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2 Introduction

Figure 1: Structure of geosmin[1]

Geosmin [trans-1, 10-dimethyl-trans-9-

decalol], a terpenoid alcohol (fig 1), is one

of the primary taste and odor-causing com-

pounds in in surface drinking water sup-

plies[2]. Previous work by R.Srinivasan and

G.A.Sorial indicates that the main source of

geosmin in water is cyanobacteria, the blue-

green algae, and can also be the result of the

presence of certain types of filamentous bacte-

ria or actinomycetes[3]. Even though geosmin has not been connected with any human

health effects, the presence of its earthy and musty odor[4] results in a negative public

experience and decreased consumer trust in water[3].

As a result of low human odor threshold of concentration between 1 and 10ng ·L−1,

even low levels of geosmin in water are a source of consumer complaints[5]. Therefore,

it is critical that drinking water utilities need effective surveillance strategies to respond

to geosmin outbreaks. Since water utilities generally do not have direct access to

analytical equipment for measuring geosmin, typically samples are sent to external

specialized laboratories for analysis. The high cost of these methods and the long

turnaround time to obtain data on geosmin concentrations hinders the decision-making

of water utilities. To speed up testing and decision-making, a way to reduce analytical

complexity and generate predictive tools is needed. One possible approach is to explore

the co-occurrence of water quality features, using one measurement as a surrogate for

the other. This technique is ideal when indicator properties are easier and more cost-

effective to monitor in the field.
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The objective of this thesis is to use model-based predictions to develop relatively

simple and effective screening methods to improve the assessment of geosmin outbreaks.

In this study, stabilized regression analysis was applied for variable selection with flu-

orescence excitation-emission matrices(FEEM) of wavelength pairs to predict geosmin

in water from the JD Kline water supply plant in Nova Scotia, Canada. Our aim is

to discuss whether fluorescence spectroscopy can act as a quick and convenient indica-

tor for water quality monitoring assessment in geosmin outbreaks and further to find

which specific excitation and emission wavelengths (or peak regions), such as humic-like,

fulvic-like, protein-like, and microbial product regions are associated with geosmin.
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3 Methods

3.1 Data collection

3.1.1 Water treatment data and pre-preparation

Water samples were collected from the direct filtration system of JD Kline Water

Supply Plant in Pockwock Lake, near Halifax, Nova Scotia, Canada. Further detailed

information about this full-scale system is described by Vadasarukkai, Yamuna S., et

al. in their arcticle[6]. Ambient geosmin was measured in Pockwock Lake water and 20

ng · L−1 of geosmin was added to samples prior to advanced oxidation process (AOP)

exposure (a water treatment method that effects geosmin) to ensure a 1-log reduction

in geosmin was beneath human detection limits.

3.1.2 Bench-scale advanced oxidant-influenced FEEM data

Water samples were treated with either hydrogen peroxide or ozone and exposed

to Ultraviolet (UV) fluences via a bench-scale collimated beam unit to degrade natural

organic matter (NOM) containing geosmin in water samples. For the chemical oxidants,

hydrogen peroxide was added at concentrations of 1 mg · L−1 and ozone was added at

10 mg · L−1. For the photo-oxidants, fluences of either 100 or 1000 mJ · cm−2 were

used in both chemical treatment type. All FEEM data was collected immediately after

AOP exposure and stored in amber vials. Analysis for both geosmin and FEEM was

performed within one week to minimize NOM profile changes and geosmin volatilization.
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3.2 Statistical methods

3.2.1 Fluorescence excitation emission matrix (FEEM) analysis

FEEM provided a snapshot of the overall changes in fluorescent NOM, which con-

tains non-fluorescent geosmin, before and after exposure to AOP, including fluorophore

components associated with microorganisms that have been shown to be suitable indi-

cators of changes in water quality. The FEEM samples were divided into 12 treatment

types and, in total, 273 FEEM samples were analyzed. Table 1 describes the number

of observations corresponding to each treatment type. For each sample, there were 121

wavelengths from 240 nm to 600 nm and 125 emission wavelengths from 213.652 nm to

620.467 nm, hence there is a total of 121×125 = 15125 excitation-emission wavelength

pairs. However, wavelength pairs that had zero intensity values over all samples were

removed from the dataset, so in total, 6990 wavelength pairs were ultimately used. To

visualize FEEM, one sample matrix (i.e. sample number 22 of 273) was selected and

shown in Figure 2.

3.2.2 Geosmin analysis

Geosmin samples were assayed as described by Wright, E., et al.[7], it was mea-

sured by GC-MS in parallel with FEEM in order to understand the removal efficiency

of geosmin in natural water matrices when exposed to various AOPs. The samples were

bottled immediately after AOP treatment and stored at 6◦C in a 1L headspace amber

bottle and all of the processing was completed within 7 days after collection. There

were 12 types of treatment representing 12 different environments of varied geosmin

concentrations. These observed environments can be thought of as perturbations or
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Figure 2: A FEEM from the bench-scale advanced oxidation experimental data

interventions of the natural water samples. Our goal is to make generalizable predic-

tions about unobserved environments based on the 12 observed environments. Geosmin

concentration values of the water samples for different treatment types are given in fig-

ure 3. Thus, it can be seen that the geosmin levels varied in different environments.
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Table 1: Treatment types and corresponding number of observations

Treatment types Number of observations

1 Raw 10

2 Raw+Spike 12

3 UV High UV High 12

4 H2O2 High 12

5 UV High H2O2 Low 12

6 UV High O3 High 12

7 UV High O3 Low 11

8 UV Low 11

9 UV Low H2O2 High 11

10 UV Low H2O2 Low 11

11 UV Low O3 High 11

12 UV UV Low O3 Low 11

Figure 3: Gesomin Data of 12 Treatment Types. In the x-axis, the 12 numbers corre-
spond to the 12 treatment types in table 1.
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3.2.3 Stabilized regression analysis

Stabilized regression (SR) is a multi-environment regression technique, aimed at

determining which set of variables leads to a more generalizable model. Let X =

(X1, ..., Xd) be a random vector of predictor variables, let Y be a random response

variable, let Etot be a collection of all intervention environments and Eobs be a collection

of observed environments and subset of Etot. For each environment e ∈ Etot, the

variables Xe and Ye have joint distribution Pe [8]. The goal is to make predictions

based on a potentially unobserved environment e ∈ Etot. Here, an assumption about

invariance has been made: there exists a subset S ⊆ {1, ..., d} such that

E(Ye|Xe
S = xS) = E(Yh|Xh

S = xS) (1)

holds for all environments e, h ∈ Etot and all x ∈ X [8]. By least squares method, we

fit a regression function with a solution to minimize

∑
e∈Eobs

ne

n
· E((Ye − f(xe))

2)

where ne is the number of observations in environment e and f is a function from X to

R under the constraint that there exists a subset S ⊆ 1, ..., d such that for all e ∈ Etot

and all x ∈ X

f(x) = E(Ye|Xe
S = xS) (2)

In order to find such a solution, Pfister, N., et al.[8] suggest to simply find the

conditional mean based on XS with a weighted average. They proposed to construct
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the weights as follows,

ŵs =


1

|Ô| if S ∈ Ô

0 otherwise

(3)

where Ô is a subset of the power set of {1, ..., d} that estimates the collection of gener-

alizable and regression optimal sets with respect to Eobs. The set Ô is estimated by two

scores calculated for each set S ⊆ {1, ..., d}. First, a stability score (sstab(S)), measures

how well the regression satisfies the invariance assumption (1) based on predictors in

S. That is, the stability score measures the extent to which predictors in S are general-

izable from Eobs to Etot. Second, a prediction score (spred(S)), measures how predictive

the regression is based on predictors in S. For sstab(S), we set it to be the p value of the

test for the null hypothesis that set S satisfy equation (1). For spred(S), we set it to be

the negative mean squared prediction error. Finally, the sets of predictors which are

both generalizable and predictive are selected, so the selected sets have both relatively

high sstab and relatively high spred.

With respect to our data of Pockwock Lake FEEM samples, we set the response

variable Y to be the geosmin concentration, set predictor variables X to be 6990

excitation-emission wavelengths pairs, and set the environment variable Eobs to be the

different treatment types. Our goal is to select sets of excitation-emission wavelengths

pairs that are both generalizable and regression optimal for predicting geosmin level.
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4 Results

4.1 SR analysis with original 12 environments

First, stabilized regression models were applied with all 12 treatment types as en-

vironments and results are shown in in figure 4. Based on this result, there were no

Figure 4: SR analysis on FEEM data with 12 environments

wavelength pairs selected that were both generalizable and predictive. The wavelength

pairs 336-509.648 and 294-590.154 (ex-em) have high selection probability (SR) but zero

selection probability (SRdiff), which means these two predictor variables are general-

izable but have low predictive performance. The four wavelength pairs shown on the

x-axis with a selection probability around 0.65 are more predictive but not necessarily
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generalizable predictors.

However, no high scoring wavelength pairs selected does not imply there are not

such generalizable and predictive pairs within the total 6990 pairs. As discussed in

section 3.2.1, there is a total of 273 observations over all 12 environments and each

environment only has 10 to 12 observations. Alternatively, to provide more observations

within each environment, a grouping of treatment types was carried out in the next

section.

4.2 SR analysis with combined 6 environments

The grouping of treatment types has almost twice the number of observations

in each environment as shown in table 2. To decrease the total number of predictor

Table 2: Grouped treatment types and corresponding number of observations

Treatment types Number of observations

1 Raw 22

2 UV only 23

3 H2O2 High 23

4 H2O2 Low 23

5 O3 High 23

6 O3 Low 22

variables to be considered, only wavelength pairs around geosmin-associated spectra

regions were included in models (Preprint)[9].

The region with excitation wavelength greater than 400 nm and emission wave-

length grater than 550 nm was analyzed firstly and the result of this SR analysis is

shown in figure 5. The wavelength pair with excitation 405 nm and emission 583.426
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nm was of interest. From the previous work[10]–[14], this wavelength pair is between

fluorophore regions associated with humic acids and microbial pigments.

Figure 5: SR analysis with the combined 6 environments on the region with excitation
wavelength greater than 400 nm and emission wavelength grater than 550 nm.

The region with excitation wavelength less than 250 nm and emission wavelength

greater than 300 nm was also analyzed and the result of SR is shown in figure 6. Two

wavelength pairs, 246− 486.589 and 246− 483.021, were selected were selected having

the same excitation wavelength 246 nm. The pair with emission wavelength 486.589 nm

scored higher for generalizability while the one with emission wavelength 483.021 nm

was more predictive. Both have the same fluorophore characteristic that is associated

with humic-like products.
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Figure 6: SR analysis with the combined 6 environments on the region with ex < 250
nm and em > 300 nm.
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5 Conclusion

During this project, geosmin levels of the water from JD Kline waterworks in Nova

Scotia, Canada were characterized by fluorescence excitation-emission matrix (FEEM)

wavelengths pairs via stabilized regression (SR) analysis for variable selection. Based

on the results from SR analysis, humic-like substances, fulvic acids, and potentially,

microbial pigments are related to the geosmin levels. These wavelength pairs could be

used as stable predictors to predict the geosmin concentration of source water from

an unknown environment setting. However, more FEEM samples are needed to verify

the accuracy before being put into industrial use. With more FEEM samples, SR

analysis could be done with more environment types, which could yield better stability

scores and prediction accuracy for more peak fluorescent regions. Overall, this project

provides a general idea to find the stable variables for predicting geosmin levels and

a simple way to improve the assessment of the geosmin outbreaks in surface water.

Also, other compounds like 2-methyl isoborneol and β-cyclocitral should be studied by

this method, so that a complete statistical model could be built for the prediction of

taste-and-odor water qualities.
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