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1 Abstract

This thesis builds species models of coccolithophores using hierarchical generalized additive models (HGAM)

and regression analysis using Least Absolute Shrinkage and Selection Operator (LASSO). Analysis will include

many common model comparison techniques such as comparisons of adjusted R2 and Akaiake Information

Criterion scores of the training data, and Root Mean Squared Errors of both training and testing data, to

examine which models can accurately predict species abundance. We start by extracting a subset of the

Coccobase data repository and apply a series of models and analysis on corresponding results. Three of

the best HGAMs were chosen based on comparison techniques mentioned above. The best LASSO model

assessed was for the Emiliania huxleyi data. These components will be interpreted and discussed in depth.
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3 Introduction

Coccolithophores are a major type of calcifying phytoplankton commonly found across all oceans that occupy

distinct niches from tropical to sub-polar seas. As climatic conditions change across the oceans from various

reasons including global warming, it is important to understand how species abundance will change, and to

develop species distribution models to predict how their future biogeography may change as a consequence

of anticipated changes in climate. Many previous studies, using controlled laboratory experiments, show

that variables such as light, nutrients, and temperature play an important role in determining interspecific

competition and species abundance. Analysis of species abundance and its relation to environmental and

physical variables using real data collected across the world’s oceans is the next necessary step in accurately

predicting species abundances and finding similarities and/or differences in the environmental conditions

where coccolithophore species are observed, and is the main objective of this work.

Coccobase is a compilation of previously reported data that include both environmental and physical ob-

servations of coccolithophore species across the globe as well as their respective abundances [6]. Coccobase

therefore provides an excellent opportunity to model coccolithophore abundances in the North Atlantic using

real ocean data, which may in the future be extrapolated to the rest of the Earth’s oceans.

Species models for Emiliania huxleyi, Coccolithus pelagicus, Syracosphaera pulchra are compared to models

for the broad category of all coccolithophore observations, and the genera Coccolithus and Syracosphaera.

These species were chosen based on the number of observations available. E. huxleyi, C. pelagicus, S. pulchra

were the species with the highest number of observations after subsetting the data (Table 11).

The purpose of this research was to determine which environmental variables can be used to accurately

predict species abundance, and to find similarities and/or differences in the environmental conditions where

the coccolithophore species are observed, using appropriate modelling methods. The data was modelled

using hierarchical generalized additive models (HGAMs) and GLMs with LASSO variable selection and

regularization [3, 9]. These models were used to assess the differences in niche and to compare the predictive

ability of the different modelling techniques. The best model for predictive accuracy and fit of data were

determined based on common model comparison methods, using values of adjusted R2 (R-sq adj), Akaike

information criterion scores (AIC), and root mean squared errors (RMSE) [1].
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4 Methods

4.1 Data collection and manipulation

The data used for this analysis comes from the Coccobase repository, available on Github [4]. Coccobase is

built upon previously made compilations of data and includes many of the variables required for analysis.

Coccobase has over 213,000 individual observations, carefully filtered by applying quality control measures

to the pre-existing data gathered from the literature and earlier databases. There are 190 different coccol-

ithophore taxa reported in Coccobase, but for this report, a subset of the data will be used [6].

The data included all observations of coccolithophores in the North Atlantic. (Table 11) The models include

observations of coccolithophores, of the genera Coccolithus and Syracosphaera, as well as species specific

observations of Emiliania huxleyi, Coccolithus pelagicus, and Syracosphaera pulchra. All the species-specific

observations were subsetted based on the highest number of observations. The following table describes the

number of observations in data corresponding to each species. ea

Table 1: Species and corresponding number of observations

Family/Species name Number of observations

Coccolithophore 5823

Coccolithus species 803

Syracosphaera species 790

Emiliania huxleyi 1367

Coccolithus pelagicus 572

Syracosphaera pulchra 240

The variables used to predict species abundance were: phosphate, Si∗, N∗, salinity, temperature, and a

discrete classifier for each species. Phosphate, is an essential element for nucleic acid, RNA/DNA synthesis of

coccolithophores. [7] The higher the phosphate concentration, the more beneficial it would be for the species.

Si∗ is the difference between silicate and nitrate concentration, and N∗ is the difference between nitrate and 16

times the phosphate concentration. Both differences were chosen because they show how species abundance
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and species competition are correlated to the availability of environmental variables. Temperature is known

to affect the abundance of coccolithophore species, hence it is sufficient to include it as one of the predictor

variables [10]. Finally, salinity is a predictor because it influences strain specific growth. These variables

will require an addition of the tensor product between longitude and latitude in the North Atlantic Ocean.

Observations for species abundance was log transformed to follow an approximate normal distribution, since

the histogram of the original scale appeared to be positively skewed.

Figure 1: Histogram of species abundance counts. Left: Original scale. Right: Log transformed.

6



4.2 Brief introduction of generalized additive models (GAM) and hierarchical

generalized linear models (HGLM)

Two modelling techniques, Generalized Additive Models (GAM) and Hierarchical Generalized Linear Models

(HGLM), have been commonly used to model highly variable data. Certain aspects of these models are useful

to construct the Hierarchical Generalized Additive Models, which was one of the two modelling techniques

used in this study.

GAMs are very flexible models, where the only assumptions are that the functions are smooth (via splines)

and that the response is an additive function of the smooths of each predictor. They have the following

structure:

E[Y ] = g−1(β0 +

I∑
i=1

fi(xi)) (1)

where E(Y) is the expected value of the response Y with the corresponding link function g, and fi(xi) is

the sum of all predictors smoothed by the function fi with intercept β0. The response is related upon the

linear combination of smoothed (si(xi), i = 1, .., I) predictor variables, which usually allows for better fit of

the data [3].

One of the advantages of using GAMs is that they are highly suitable for fitting non-linear data. As mentioned

above, there are many ways to smooth the predictor variables via splines. Types of splines include Thin Plate

Regression Splines (TPRS) and Cyclic Cubic Regression Splines (CRS), which should be chosen carefully

based on the nature of the predictor variables.

Table 2: Description of ”smoothers” used in analysis.

Smoothers Description

Thin Plate Regression Splines (TPRS) Used to smooth covariates in any number of dimensions

Cyclic Cubic Regression Splines (CRS) Useful for fitting covariates that undergo cyclic effects (seasonal)

Random Effects (RE) Smooths covariates without any assumptions on the structure.

In the analysis, phosphate, N∗, Si∗, salinity, temperature, and latitude used this smoother TPRS (although

the temperature variable may suffice using the CRS smoother), where as longitude and scientific name used

7



the smoothers CRS and RE, respectively.

Another commonly used modelling technique, are HGLMs (or also called generalized linear mixed models)

which are a flexible extension of generalized linear models (GLMs) [5]. They meet the assumptions of a

generalized linear model with an additional component that allows the model to have hierarchical (structural

or multi-level) relationships between the predictors, and as well have an overall relationship between the

predictors and the response. This hierarchical structure leads to building more realistic models and reduces

overfitting [2]. The assumptions of these modelling techniques will be beneficial to keep in mind for the

development of the HGAM, explained in the next section.

4.3 Hierarchical Generalized Additive Models (HGAM)

Components of HGLM and GAM can be combined to make hierarchical generalized additive models (HGAM).

HGAMs are constructed to model highly variable data, to understand the smooth hierarchical functional

relationships between predictor groups and the response. The modelling efforts of this report closely followed

the methods outlined in Pederson et al [9]. For this paper, only models G, GS, and GI are performed

for analysis of coccolithophores in the North Atlantic Ocean. Model G are fitted on datasets including

all coccolithophore observations, and datasets including the Coccolithus and Syracosphaera species. Model

GI and GS are fitted on species specific data subsets. All models are fitted using the restricted (residual)

maximum likelihood method.

Description of each model is summarized in the following table:

Table 3: Types of Models in Analysis

Type of Model Description

Model G A single global smoother for all observations

Model GS A single global smoother plus group-level smoothers that have the same wiggliness

Model GI A single global smoother plus group-level smoothers that have different wiggliness

Each model has the following structure coded into R:
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• Model G: gam(cells per litre = s(p an, bs = "tp") + s(si star, bs = "tp") + s(ni star, bs

= "tp") + s(s an, bs = "tp") + s(t an, bs = "tp") + s(scientific name, bs = "re") + te(longitude,

latitude, bs = c("cc","tp")), data)

• Model GS (phosphate): gam(cells per litre s(p an, bs = "tp") + s(si star, bs = "tp") +

s(p an, bs = "tp") + s(s an, bs = "tp") + s(t an, bs = "tp") + te(longitude, latitude,

bs = c("cc", "tp")) + s(p an, scientific name, bs = "fs"), data)

• Model GI (phosphate): gam(cells per litre s(p an, bs = "tp") + s(si star, bs = "tp") +

s(p an, bs = "tp", m = 1) + s(s an, bs = "tp") + s(t an, bs = "tp") + te(longitude, latitude,

bs = c("cc", "tp")) + s(p an, scientific name, bs = "fs"), data)

4.4 Least Absolute Shrinkage and Selection Operator (LASSO)

The Least Absolute Shrinkage and Selection Operator (LASSO) can be incorporated into linear models to

shrink some estimated parameters to 0. This allows for automatic variable selection and regularization for

building simpler and more interpretable models.

Suppose the data is composed of N total observations. Under the assumption that each observation is

independent (the same assumptions as ordinary least squares, OLS), the outcome of the data is arranged

into an n× 1 vector:

yi =

[
y1 y2 ... yn

]>
where i = 1, ..., n.

Each predictor, xi, is arranged into a n× p data matrix of observations:

xnp =



x11 x12 ... x1p

x21 x22 ... x2p

... ... ... ...

xn1 xn2 ... xnp
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where n is number of predictor variables in the data, and p is the total number of observations corresponding

to each predictor variable.

In addition, suppose that there is an n× 1 vector of parameters for each predictor βn:

β̂ =

[
β1 β2 ... βn

]>
The standard linear model is:

y = Xβ + ε

LASSO regression then becomes a modified least squares problem:

β̂λ = argminb

∥∥∥∥Y −Xβ∥∥∥∥2
2

+ λ

∥∥∥∥β∥∥∥∥
1

where

∥∥∥∥β∥∥∥∥
1

=
∑
i=1 |βi|. The addition of the λ

∥∥∥∥β∥∥∥∥
1

term adds regularization to the least squares problem,

by adding a penalty to the minimization of

∥∥∥∥Y −Xβ∥∥∥∥2
2

.

In addition, we see that for any λ > 0, there exists an sλ =

∥∥∥∥βλ∥∥∥∥
1

where β̂λ = argminb

∥∥∥∥Y −Xβ∥∥∥∥2
2

such that

||β1|| ≤ sλ [11].

4.5 Software

All data is manipulated and modelled using pre-existing R packages. Refer to the appendix for a full list of

packages used. The coding was performed with R/RStudio. The full R project can be accessed via Github

at: https://github.com/calipark1213/Honours-Coccobase [8].

4.6 Training and Test data

Each of the species subsets were further partitioned into training and testing data. To allow both sets to

have a good representation of data and to avoid overfitting, total data were split randomly into 60% training

and 40% test data. The number of observations outlined in table 1 are further split into the following table:
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Table 4: Training and Testing set

Genus/Species name Train Test

Coccolithophore 3493 2329

Coccolithus species 482 321

Syracosphaera species 474 316

Emiliania huxleyi 820 547

Coccolithus pelagicus 343 229

Syracosphaera pulchra 144 96

4.7 Model Comparison Methods

Common model comparison techniques was used to analyze the differences between HGAM and LASSO

regression models. The R-squared adjusted values and AIC values of the training data will be compared.

R-squared adjusted is a measure of how much the variation of the full data is measured by the model, whereas

AIC values evaluates how well a model fits the data it was generated from. Furthermore, the RMSE values of

both training and testing data will be compared, since it measures the standard deviation of the residuals. For

LASSO, models will be compared using variable selection and RMSE values. RMSE values were calculated

on a log transformed scale, so the model values should be interpreted by taking the exponent of the RMSE

value, and be interpreted as a factor out on average from the true values in the original scale. By taking the

value on a log scale, the values are less sensitive to large outliers.

5 Results

5.1 HGAMS

5.1.1 R-squared adjusted values

As outlined in table 5, for models G and GS, the highest R-squared adjusted value corresponded to the

dataset that included all of the Coccolithus genus. The lowest value of R-squared adjusted for model G
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corresponded to the species specific dataset for Syracosphaera pulchra, with a value of 0.497 (or deviating by

a factor of e0.497 = 1.6438 on the original scale). The second lowest R-squared adjusted value was for the

dataset that included all of the species of coccolithophores in the North Atlantic.

For models GS and GI, the group-level smoothers with same/different wiggliness, respectively, did not differ

by a significant amount, for species Emiliania huxleyi and Coccolithus pelagicus. For model GI, the highest

R-squared value was for the model with the individual penalty on the salinity variable for the Coccolithus

pelagicus species.

Table 5: Adjusted R-squared values of all models (Training data)

Model G

Coccolithophore 0.591

Coccolithus species 0.718

Syracosphaera species 0.641

Emiliania huxleyi 0.643

Coccolithus pelagicus 0.674

Syracosphaera pulchra 0.497

Model GS Phosphate Si∗ N∗ Salinity Temperature

Emiliania huxleyi 0.633 0.633 0.633 0.633 0.633

Coccolithus pelagicus 0.639 0.639 0.639 0.639 0.639

Syracosphaera pulchra 0.492 0.492 0.492 0.492 0.492

Model GI Phosphate Si∗ N∗ Salinity Temperature

Emiliania huxleyi 0.634 0.633 0.639 0.633 0.633

Coccolithus pelagicus 0.639 0.639 0.637 0.65 0.641

Syracosphaera pulchra 0.492 0.492 0.505 0.492 0.496

5.1.2 AIC values

The best models out of all the models computed for model G, GS, and GI, were the models that included the

training data corresponding to the species Emiliania huxleyi. As outlined in table 6, the lowest AIC scores

corresponded to the Emiliania huxleyi models. For model G, this value was -591.8112, and for model GS, the

lowest AIC value corresponded to the group level smooth of salinity with Emiliania huxleyi as the species.
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Lastly, for model GI, the lowest AIC value corresponded to the group level smooth of of N∗ with Emiliania

huxleyi as the species.

Table 6: AIC values of all models (Training data)

Model G

Coccolithophore -425.736

Coccolithus species -175.147

Syracosphaera species -351.161

Emiliania huxleyi -591.811

Coccolithus pelagicus -90.676

Syracosphaera pulchra -81.999

Model GS Phosphate Si∗ N∗ Salinity Temperature

Emiliania huxleyi -570.196 -569.632 -571.776 -571.850 -569.631

Coccolithus pelagicus -62.0486 -62.049 -62.049 -62.049 -62.049

Syracosphaera pulchra -77.033 -77.032 -77.034 -77.032 -77.033

Model GI Phosphate Si∗ N∗ Salinity Temperature

Emiliania huxleyi -573.891 -569.844 -587.358 -571.846 -570.704

Coccolithus pelagicus -62.049 -62.049 -59.2310 -48.448 -65.229

Syracosphaera pulchra -75.423 -77.033 -77.759 -77.033 -77.173

5.1.3 RMSE values

Finally, to measure how well the fitted training models will predict in general, the RMSE of the predictions

based on the test data were calculated. The RMSE values shared the same conclusion as the AIC values.

The best models out of all the models computed for model G, GS, and GI, were the models that included

the testing data corresponding to the species Emiliania huxleyi. As outlined in table 7, the lowest RMSE

scores for the Emiliania huxleyi models corresponded to the smallest AIC value. For model G, this value

was 0.18261, and for model GS, the lowest AIC value corresponded to the group level smooth of phosphate

with Emiliania huxleyi as the species. Same as the conclusion for the AIC values, for model GI, the lowest

RMSE value corresponded to the group level smooth of of N∗ with Emiliania huxleyi as the species.
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Table 7: RMSE values of all models (Training data, Test data)

Model G

Coccolithophore 0.220 0.227

Coccolithus species 0.183 0.246

Syracosphaera species 0.149 0.296

Emiliania huxleyi 0.159 0.183

Coccolithus pelagicus 0.186 0.226

Syracosphaera pulchra 0.164 0.228

Model GS Phosphate Si∗ N∗ Salinity Temperature

Emiliania huxleyi 0.163 0.182 0.163 0.182 0.163 0.182 0.163 0.182 0.163 0.182

Coccolithus pelagicus 0.201 0.216 0.201 0.216 0.201 0.216 0.201 0.216 0.201 0.216

Syracosphaera pulchra 0.165 0.221 0.165 0.221 0.165 0.226 0.165 0.221 0.165 0.221

Model GI Phosphate Si∗ N∗ Salinity Temperature

Emiliania huxleyi 0.162 0.181 0.163 0.182 0.161 0.180 0.163 0.182 0.162 0.181

Coccolithus pelagicus 0.201 0.216 0.201 0.214 0.202 0.214 0.197 0.214 0.201 0.217

Syracosphaera pulchra 0.164 0.197 0.165 0.221 0.161 0.164 0.165 0.221 0.164 0.187

The top 3 models based on the R-squared adjusted, AIC, and RMSE value were: Model G of Coccolithus

species, Model GS with the group-level smooth of salinity for Emiliania huxleyi, and model GI with the

group-level smooth of N∗ for Emiliania huxleyi.

5.2 LASSO regression

The same subsetted data were fitted using a different modelling technique, using LASSO. The hopes were that

the best models based on HGAMs would also be the best choice using LASSO regression. Using the glmnet

package from R, the LASSO models were fitted using the best lambda value calculated by the lambda.min

function. From there, the coefficients of the model estimates were extracted. The top 3 LASSO models will

also be chosen based on variable selection and RMSE values. The results are outlined below.

5.2.1 Coefficients of terms

LASSO models using Coccolithus species, Emiliania huxleyi, Coccolithus pelagicus, and the full data shrunk

one of the environmental variables to 0. This is seen in table 8, where the models for Coccolithus and full

data have shrunk the salinity term to 0, and the models for Emiliania huxleyi and Coccolithus pelagicus data
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have shrunk the scientific name term to 0. The model for Syracosphaera pulchra have shrunk 3 terms to 0

with the coefficients being closest to 0, but with sample size taken into account this model should not be

included in the final selection. For each LASSO model, the lambda.min function was used to extract the best

lambda value. The following plot shows Log(λ) against the Mean-Squared Error component. Note that (1) -

(6) is the plot for Coccolithophore, Coccolithus species, Syracosphaera species, Emiliania huxleyi, Coccolithus

pelagicus, and Syracosphaera pulchra, respectively.

Figure 2: Plot of Log(λ) against Mean-Squared Error corresponding to each LASSO model.
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Table 8: Table of coefficients via LASSO regression (Training data)

Coccolithophore Coccolithus species Syracosphaera species Emiliania huxleyi Coccolithus pelagicus Syracosphaera pulchra

Intercept 0.486 -2.493 -26.848 -7.833 -1.722 -1.833E1

Phosphate -0.487 -0.276 -1.606 -1.231 -0.097 .

Si∗ -0.087 -0.073 -0.172 -0.108 -0.065 -8.699E-2

N∗ -0.039 0.012 -0.159 -0.088 0.014 -1.609E-1

Salinity . . 0.781 0.268 -0.141 5.572E-1

Temperature 0.039 0.069 -0.024 -0.005 0.097 2.395E-5

Scientific name -0.003 0.010 -0.001 . . .

Longitude 0.004 -0.013 -0.019 0.009 -0.012 .-7.292E-3

Latitude 0.022 0.055 0.021 0.018 0.065 .

Table 9: Minimum lambda value corresponding to each model fitted with training data

Family/Species name Minimum lambda value

Coccolithophore 3.9716E-4

Coccolithus species 9.616E-3

Syracosphaera species 1.2768E-4

Emiliania huxleyi 9.386E-5

Coccolithus pelagicus 7.276E-4

Syracosphaera pulchra 1.341E-3

Since the models were fitted using the cv.glmnet function, the minimum lambda (or best lambda) value were

calculated for each of the regression models. The above table shows the values corresponding to each species

data.

5.2.2 RMSE values

The following table summarizes the RMSE values of each test data fitted by LASSO regression:
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Table 10: RMSE values of all LASSO models (Training data, Test data)

Family/Species name RMSE

Coccolithophore 0.316 0.313

Coccolithus species 0.287 0.308

Syracosphaera species 0.218 0.245

Emiliania huxleyi 0.213 0.223

Coccolithus pelagicus 0.275 0.288

Syracosphaera pulchra 0.207 0.205

From this table, we can see that the lowest RMSE value corresponds to the LASSO regression model fitted

using the Syracosphaera pulchra data, although one should note that due to the small number of observations

and the LASSO regression model shrinking most of the coefficients to zero, the next lowest RMSE value should

be chosen. Therefore, the best model via LASSO regression is the model fitted onto the Emiliania huxleyi

data.

Combining the conclusions from HGAMs and LASSO regression, the best models based on the comparison

techniques outlined above were all using the Emiliania huxleyi data. Actual vs predicted plots of the best

models are shown below:

Figure 3: Actual VS Predicted model of Emiliania huxleyi data. Model GS with group-level smooth on

salinity.

17



Figure 4: Actual VS Predicted model of Emiliania huxleyi data. Model GI with group-level smooth on N∗.

Figure 5: Actual VS Predicted model of Emiliania huxleyi data. LASSO model.

From the actual vs predicted plots, majority of the points are clustered around the one-to-one line. With an

exception of a few outliers, the overall relationships in all three plots show a good fit.

6 Discussion and conclusions

In this project, methods using hierarchical generalized additive models as well as LASSO regression were

used to build species models in the North Atlantic ocean using R/Rstudio. Initially, the data were compiled

using the Coccobase data repository, and subsetted using the longitude and latitude, and further partitioned

into the 6 different species specific data groups using the highest number of observations.

The best models selected for the HGAMs were model G using the Coccolithus species data, and model GS
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with group smoother on salinity, model GI with group smoother on N∗ using the data for Emiliania huxleyi.

Using these results, the species distribution models can be further interpreted and summarized using the

weighted mean and variances of each of the plotted smooths shown in figures 12, 13, and 14 (Appendix).

If an individual were to require a more general interpretation, a weighted average of the individual models’

predictions can be used, which would imply model averaging rather than model selection.

The best models using LASSO regression was the model using the data for Emiliania huxleyi. Although

the LASSO coefficients for the Syracosphaera pulchra data shrunk two terms, phosphate and latitude to 0,

this model was exempted from the model selection by taking into account the sample size for these species.

LASSO regression was mainly useful for variable selection. For example, the salinity term for coccolithophore

annd Coccolithus species shrunk to 0, indicating that the term could be removed for future analysis. Although

I was expecting the correlated variables such as phosphate, nitrate, and silicate to be shrunk to 0, this was

not the case for this analysis, as the models were not particularly sparse. Unfortunately, model selection for

LASSO was not based on AIC, but it would be useful to calculate some numerical value for comparisons. In

the future, it would be beneficial to determine the variables for prediction using LASSO regression first, then

running the HGAMs for faster computational time, as well as determining the differences in species niche.

To improve the models, it may be beneficial to take into account the times of each observations, and build

a time-series model of the distribution of species. This would be another interesting approach to determine

if or how the species distributions change over time. A sensitivity analysis should be conducted given that

some species data (e.g. Syracosphaera pulchra) used had a small number of observations in comparison to

other species (e.g. Emiliania huxleyi). This will be beneficial, as number of observations may influence the

overall fit of the models.
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7 Appendix

Table 11: Full species list and corresponding number of observations

Species names Number of observations Species names Number of observations Species names Number of observations

Acanthoica acanthos 32 Coccolithophore 1064 Helicosphaera wallichii 4

Acanthoica quattrospina 47 Coccolithus pelagicus 572 Helladosphaera cornifera 105

Acanthoica spp. 35 Coccolithus spp. 230 Homozygosphaera spinosa 7

Algirosphaera robusta 58 Coccosphaera spp. 39 Lohmannosphaera spp. 2

Alisphaera gaudii 1 Corisphaera gracilis 8 Michaelsarsia adriaticus 4

Alisphaera unicornis 18 Corisphaera spp. 13 Michaelsarsia elegans 13

Anthosphaera spp. 7 Coronosphaera mediterranea 150 Michaelsarsia spp. 12

Braarudosphaera spp. 1 Cyrtosphaera aculeata 6 Oolithotus fragilis 25

Calcidiscus leptoporus 43 Discosphaera tubifera 11 Ophiaster formosus 12

Calcidiscus leptoporus/Coccolithus pelagicus 1 Emiliania huxleyi 1367 Ophiaster hydroideus 171

Calcidiscus spp. 57 Emiliania huxleyi/Gephyrocapsa spp. 1 Ophiaster spp. 5

Calciopappus caudatus 116 Florisphaera profunda 3 Palusphaera vandelii 9

Calciopappus rigidus 2 Gephyrocapsa ericsonii 19 Pappomonas spp. 1

Calciopappus spp. 10 Gephyrocapsa muellerae 34 Papposphaera spp. 4

Calciosolenia brasiliensis 3 Gephyrocapsa oceanica 3 Pontosphaera syracusana 3

Calyptrolithina divergens 2 Gephyrocapsa ornata 1 Reticulofenestra parvula 4

Calyptrosphaera sphaeroidea 90 Gephyrocapsa spp. 49 Reticulofenestra spp. 1

Calyptrosphaera spp. 14 Gladiolithus flabellatus 1 Rhabdosphaera clavigera 51

Canistrolithus spp. 1 Helicosphaera carteri 114 Rhabdosphaera hispida 6

Coccolithaceae 281 Helicosphaera spp. 1 Rhabdosphaera spp. 7

Species names Number of observations Species names Number of observations

Rhabdosphaera xiphos 8 Syracosphaera spp. 226

Scyphosphaera apsteinii 5 Syracosphaera tumularis 16

Syracosphaera anthos 12 Thoracosphaera heimii 7

Syracosphaera bannockii 13 Umbellosphaera spp. 7

Syracosphaera borealis 9 Umbellosphaera tenuis 22

Syracosphaera corolla 15 Umbilicosphaera sibogae 32

Syracosphaera coronata 4

Syracosphaera dentata 18

Syracosphaera dilatata 14

Syracosphaera halldalii 15

Syracosphaera histrica 9

Syracosphaera marginiporata 18

Syracosphaera molischii 97

Syracosphaera nana 1

Syracosphaera nodosa 11

Syracosphaera noroitica 5

Syracosphaera ossa 14

Syracosphaera prolongata 8

Syracosphaera pulchra 240

Syracosphaera rotula 45
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Figure 6: Distribution of all species in full data
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Figure 7: Distribution of Emiliania huxleyi

Figure 8: Distribution of Coccolithus species
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Figure 9: Distribution of Coccolithus pelagicus

Figure 10: Distribution of Syracosphaera species

24



Figure 11: Distribution of Syracosphaera pulchra

Next pages will include some GAM plot outputs of training data using ”seWithMean = T”. These GAM

plots correspond to the models that were selected to be the ”best” models based on AIC and RMSE values.

Figure 12: Coccolithus species data. Model G
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Figure 13: Emiliania huxleyi data. Model GS with specific smooth on salinity.

Figure 14: Emiliania huxleyi data. Model GI with specific smooth on N∗.

All code used to create plots and complete analyses can be found at: https://github.com/calipark1213/Honours-

Coccobase
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