dependent Variable: y                AIC:              126960.6128 
Date:               2020-04-20 10:06 BIC:              126999.4673 
No. Observations:   554              Log-Likelihood:   -63471.     
Df Model:           8                LL-Null:          0.0000      
Df Residuals:       545              LLR p-value:      1.0000      
Converged:          1.0000           Scale:            1.0000      
No. Iterations:     5.0000                                         
------------------------------------------------------------------- 
                 Coef.   Std.Err.     z     P>|z|    [0.025  0.975] 
------------------------------------------------------------------- 
intercept       -0.8361    0.5116  -1.6344  0.1022  -1.8388  0.1665 
agefirst         0.0066    0.0019   3.4623  0.0005   0.0029  0.0103 
symptomatic      1.7685    0.5168   3.4223  0.0006   0.7557  2.7813 
sex             -0.0287    0.1866  -0.1538  0.8777  -0.3944  0.3370 
focal           -0.0806    0.4769  -0.1689  0.8659  -1.0153  0.8542 
fu              -0.0014    0.0009  -1.5571  0.1194  -0.0031  0.0004 
poor            -0.0339    0.2283  -0.1487  0.8818  -0.4813  0.4135 
adequate         0.0458    0.2273   0.2014  0.8404  -0.3998  0.4914 
generalized      0.2808    0.5271   0.5328  0.5942  -0.7522  1.3139 
================================================================== 
 



In [16]: #The reduced model 
logit_model = sm.Logit(data.aedend.to_numpy(), data[['intercept','agefirst', 
'symptomatic']].to_numpy())
result = logit_model.fit()
print(result.summary2(xname = ['intercept','agefirst', 'symptomatic']))

Optimization terminated successfully. 
         Current function value: 110.948478 
         Iterations 5 
                          Results: Logit 
================================================================== 
Model:              Logit            Pseudo R-squared: inf         
Dependent Variable: y                AIC:              122936.9132 
Date:               2020-04-20 10:05 BIC:              122949.8647 
No. Observations:   554              Log-Likelihood:   -61465.     
Df Model:           2                LL-Null:          0.0000      
Df Residuals:       551              LLR p-value:      1.0000      
Converged:          1.0000           Scale:            1.0000      
No. Iterations:     5.0000                                         
------------------------------------------------------------------- 
                Coef.   Std.Err.     z     P>|z|    [0.025   0.975] 
------------------------------------------------------------------- 
intercept      -1.2420    0.1862  -6.6686  0.0000  -1.6070  -0.8770 
agefirst        0.0065    0.0018   3.5375  0.0004   0.0029   0.0101 
symptomatic     1.8814    0.2834   6.6384  0.0000   1.3259   2.4369 
================================================================== 
 



In [15]: #The model with interaction
logit_model = sm.Logit(data.aedend.to_numpy(), data[['intercept','agefirst', 
'symptomatic', 'interaction']].to_numpy())
result = logit_model.fit()
print(result.summary2(xname = ['intercept','agefirst', 'symptomatic', 'interac
tion']))

In [19]: #making predictions
x_train, x_test, y_train, y_test = train_test_split(data[['intercept','agefirs
t', 'symptomatic']].to_numpy(), 
                                                   data.aedend.to_numpy(), te
st_size = 0.25, random_state = 0)
logisticRegr = LogisticRegression()
logisticRegr.fit(x_train, y_train)
predictions = logisticRegr.predict(x_test)
score = logisticRegr.score(x_test, y_test)
print(score)

Classification Tree

Optimization terminated successfully. 
         Current function value: 111.579406 
         Iterations 5 
                          Results: Logit 
================================================================== 
Model:              Logit            Pseudo R-squared: inf         
Dependent Variable: y                AIC:              123637.9815 
Date:               2020-04-20 10:05 BIC:              123655.2502 
No. Observations:   554              Log-Likelihood:   -61815.     
Df Model:           3                LL-Null:          0.0000      
Df Residuals:       550              LLR p-value:      1.0000      
Converged:          1.0000           Scale:            1.0000      
No. Iterations:     5.0000                                         
------------------------------------------------------------------- 
                Coef.   Std.Err.     z     P>|z|    [0.025   0.975] 
------------------------------------------------------------------- 
intercept      -1.2718    0.1902  -6.6883  0.0000  -1.6445  -0.8991 
agefirst        0.0068    0.0019   3.6345  0.0003   0.0032   0.0105 
symptomatic     2.0616    0.3563   5.7853  0.0000   1.3631   2.7600 
interaction    -0.0070    0.0081  -0.8682  0.3853  -0.0230   0.0089 
================================================================== 
 

0.6834532374100719 



In [20]: #making a classifcation tree
x_train, x_test, y_train, y_test = train_test_split(data[['agefirst', 'symptom
atic', 'sex', 'focal', 'fu', 'poor', 
                                                         'adequate', 'general
ized']].to_numpy(), 
                                                   data.aedend.to_numpy(), te
st_size = 0.25, random_state = 0)
#making predctions
dt = DecisionTreeClassifier()
dt.fit(x_train, y_train)
y_pred = dt.predict(x_test)
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

In [23]: #pruning the above tree
dt = DecisionTreeClassifier(max_leaf_nodes=5)
dt.fit(x_train, y_train)
y_pred = dt.predict(x_test)
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.6187050359712231 

Accuracy: 0.6762589928057554 



In [24]: tree.plot_tree(dt.fit(x_train, y_train))  

Random Forest
In [26]: # Instantiate model with 500 decision trees

rf = RandomForestClassifier(n_estimators=1000)
# Train the model on training data
rf.fit(x_train, y_train)
y_pred = rf.predict(x_test)
print("Accuracy:", metrics.accuracy_score(y_test, y_pred))

Probability Calibration

Out[24]: [Text(223.20000000000002, 195.696, 'X[1] <= 0.5\ngini = 0.472\nsamples = 415
\nvalue = [257, 158]'), 
Text(167.4, 152.208, 'X[0] <= 115.0\ngini = 0.442\nsamples = 349\nvalue = [2
34, 115]'), 
Text(111.60000000000001, 108.72, 'X[4] <= 38.5\ngini = 0.374\nsamples = 245
\nvalue = [184, 61]'), 
Text(55.800000000000004, 65.232, 'gini = 0.0\nsamples = 5\nvalue = [0, 5]'), 
Text(167.4, 65.232, 'X[4] <= 357.0\ngini = 0.358\nsamples = 240\nvalue = [18
4, 56]'), 
Text(111.60000000000001, 21.744, 'gini = 0.401\nsamples = 180\nvalue = [130, 
50]'), 
Text(223.20000000000002, 21.744, 'gini = 0.18\nsamples = 60\nvalue = [54, 
6]'), 
Text(223.20000000000002, 108.72, 'gini = 0.499\nsamples = 104\nvalue = [50, 
54]'), 
Text(279.0, 152.208, 'gini = 0.454\nsamples = 66\nvalue = [23, 43]')]

Accuracy: 0.6258992805755396 



In [40]: X_train = data[['intercept','agefirst', 'symptomatic']].to_numpy()[:400]
X_test = data[['intercept','agefirst', 'symptomatic']].to_numpy()[400:]
y_train = data.aedend.to_numpy()[:400]
y_test = data.aedend.to_numpy()[400:] 

# Create classifiers
lr = LogisticRegression()
gnb = GaussianNB()
svc = LinearSVC(C=1.0)
rfc = RandomForestClassifier() 

# ############################################################################
#
# Plot calibration plots 

plt.figure(figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0)) 

ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'), 
                 (gnb, 'Naive Bayes'), 
                 (svc, 'Support Vector Classification'), 
                 (rfc, 'Random Forest')]: 
   clf.fit(X_train, y_train) 
   if hasattr(clf, "predict_proba"): 
       prob_pos = clf.predict_proba(X_test)[:, 1] 
   else:  # use decision function 
       prob_pos = clf.decision_function(X_test) 
       prob_pos = \ 
           (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) 
   fraction_of_positives, mean_predicted_value = \ 
       calibration_curve(y_test, prob_pos, n_bins=10) 

   ax1.plot(mean_predicted_value, fraction_of_positives, "s-", 
            label="%s" % (name, )) 

   ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, 
            histtype="step", lw=2) 

ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots  (reliability curve)') 

ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2) 

plt.tight_layout()
plt.show()




