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1. Introduction

The study of copulas and their applications is a relatively new concept in the
field of statistics. The word “copula” is a Latin word that means “a link, tie, bond”
(Nelson, 2006). So, in the statistical sense, what are copulas? A copula is a function
that joins a multivariate distribution function to their one-dimensional marginal
distribution functions (Nelson, 2006). Regression analysis is typically the most
popular method one uses to explain the relationship amongst variables, however it
does have its limitations. Regression mainly requires one variable to be the primary
variable of interest; the dependent variable, while all other variables are used in a
supporting role (Frees & Valdez, 1998). However, when a relationship for several
outcomes is required, as in a multivariate distribution, things become complex and
simple regression tends to be less effective. Copulas are a way of describing and
understanding relationships amongst variables through their joint multivariate
distribution.

The first mention of copulas in Mathematics & Statistics literature came from
Abe Sklar in 1959, with his theorem, which is now named after him. It essentially
states there are functions that join one-dimensional distributions to form
multivariate distributions. A more in depth look at this theorem is found in the
following section. Actuarial and finance science is the field in mathematics where
copulas are the most popular. Their systems are generally complex with several
outcomes (Frees & Valdez). Copulas have the ability to characterize the relationship

between several outcomes using multivariate data, which is why they are useful in



these fields. A more in depth introduction to copulas, their functional form and their
properties are found in the succeeding sections.

Often, one is interested in the intersection of two or more random variables
at the same time when analyzing data. For example, how they relate to one another,
and more specifically, how they depend on one another. It is these intersections that
create a multivariate distribution. For the bivariate case for two continuous random

variables, Y1 and Y3, the joint distribution function is defined by

Y Y2
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where the function f(y,,y,)is the joint density function (Lebo, 2005). The joint
density function has the following properties;

fGy,)=0, Yy.y,

j}f(yl’yz)dyldyz =1.

These definitions can be easily extended to more than two dimensions. It is
important to note that with these joint distribution functions comes marginal and
conditional probabilities as well. It is in these marginal probabilities that one is able
to independently define the copula using the marginal distributions of the data.
Obviously when dealing with these distributions, the dependence between
variables is one of major concern and intrigue. Dependence explains the
relationship between two or more variables. Each multivariate distribution comes
with its own unique dependence structure. These varying structures can be difficult

to model, but the goal of using copulas is to have the ability to model more complex



distributions and be able to properly explain the relationship among the variables.
Measures of dependence are common tools to explain a complex dependence
structure (Schmidt, 2006). There are several different ways to describe the
dependencies, with the most prominent being the correlation. Some common ways
to describe the correlation include the Pearson’s correlation coefficient, Spearman’s
rho, and Kendall’s tau. All give an estimate of the correlation between variables,
however the Pearson’s correlation coefficient is only useful in explaining linear
relationships between variables. The other two are based on the ranks of the data.
Another type of dependence is tail dependence. Tail dependence is more concerned
with what is happening at the extreme values of the distribution (Schmidt, 2006).
Different copulas have different dependent structures, and a lot happens in the tails
of these distributions so they cannot be forgotten. If U; and Uz are marginal
distributions with copula C, the upper tail dependence means that for larger values
of Uy, large values of U, will also occur. It is in these dependence relationships that
the most interesting information is found.
1.1 Benthic Data

As a motivating application, the data that is being used in this analysis is from
a tidal region in St Anns Bay, NS, Canada, from Dowd et al. 2013 (submitted
manuscript). The information in the data consists of coastal marine benthic
macrofaunal data and its associated environmental data. Macrofaunal data is
information that was collected from benthic, or soil organisms, that are found in the
ocean. Typically data of this sort is collected on a 0.5mm sieve. It was collected on a

sampling grid of 48 stations. This data was collected to assess the ecological health



of the environment. Variables such as abundance, species number, richness, and
diversity were calculated from the macrofaunal data and categorized as faunal
indices. Environmental variables such as porosity, organic matter, water depth, and
many others were also collected at each of the sites. In total, 10 environmental
variables were collected, as well as five faunal indices.

The data has already been analyzed with the goal of modeling the faunal data
as the response variables and the environmental data as the explanatory variables.
The rationale for modeling the data in this way is because as the faunal data
provides more direct information about the health and diversity of the ecosystem, it
can be quite difficult and costly to collect that information, compared to the
environmental data. Therefore it may be more effective to make predictions about
the health of the ecosystem, based on the environmental data collected. The analysis
was based on multivariate generalized least squares regression. The data showed
some high correlation and strong relationships amongst one another, especially
spatially. It implies that variables close to one another are not independent, so
neither are their errors (Dowd et al., 2013). This creates a complicated dependence
structure, in particular, the dependence in the residuals, which is the motivation
behind extending the approach to make use of copulas. That is, what can’t be

described by the regression, might be able to be explained through copulas.



2. Basic Theory
2.1 Definitions, Theorems and Families of Copulas

Copulas, simply, are functions that are used to describe the dependence
between variables. They are a distribution function such that the cumulative density
function (cdf) can be written in terms of the marginal distribution of the variables
and the copula itself. A copula is a multivariate distribution whose marginals are all
uniform over [0,1] (Yan, 2006). Any continuous random variable can be
transformed, by its probability integral transform, to be uniform over [0,1], and so
copulas can be used to give dependence information separate from that of the

marginal distributions (Yan, 2006). Let the random vector (X,...,X,) exist with
marginal cdfs F(x) = P(X, < x). By the probability integral transform, any
continuous random variable can be transformed to be uniform on [0,1]. Using this,
the vector (U,,...,U,) = (F,(x,),...,F,(x,)) has uniform margins. Then the copula of
(X,,...,X,)is the joint cdf of (U,,...,U,) . Namely, it is
C(u,....,u;)=PlU, =u,...U,<u,].

This is the same as saying a copula is any function C :[0,1]" —[0,1] with the
following properties (de Matteis, 2001):

1. C(x,...,x,)is increasing in each component x,.

2. C{,..L,x,1....)=xforall i€{],...,n},x;, €[0,1]



3. For a,<b,, the probability P(U, €[aq,,b]....,.U, €[a,,b,]) must be non-

negative. This leads to the rectangle inequality

22: 22:(—1)i1+"'+id Clursy, ... ugz,) >0,
These few properties are what help define copulas as the functions they are. It is
these properties, as well as the following theorem, that is making the field of copulas
more and more popular.

Copulas are useful in describing the full multivariate distribution of data or
random variables and linking this full distribution to the univariate marginals of
each variable (Frees & Valdez, 1998). The popularity of copulas stems from the fact
that entire multivariate distributions can be decomposed from the joint distribution
function of random variables to individual marginal distributions of these variables
and the copula linking them together (Kang, 2007). In the past, multivariate
distributions have been developed as extensions of the univariate distributions.
However, as Frees and Valdez point out, there are several problems with this
approach. The first is that a different family is needed for each marginal distribution.
Another is that anything beyond a bivariate model quickly becomes complicated,
and the last is that measures of association often show up in the marginal
distributions. These issues can all be forgotten when dealing with copulas. As will be
shown in this thesis, copulas allow for variables to have different marginals while
having the same copula. This means that the choice of copula model selected to

model the dependence between the variables can be independent of the marginal



distributions for those variables (Genest & Favre, 2007). This powerful feature is
what makes copulas so useful.

One very important theorem in the copula world is a theorem by Sklar
(1959). In terms of the bivariate case (examined here for simplicity), it states that
the multivariate cumulative distribution function for the random vector (X,Y)

H(x,y)=P[X=x,Y =y]
can be written as
H(x,y)=C(F(x),G(x)), x,yER
where F(x) is the marginal of X, G(y) is the marginal for Y and C is the copula
function. Conversely, if F'(x) and G(y) are continuous marginal distribution

functions and C is a copula, then the function H defined by the above equation is a

joint distribution function with marginal distributions F(x) and G(y). Sklar’s

theorem means that a multivariate distribution function can be broken up into
marginal distributions of each variable and the copula form linking the margins
together (Kang, 2007). This idea of breaking down the joint distribution is a primary
motivation to a lot of the work done.

As the field of copulas becomes increasingly popular, more research is being
done on them and more information is being discovered. There are several different
types of copulas and they can be divided into two different families: Elliptical
copulas and Archimedean copulas. An elliptical copula corresponds to an elliptical
distribution by Sklar’s theorem (Yan, 2006). In general, an elliptical distribution is a
probability distribution that generalizes and inherits some properties of the

multivariate normal distribution. Examples of elliptical copulas include the Gaussian
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and Student’s t-copula. Archimedean copulas are popular because they allow for the

reduction of a multivariate copula to a single univariate function (Frees & Valdez)

and also support specific features such as skewness. This family is constructed

through generator functions. If ¢ is the generator function, then an Archimedean

copula has the form

C(Ul, NP

Jup) = o {p(ur) + -+ o(u,)}

where @1 is the inverse of the generator. In order for the above function to be a

copula, the generator function needs to be a complete monotonic function (Yan,

2006). Table 1 below gives the generator functions for different types of

Archimedean copulas. As shown in this table, different choice of generator functions

yields different Archimedean copulas (Frees & Valdez).

Clayton (1978), Cook-Johnson (1981),
Oakes (1982)

Gumbel (1960), Hougaard (1986)

Frank (1979)
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Dependence
Family Generator ¢(t) Parameter (o) Space Bivariate Copula C,(u,v)
Independence —Int Not applicable uv
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Table 1: Archimedean Copulas and their generators

Some advantages to working with Archimedean copulas include the ease in which

they can be constructed, the large variety of dependence structures that can be

constructed with this family and the nice properties that come along with the

members of this family (de Matteis, 2001). As observed in the above table, three of

the more popular Archimedean copulas are the Clayton, the Gumbel and the Frank
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copula. Their form and generator function can been seen above, and for the

bivariate case, they are shown in Figure 1 (from Yan, 2006),

Frank copula Gumbel copula

Clayton copula

Figure 1: Contour plots of Archimedean Copulas

In these contour plots, the differences amongst the dependence structure can be
clearly seen. Archimedean copulas are a good choice for modeling bivariate
distributions, but in higher dimensions, they tend to be too restrictive. This is
because they assume the exact same dependence structure between all the pairs of
variables in the data (Kang, 2007). Much of this thesis, however, will be spent
examining the elliptical family of copulas, mainly the Gaussian and Student t-copula.

The Gaussian copula is a part of the elliptical family of copulas. It is related to
the normal distribution. The normal distribution is, of course, one of the most
popular distributions in the statistical world. The Gaussian copula, in one of its
simplest forms, is given by

C, 1) =D, (@7 (u)+ D' (v))

where ®, and ® are the bivariate and univariate standard normal cumulative

distribution functions respectively, and p is the coefficient of correlation between

the random variables X and Y2 (Arnold, 2006). To get an understanding of what a
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Gaussian copula could look like, a sample of size 1000 was generated from a

Gaussian copula, with p=0.75, in R. It is shown in Figure 2a below.

(a)

Gaussian Copula
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Figure 2a: Data generated from a Gaussian copula with o =0.75

In this figure, the dependence with a correlation of 0.75 is quite visible. The uniform
marginals can also be picked out. There is a clear cyclical distribution in the
contours of this plot as well.

Another copula from the elliptical family is the Student t-copula. Like the t-
distribution is similar to the normal distribution, the t-copula is similar to the
Gaussian copula, but it has an extra parameter. This parameter is similar to degrees
of freedom of a t-distributions and the purpose of this parameter is to control the
tail dependence (Arnold, 2006). Small values of this parameter v correspond to
increasing the amount of probability in the tails of the copula, meaning an increase

in the probability of joint extreme events. Continuing to parallel with the univariate
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distribution, with higher values of v, the Student’s t-copula approaches the Gaussian

copula. The Student’s t-copula has the form
C,,wv)=t, (&, (w)+1,'(v))
where 7, and 7, are the univariate and bivariate standard Student’s t cdfs with v

degrees of freedom, and p is the correlation coefficient between the random
variables X and Y (Arnold, 2006). As with the Gaussian copula, a sample of size 1000
was generated from the Student’s t-Copula with p=0.75 and four degrees of

freedom. It is shown in Figure 2b.

(b)

Student's t-Copula
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Figure 2b: Data generated from a Student’s t-copula with o =0.75 and four degrees of
freedom

The similarities between the Gaussian and Student’s t-Copula are evident in the two
corresponding plots, however, there is more of a dependence in the tails of the
Student’s t-Copula. This is illustrated by a higher concentration of points in the tails

of the Student’s t-Copula compared to the Gaussian.
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2.2 Measures of Dependence

Since copulas are a way of defining multivariate distributions, meaning there are
multiple variables being used at the same time, dependence and correlation
amongst those variables is something that must be discussed. In the grand scheme
of things, dependence is any statistical relationship between two random variables.
There is a lot more to it than just that simple definition, however that is the basis of
understanding dependence - it is a relationship between variables.

Correlation includes any of a wide range of statistical relationships involving
dependence. Correlation is often used to describe or quantify the dependence
among random variables. For example, correlation can easily be used to describe the
demand for a product and its price. The higher the price of a product, the lower the
demand for that product, and vice versa, implying a negative correlation between
demand and price. Correlation can thus indicate a predictive relationship.

It is a very specialized type of relationship between variables. There are several
different coefficients that are used to measure the degree of correlation. The more
common ones include Pearson’s correlations coefficient, Spearman’s rho, and
Kendall’s tau. The latter two use the ranks of the data instead of the data itself and
have the advantage of being more robust, i.e. less sensitive to departures from
normality in the data. The rank coefficients are also invariant under monotonic
transformations and are more robust against outliers (de Matteis, 2001). However,
these rank correlations are not moment-based correlations and therefore they
cannot be subject to the same variance-covariance manipulations such as linear

correlation (de Matteis, 2001).
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The Pearson’s correlation coefficient is a very common measure of
dependence. It captures only linear relationships between two variables. It is
defined as:

_cov(X,Y)
OXOY .

Xy
A Pearson value of +1 indicates a perfect positive linear relationship between the
two variables, a value of 0 indicates no linear relationship at all, and a value of -1
indicates a perfect negative linear relationship.
Dependence structures are much more than just correlations. In fact, outside
of the elliptical world, linear correlations must be used with relative caution (de
Matteis, 2001). To see how dependence structure can vary, de Matteis (2001) shows

that even though two copulas can be generated from the same distribution, with the

same correlation, their dependence structure can be quite different.

Gaussian Gumbel

X2
X2
0

|

X1 x1

Figure 3: Example of a differing dependence structure from two different copulas
from de Matteis (2001).
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Figure 3 above shows 1000 random variates from two distributions with identical
standard normal distributions and identical correlation of p=0.5, but with notably
different dependence structures; one using an elliptical Gaussian copula, the other
using the Archimedean Gumbel copula. These differences can be seen in the
relationship between the points. The Gaussian copula is more circular in its points
and more concentrated to lower values of X1, where as the Gumbel is more
elongated and shares the concentration among higher and lower values of X1.
Seeing the varying dependence structures shows the importance of defining the
proper structure when attempting to use copulas to model data.

With a little bit of knowledge about the basic theory of copulas, one way to
get a better understanding of the power of these functions is to apply this
knowledge to simulated and real data in R and work with the results. The following
sections have several exercises dealing with different components of the copula

theory.

3. Empirical Copula

This section is motivated by the work and research done by Genest and Favre
(2007). This work is driven by the use of dependence ranks to define an empirical
copula. Genest and Favre showed that the ranks of a data set can be used to define
an empirical copula, which in turn, can then be used to calculate dependence

empirically.
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Using R statistical software, a very small data set (n=10) was generated from
a bivariate normal distribution with zero mean and zero correlation. The data can

be found in Table 2. The pairs are listed so that X, <...< X, for simplicity.

i 1 2 3 4 5 6 7 8 9 10
Xi -0.835 -0.82 -0.626 -0.305 -0.184 0.329 0.487 0.576 0.738 1.595
Yi -0.621 -0.045 1.511 0.594 0.39 1.125 -0.016 0.821 0.944 -2.215

Table 2: Data set from a bivariate normal distribution
A scatterplot of this data set (Figure 4) was constructed and observed. The goal of

this plot is to get a feeling for the dependence between the two generated variables.

Scatterplot of pairs from bivariate normal

-0.5 0.0 0.5 1.0 1.5

Figure 4: Scatterplot of the data set
Something as simple as a scatterplot can prove to be very important. It is an easy
way of visualizing and getting a good feeling for the dependence between two
variables (Genest & Favre, 2007). If something has a linear relationship or a high
correlation, this will be very evident in the scatterplot itself. On the other end of the

spectrum, if there is no relationship at all, this will also be clearly shown. The scatter
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plot also gives information about the marginal behavior of the variables is included
as well (Genest & Favre, 2007). This can be seen with the scatterplot of the variables
Z and T, which are transformations of X and Y according to the following,

Z =exp(X;,), T =exp3Y), i=1,..,10.

The scatterplot of these variables is shown in Figure 5, and it is clear that this plot is
exceedingly different than that in Figure 4. In Figure 4, all the points are spread
about about the X variable, but more concentrated to the higher values of Y. The last
point also seems to be an outlier. The in scatterplot of Z and T, the points are more
concentrated to the lower values of both variables, and there appears to be more

than one outlier (the third and last).

Plot of transformed variables

80
|

40

Figure 5: Plotof Z, T
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The next step of this exercise was to use the ranks of the data to help define
the dependence between X and Y, as well as to define the empirical copula. As
previously mentioned, the ranks of data are invariant under monotonic
transformations and are more robust to outliers. Because of this, ranks of data can
be very important to statistics. For this data set, the ranks were found and recorded.

These ranks were used to calculate a value for Spearman’s rho by the formula

pn = LER[S[ _3n_+1
nn+1)(n-1) n-1

i=1
where R; is the rank of X; and S; is the corresponding rank of Y; (Genest & Favre,
2007). The use of these ranks leads into the concept of the empirical formula for the

copula. The empirical copula is a sample-based version of the copula for the data. It

is defined by

C,(u,v) = lzl(i < uil <v)

n<
where 1(A) is the indicator function for a set A, meaning if , for 1(x), x € A, the

function takes on a value of one, if not, the value of the function is 0. Genest and
Favre (2007) showed that the empirical copula can be used to calculate empirical
versions of both Spearman’s rho and Kendall’s tau, both which are measures of
dependence. Spearman’s rho, as a function of the empirical copula is defined by

Genest & Favre as

2w R, S n-1
3

12f uvdC,(u,v) —3=— -3= Pr
[0.1]2 niyn+ln+1l n+1

The empirical formula for Kendall’s tau is
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n — n+3
T,=4 W —
n-1 n-1

where W = [ C,(u,v)dC, ().

(0.1
These empirical copulas are just sample based estimations of the true copula, but
can be used to estimate values of dependence measures. All the R code for this
example can be found in Appendix I.

This example was also repeated with a larger data set (n=1000), but is not
shown here . It was very clear with this data, by plotting the histograms of each of
the variables that their marginals are of a normal distribution. Being able to change
the marginal and having different marginal with a copula function will be discussed

later on.

4. Creating Multivariate distributions from the R copula library

Copulas are a convenient way of defining more complex multivariate
distributions. It has been mentioned that with a marginal distribution for each
variable and the proper copula, the entire joint distribution function can be
described. As multivariate distributions can quickly become very complex this can
prove to be a very useful tool. Like most things in statistics, to do all the calculations
by hand or from scratch can be a daunting and challenging task. The R statistical
software has a copula library with plenty of functions and commands to define not
only just copula’s, but entire multivariate distributions themselves. Within the

library, there is a copula class that can be used to define copula objects, and there is
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a mvdc class that uses copulas to define entire multivariate distributions (Yan,
2006). An example of a copula created using the copula command is the Gaussian
copula that was shown in the “Basic Theory” section. It was created using the
following code:

>Llibrary(copula)
set.seed(1)

norm. cop=normalCopula(.?75, dim=2)

norm. cop

x=rcopula(norm.cop, 1000)

plot(x, pch=20)

title("Gaussian Copula")
The variable x was sampled from the copula created and was previously shown in
Figure 2a.

The mvdc command has three major arguments: first is the copula, which
specifies the copula C. Second is the margins arguments, where each individual
margin is named. The third is the paramMargins argument. This argument is a set of
a list, where each list specifies the values of the parameters for each of the marginal
distributions (Yan, 2006). With these three simple components, multivariate
distributions can be constructed, with one having full control over the margins and
the copula separately (as is suggested by Sklar’s Theorem).

Each different multivariate distribution comes with its own set of distinct
properties. Some of these properties can be seen in the contour plots of these
distributions (that is, contours of probability density). Contours for a few of the
Archimedean copulas have already been shown. The Frank, Gumbel, and Clayton

copulas each have their own specific form (Figure 1). Plotting these contours can be

a powerful method in defining particular distributions. A wide range of distributions



can be created by simply changing the marginal distributions. For instance, Figure
shows the contour, scatterplot, and the two marginals of a multivariate distributio

with two standard normal marginals and a Gaussian copula with p=-0.5.

Bivariate Normal from Copula
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Figure 6: A multivariate distribution with two standard normal marginals and a
Gaussian copula.

The mvdc command used to create this particular distribution was

>norm.cop <- normalCopula(-0.5, dim =2)
MVN <- mvdc(Cnorm.cop, margins = c("norm", "norm"), paramMargins =
list(list(mean = @, sd = 1), list(mean = @, sd = 1)))

The ‘norm.cop’ is the copula object created using the copula class, and the MVN

22

6

n

object is the multivariate distribution itself. The rest of the R code used to make the

plot is as follows;

>par(mfrow=c(2,2))

contour(MVN, dmvdc, x1lim = c(-3, 3), ylim = c(-3, 3))
title("Bivariate Normal from Copula")

X=rmvdc(MVN,500)  ##sampling from the MV normal created from the
copula

plot(X[,11, X[,21D
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hist(X[,11)
hist(X[,21)

As previously mentioned, having complete control of the marginal distributions
gives one the ability to make numerous distributions which are completely different
from one another. For example, simply by changing one of the standard normal
marginals from the distribution above to a uniform marginal with parameter values
[-1,1], the new distribution looks like the one in Figure 7a. The contour in Figure 7a
is much more skewed than that in Figure 6. With two normal margins, there is a
certain amount of cyclical symmetry within the points. By changing one marginal,
there becomes an “S-shaped” distribution of points, where the concentration of
points tapers off at the bottom and top of the graph. The mvdc command has many
built in distributions such as normal, uniform, exponential, alpha and beta. Any
combination of these marginal distribution, with given parameter values allows for
the construction of many “creative looking” distributions. The rest of the
distributions in Figure 7 were all created by using a combination of these marginal

distributions and the mvdc command.

(a)
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Figure 7: (a) Distribution created from a normal and a uniform marginal distribution.
(b) Distribution created from a normal and an exponential marginal. (c) Distribution
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created from a normal and a gamma marginal. (d) Distribution created from two
exponential distribution with different rates.

One interesting thing to note from this exercise is that all of these distributions were
created with only one type of copula; the Gaussian. All the mvdc objects were
created with a Gaussian copula with a correlation value of 0.8. Many more of these
“creative” distributions could have been created by also changing the dependence
structure, which is controlled by the copula.

Another use for copulas in the mvdc object is the random number generator.
In the code, we have already seen the rcopula command, which is the method for
random number generation for the copula objects created in R (Yan, 2006). This
links back to Sklar’s theorem again, as it suggests that random numbers from a
copula can be produced by using the probability integral transform to transform the

margin of random numbers from its multivariate distribution (Yan, 2006).

5. Copulas from the Empirical Moments

Sklar’s theorem for copulas states that multivariate distributions can be fully
defined by the marginal distributions for each of the variables and the proper copula
that describes the dependence between those random variables and that links the
marginals together (Kang, 2007). This concept was explored in another exercise
completed in R. The idea was that, given a data set, the marginal distributions could
be estimated, along with their parameter values. Once the distributions for each
random variable were fitted to data, the copula would hopefully also be able to be

fitted, thus giving a multivariate distribution to model the data. This was first done
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via simulation with R using synthetic or generated data, with the intention of
extending the work to two chosen variables from the real benthic data from St Ann’s
Bay.

The basic idea, when applying it to real data, is to look at the marginals and
essentially “guess” the type of distribution. From there, the parameter values for
each distribution can be estimated using a log-likelihood method (the fitdistr
command in R proves to be helpful here). For the time being, only two variables are
being analyzed, so the correlation between these two variables can also be
determined rather simply. It has been said that it is important to define the marginal
distributions properly, and once this is done, the task of defining the complete
multivariate distribution becomes that of properly choosing a copula that best
describes the dependence structure between the variables (Kang, 2007).

Before attempting to apply this idea to real data, simulated data was created
in R. In this particular example, a bivariate normal distribution was generated using
the rmvnorm command, and a correlation of 0.8 was chosen for the two variables.
Figure 8a shows the scatterplot of the data as well as a histogram of each of the
marginal distributions. Then, using the following code, the parameter values of the
marginals were estimated. Since the true values of the parameters were known
(because they were chosen and simulated), the estimated values could be compared
to the true values. As expected, the estimate was very similar to the true value.
These values were then used to overlay the estimated normal curve on the
histogram to assure the fit was acceptable, shown in Figure 8b.

>Library(MASS)
library(mvtnorm)
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# First generate from a bivariate normal
C <- matrix(c(1,.8,.8,1),2,2)
Xn <- rmvnorm(mean=c(@,0),sig=C,n=1000)

par(mfrow=c(2,2))

plot(Xn[,1], Xn[,21)

title("Scatterplot of bivariate normal distribution”, cex.main=0.8)
hist(Xn[,1], main="Histogram of X1")

hist(Xn[,2], main="Histogram of X2")

#emperical moments of marginals and correlation of 2 variables
a=fitdistr(Xn[,1], "normal™)

b=fitdistr(Xn[,2], "normal™)

cor(Xn[,1],Xn[,21)

##fitting the parameter estimates the data Chistogram)
par(mfrow=c(1,1))

hist(Xn[,1], prob=TRUE)

mul=a$estimate[1]

sdl=a$estimate[2]
x=seq(min(Xn[,1]),max(Xn[,1]),length=50)
y=dnorm(x,mul, sdl)

lines(x,y, col="red")

Scatterplot of bivariate normal distribution Histogram of X1

Xnl[, 2]
Frequency
50 100

0

Xn[, 1] Xn[, 1]

Histogram of X2

Frequency
50 100

0
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(b)

Histogram with estimated normal density

Density

0.1

Xn[, 1]

Figure 8: (a) Scatterplot and marginals of a bivariate standard normal distribution
(b)histogram of X1 with the estimated normal density curve over top
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This process was repeated for several other distributions, such as the exponential
and gamma, all of which were successful in fitting the empirical moments.

Since the topic of this thesis is copulas, the more illustrative approach would
be to generate the data, not from a bivariate normal distribution strictly, but from a
multivariate distribution that was defined by a given copula. With the mvdc
command, the marginals are controlled independent of the copula, so the first
attempt was the very basic Gaussian copula with standard normal marginals. Data
was generated from this multivariate distribution, and plotted. The same process
was carried out, fitting the distributions and getting values for the empirical

moments. The fitted values were approximated well (u, =-0.038,0, =1.04,
u, =-0.033,0,=0.983,and p=0.804). The sample size was changed on different

occasions, and as expected, the smaller the sample size, the less accurate the
estimate for the true parameter values. Different multivariate distributions with
marginals different from a standard normal were also simulated and fitted with
success. For example, the results of a multivariate distribution with a standard
normal and exponential marginal with rate=2 are shown below in Figure 9:

Standard Normal: Exponential
mean sd rate
-0.02561710 1.01949637 2.04645669
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Figure 9: Multivariate distribution with a normal and an exponential marginal are
shown with the overlay of the fitted marginal distributions shown in red.

The calculated parameter values are a good estimate for the true values and fit each
respective distribution well. The sample value for the correlation can also be
calculated using numerous methods (Spearman’s rho, or the most popular,
Pearson’s correlation coefficient). With this information, a proper copula can be
selected that best represents the link between the two variables. In this case, a
Gaussian copula with the sample correlation is appropriate. With this copula and
marginal distributions, the multivariate distribution is complete.

Moving forward with this work, the next step is to work with real data
instead of simulated data from R. This will show the practicality of this method and
how its ability to apply it to the real world. In the benthic data, two response
variables were chosen. For the purpose of this exercise, the abundance and species

number variables were selected. Figure 10 shows the scatterplot of the multivariate
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distribution created by these two variables, as well as their individual marginals. By
visually assessing the marginal, a normal distribution was fitted to the abundance
variable, and both an exponential and gamma distribution were fitted to the species
number. Of the two distributions fitted to the species number variable, both were
visually deemed an appropriate fit, however the gamma distribution was chosen as
the value for the maximum log-likelihood was slightly larger. The estimated mean
and standard deviation for the normal distribution were found to be 2.67 and 1.16
respectively. The shape parameter estimate for the gamma distribution was
estimated to be 1.46 and the rate was estimated to be 0.25. These fitted curves were

overlaid on the original data in red and are seen in Figure 8.
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Figure 10: A multivariate distribution for two response variables from the benthic
data, as well as the marginal fitted curves.

Comparing the scatterplot of these two variables to the multivariate distribution

created with a normal and gamma marginal and a Gaussian copula, as seen in Figure
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5¢, it is appropriate to join the two marginals with a Gaussian copula, where the
correlation was found to be 0.853. This correlation is the estimated value for the
parameter of the Gaussian copula. The R code used to fit these marginal
distributions is as follows:

X=cbind(abundance, specnum)

par(mfrow=c(2,2))

plot(Cabundance, specnum, pch=20)

fitl=fitdistr(Cabundance, "normal™)

hist(abundance, prob=TRUE)

mul=fitl$estimate[1]

sdl=fitl$estimate[2]

x1l=seq(minCabundance),max(abundance),length=50)

yl=dnorm(x1,mul, sdl)

lines(x1l,yl,col="red")

fit2=fitdistr(specnum,"gamma™)

hist(specnum, prob=TRUE)

shape=fit2$estimate[1]

rate=fit2$estimate[2]

x1l=seq(min(specnum),max(specnum), length=50)

yl=dgamma(x1,shape,rate)

lines(x1l,yl,col="red")

cor=cor(abundance, specnhum)
Comparing the scatterplot of the data in Figure 10 with that of the multivariate
distribution created in Figure 7c, there are definite similarities between the real
data and the simulated data. The real data takes the same shape as the simulated
data (which has a normal marginal and a gamma marginal), indicating the

dependence structure is likely appropriate for these two variables. Fitting these two

variables using fitting formulas in R is demonstrated in the next section.

6. Fitting Copulas with built-in R Functions
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Using the empirical moments, and log-likelihood methods to estimate
parameter values, in theory this should be enough to define a multivariate
distribution for the data. However, fitting the proper marginal distributions is very
important to this process, and when the data is not simulated and the marginals are
not exactly known there is a lot of possibility for error. Also, with all the available
copulas, selecting the most appropriate one to model the dependence between the
variables can be tricky. Likewise, with more than two variables, the dependence
structure can quickly become much more complicated. Other methods to fitting
copulas and multivariate distributions will be explored in the next section, as well as
looking at copulas in higher dimensions.

6.1 Fitting copulas with fitMvdc

In the section above, fitting copulas and entire multivariate distributions to
data by estimating their empirical moments and sample correlation was introduced.
In the copula library in R there is a fit command that can be used to fit the marginals
and copulas to the given data set called fitMvdc. Since the ability to fit copulas to
describe the complex dependence between variables is one of the goals when
dealing with multivariable data, the ability to model these copulas in statistical
software programs like R will be a necessity in the future. In this section, this
fitMvdc command will be explored.

There are density functions for copula and mvdc objects available, and
because of their availability, it has made it much easier to fit copula models using
the maximum likelihood method (Yan, 2006). The fitMvdc command is used to carry

out estimation and it also reports on the results of the fitted model for mvdc objects.
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There is a corresponding fitCopula command that reports the results for copula
objects. The main three arguments (also the first three arguments) of the fitMvdc
command are the data, the mvdc object, and the starting values (Yan, 2006). After
those arguments, the remaining arguments are mostly control parameters that are
specific to the situation. For the starting values, it is convenient to use the estimated
marginal parameters chosen by fitting each marginal separately, as was discussed in
the previous section. When specifying the starting values, parameter estimates for
the individual marginals are first and then the copula parameters follow. Simulated
data from R was selected and the fitMvdc command was used to see how accurate
the fit as compared to the true data. The R code used, and the output can be
summarized as;

># generate "data" from a distribution with one normal marginals,

plus correlation
norm.cop <- normalCopula(@.8, dim =2)

myD <- mvdc(Cnhorm.cop, margins = c("norm", "norm"), paramMargins =
list(list(mean = @, sd = 1), 1list(0,1)))

The simulated data was a mvdc object with a Gaussian copula and two standard

normal marginals, and the correlation between the two variables was set to 0.8.

par(mfrow=c(2,2))

contour(myD, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))
X=rmvdc(myD, 500)

plot(X[,1], X[,21)

hist(X[,1])

hist(X[,2])

# Now see if you can recover the parameters
start <- c(@, 1, 0, 1, 0.5 # starting value (note: only
correlation mis-specified)

For the starting values, only the correlation was misspecified. This was done to see if
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the fit would recover the proper parameter values.

fit <- fitMvdc(X, myD, start = start, optim.control = list(trace =
TRUE, maxit = 2000))
initial value 1268.038801
iter 10 value 1179.849215
final value 1179.676608
converged
initial value 1179.676608
final value 1179.676602
stopped after 1 iterations

fit
The Maximum Likelihood estimation is based on 500 observations.
Margin 1 :

Estimate Std. Error
ml.mean 0.01447 0.047
ml.sd 1.04385 9.033
Margin 2 :

Estimate Std. Error
m2.mean @.00154 9.046
m2.sd 1.01813 0.032
Copula:

Estimate Std. Error
rho.1 9.8124 9.015

The maximized loglikelihood is -1179.677
Optimization converged
Number of loglikelihood evaluations:
function gradient

74 15

As shown above, the fit command had no issue recovering parameter values close to
the true value. The mean and standard deviations for the marginals are
approximately 0 and 1 respectively, and the correlation recovered was 0.812, after it
had a starting value 0.5. The maximum log likelihood is also available with this fit
output. It can be read directly from the output, or the loglikMvdc command in R
gives the maximum log likelihood as its output. The maximum log likelihood was
found to be 1179.6. For this example, since all the true distributions and parameter

values are known, the real maximum log likelihood can be found and compared to
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the fitted one. In this case, the following command calculates the true log likelihood
value;

>maxL <- loglikMvdc(c(@, 1, @0, 1, 0.8), X, myD); maxL

[1] -1180.845
The log likelihood from the fitted model is very close to that of the true value.

Using the fitMvdc in this example was pretty straight forward, as all the
information about the data was known before trying to fit the model. In the real
world, this is obviously not the case. This begs the question as to what the
limitations are for successful application of this fitting procedure.. That is, what
happens when more than one parameter estimate is misspecified? What happens
when the dependence structure becomes more complex than a simple correlation
between two variables? How are the results affected by changing the sample size?
And most importantly, how is one able to apply this fit command to real data?

The next steps for this exercise was to make the R program work a little
harder by misspecifying multiple parameters and observe its ability to output
something close to the true value. For this example, a multivariable distribution
with a Gaussian copula with correlation of 0.8, a standard normal marginal, and an
exponential marginal with a rate of 2 was simulated. See Appendix II for the R code
used. When all parameter values were given starting values, which were not their
true values, the fit was able to recover estimates approximately equal to the true
values. However, when it was assumed that no information about the parameters
was known (ie, all starting values of 0), an error message was returned indicating

the maximization of the likelihood failed. This is an extreme case however, because
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as long as the marginals are chosen correctly, the data can be fitted to these
marginals, and some information can be retrieved.

The effect of changing the sample size was explored next. In the original
exercise, a sample size of 500 was used to fit the distribution. The general rule in
statistics is that the bigger the sample size, the better the estimation Since the real
data has 48 sites, the sample size in the synthetic example was changed to n=50. The
results were similar to that when n=500. The estimates were not quite as accurate
as when n=500 and the standard errors of the estimated parameters were larger
with n=50. The log likelihood was also much smaller. When n=500, the maximum
log likelihood was 614.5, and with n=50 it was 61.4. These are both compared to the
true value of 615.7 and 64.7 respectively. For the actual results, see Appendix II. The
fitMvdc command seems to handle small sample sizes well.

The question about how the fitting method handles more complex
dependence structure will be explored in the final section about copulas in higher
dimensions. As more variables are added to the data set, the dependence among the
variables quickly becomes complicated and the number of parameters increases,
and this might prove too much for fitMvdc to handle with ease.

Using the maximum log likelihood is a good way to determine which value is
the best estimator for the parameter. Another tool that can be useful for
understanding the estimation procedure better is graphing the likelihood profile.
Since the example of misspecifying the correlation in the bivariate model was used
above, the likelihood profiles for the correlation will also be shown. These plots give

the likelihood value for each estimate of p. This is a good way to check that the
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estimated value of p given by the fitted model is indeed the best estimate. It is also a
way of visualizing the effect that miscalculating the estimate will have, based on
how steep the curve is around the best estimate, which provides a measure of
uncertainty. The usual data was simulated (Gaussian copula, p=0.8, two standard
normal marginals) with a sample size of 500. Plotting all the log-likelihood values
against possible values for p created the log-likelihood profile for p. The R code used
can be found in Appendix II. Figure 11 shows the resulting plot. In this case, the
maximum log-likelihood does in fact occur at p =0.8. By the nature of the graph, it
seems like underestimating the correlation has less of an effect than overestimating
p with major changes as it approaches 1. Some of the other trials did however

produce maximums that were just off from the 0.8; 0.79 and 0.81 for instance.

Likelihood Profile for p
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Figure 11: Log Likelihood Profile for p for the bivariate distribution
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With real data, the hope is that we are able to apply this fitMvdc command on
two variables at least, and extend it to three or more variables, with the desire to fit
appropriate distributions to the data. This model fitting procedure was applied to
two chosen variables of the benthic data, which was introduced at the beginning.
The species number and abundance variables were used as their marginals were
already fitted in the section above. The fitMvdc command was used to fit a
multivariate distribution to this data. First a Gaussian copula was constructed using
the correlation between the two variables as the parameter estimate. Then a
multivariate distribution with a normal marginal and a gamma marginal was
constructed. The maximum likelihood estimates for the marginals that were found
using the fitting techniques in the previous section were used as the starting values.
The code used for this was straightforward.

norm. cop=normalCopula(cor, dim=2)
MVN=mvdc(norm.cop, margins=c("norm","gamma"),
paramMargins=list(list(mean=0, sd=1), list(shape=2, rate=1)))
start=c(mul,sdl, shape,rate,cor)
The fit command was then used with the above copula and mvdc object to fit an
appropriate distribution. The code and its output are shown below.
fit=fitMvdc(X,MVN, start=start, optim.control = list(trace = TRUE,
maxit = 2000))
initial value 170.234910

final value 169.760046

converged

initial value 169.760046

final value 169.760046
stopped after 1 iterations

> fit
The Maximum Likelihood estimation is based on 48 observations.
Margin 1 :
Estimate Std. Error
ml.mean 2.692 9.167

ml.sd 1.162 0.120
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Margin 2 :

Estimate Std. Error
m2.shape 1.4618 0.271
m2.rate 0.2553 0.056
Copula:

Estimate Std. Error
rho.1  0.8794 0.033
The maximized loglikelihood is -169.76
Optimization converged
Number of loglikelihood evaluations:
function gradient
35 9

From this output it can be seen that the mean for the normal distribution was
estimated as 2.69 and the standard deviation was 1.16. The shape and rate were
found to be 1.46 and 0.26 respectively. The value of the maximum log-likelihood
was 169.76 also. This is comparable to the multivariate distribution found using the
empirical moments. This is an example of how the fitMvdc command can be used

with real data to model a multivariate distribution.

7. Higher Dimensions

The majority of the work done here with copulas so far has focused on the
bivariate case. This is mainly due to our basic knowledge of copulas and the
simplicity that goes along with bivariate distributions. However, it isn’t very often
multivariate data can be focused in on just two variables. The ability to model
copulas with three or more variables is very important. With more variables, the
dependence among them can quickly become very complex, and it is with these
complex dependencies that copulas are applied.

A small amount of work with copulas in higher dimensions was done in R.

The goal of this exercise was to explore copulas in more than two dimensions.
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Sticking with the basic normal copula seemed to be the most logical continuation of
this introduction into copulas. The copula function was used to generate data from
three dimensions with a certain variance-covariance structure. There are several
built in correlation matrices in the elliptical copula family in R (Yan, 2006). Some of
the more commonly used structures include autoregressive of order 1 (arl),
exchangeable (ex), Toelpitz (toep) and unstructured (un). For the case when p=3,

each of the correlation matrices have the corresponding form (Figure 12):

Lpipi) (L op; 1 p1 p2 1 p1 pa

pr Lopi|sfpr Lpi|s|pr 1 pif,and [p 1 pslf,

pipt 1) \pipi 1) \p2pr 1 p2 p3 1

Figure 12: Built-in dispersion structures in R, retrieved from Yan (2006).

The choice of correlation structure quite obviously depends on the data you are
working with. It is noted that the sample generated from the trivariate normal
copula produces, not surprisingly, uniform marginals and a sample correlation
structure similar to the dispersion parameter values chosen to produce the copula.
In this exercise, an exchangeable correlation structure was chosen with p=0.8. The
‘pairs’ command was also used to plot every variable against all the others (as seen
in Figure 13) to visually see the dependence between specific pairs of variables (the
importance and effectiveness of scatterplot was previously mentioned). All three
variables had similar scatterplots with one another, as was to be expected with the

chosen structure.
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Figure 13: pairs plot of the three variables from the trivariate copula created in R.
With the exchangeable dependence structure, all variables are correlated with a
chosen correlation of 0.8.
A multivariate distribution was also created with these higher dimensions, in the
very same way the bivariate distributions were generated. The copula and
marginals were manually controlled, each individual pairs plot and histogram for
the data was plotted. The pair plots were used to observe the dependence among

the variables, and the histograms gave information about the marginals. Figure 14

shows the scatterplots and individual histograms for this multivariate distribution.
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Figure 14: Marginal distribution of the simulated trivariate distribution

Defining all normal marginals in the multivariate distributions command, all the
histograms resembled normal distribution curves. With more than three variables,
the ability to visualize the dependence between each variable becomes increasingly

difficult since with every variable added, the number of comparisons amongst

variables increases quickly. The number of comparisons is 5 | where n is the

number of variables, so as n increases, so do the number of comparisons. The
plotting power beyond something that is 3D is difficult. To effectively visualize
dependence relationships that are four or five dimensions is almost impossible.
Normal copulas with all the different correlation structures mentioned were also

generated. When all the pair plots are compared to one another, the differing
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dependence structures can be recognized. For example, the correlation between
variables one and three in the arl structure is noticeably different than the
correlation between the same variables in ‘unstructured’ dependence structure. The
other three pairs plots can be found in Appendix III. One can see how quickly things
can become complex. All four of these different dependence structures were created
without even changing the copula (all distributions contained a Gaussian copula).
The dependence structure cannot only vary within the copulas but between
different copulas and different families of copulas as well. The dependence structure
for a trivariate distribution with three normal standard marginals but a Frank
Archimedean copula joining the marginals together would look different still. The
ultimate goal would be to define the proper copula to data with several variates in
order to model the distribution properly.
7.1 Fitting a trivariate distribution with Benthic data

Just as the fit procedure was applied to the benthic data in the previous
section, three selected variables were chosen from the benthic data with the
ultimate goal of modeling the dependence properly. With real data, it seems as
though the ‘unstructured’ dependence structure would be the most commonly used,
as it required one to define all possible values for the correlation among the
variables. Unless it is glaringly obvious the dependence structure follows one of the
given forms, all of the sample correlation estimated would have to be specified
individually in order to create the copula. These values are easy to estimate as they
are retrieved from the sample variance-covariance matrix. Along with the

abundance and species number variable used in the previous sections, the AMBI



variable was also chosen to apply this fitting method to higher dimensions. Figure

15a shows the pairs plot for the three chosen variables.
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Figure 15: (a)Pairwise scatterplot for the variables abundance, species number, and
AMBI and (b) All three marginals with fitted curves

For this example, the species number marginal was actually modeled as an
exponential distribution and the AMBI variate was modeled as a gamma
distribution. This gives three variables with three different marginals. Figure 10b
shows the fitted curved overlaid on the marginal histograms for all three marginal
distributions. For this example, again a Gaussian copula was used to connect the
three variables together. As mentioned above, the unstructured dispersion structure
was used in the copula object, with the three parameters being the values of the
sample correlations between each of the variables. The following code shows how
this was accomplished.

X=cbind(abundance,specnum,AMBI)
pairs(X, pch=20)

cor=cor(X)

rhol=cor[1,2]

rho2=cor[1,3]

rho3=cor[2,3]

norm. cop=normalCopula(param=c(rhol,rho2,rho3), dim=3, dispstr="un")
MVN=mvdc(norm.cop, margins=c("norm","exp","gamma™),
paramMargins=list(list(mean=0,sd=1),11st(0@.25),list(shape=10,rate=5

D))

The fitMvdc command was then used to fit the multivariate distribution with three
dimensions. The maximum likelihood parameter estimates were again used as
starting values. The fit had the following output;

start=c(mul,sdl,lambda,shape,rate,rhol,rho2,rho3)

> fit=fitMvdc(X,MVN, start=start, optim.control = list(trace =
TRUE, maxit = 2000))

initial value 215.684492

iter 10 value 209.373219

final wvalue 209.332519

converged
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initial value 209.332519
final wvalue 209.332519
stopped after 1 iterations

> fit
The Maximum Likelihood estimation is based on 48 observations.
Margin 1 :
Estimate Std. Error
ml.mean 2.548 0.177
ml.sd 1.358 0.107
Margin 2 :
Estimate Std. Error
m2.rate 0.1762 0.025
Margin 3 :
Estimate Std. Error
m3.shape 9.073 1.921
m3.rate 5.101 1.100
Copula:
Estimate Std. Error
rho.1 0.9132 0.021
rho.2 0.3105 0.1406
rho.3 0.3740 0.145

The maximized loglikelihood is -209.3325
Optimization converged
Number of loglikelihood evaluations:
function gradient

56 15

All parameter estimates correspond to those found using the moments method, as
can be seen in the output above. There was a desire to create a contour plot of the
fitted multivariate distribution to compare to the scatterplot of the real data to
ensure the dependence was modeled properly. As contours become more difficult to
plot with increasing dimensions, 500 data points were instead generated from the
fitted multivariate distribution and its pairwise scatterplot is shown in Figure 16.
The scatterplot from the generated data has definite similarities in each of the
pairwise comparisons to the scatterplot of the real data. For instance, for abundance

and species number, both the generated data and real data steeply increase at the
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beginning and then taper off near the higher limits. The shape for all three

comparisons are relatively consistent.

0 5 10 15 20 25 30

)
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30
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20
1 1 1
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Figure 16: Pairwaise scatterplot of the 500 data points generated from the fitted
trivariate distribution

As more dimensions are added, the complexity of the problem and the model
drastically increases. Much more work would have to be done to fit even higher

dimension models.

8. Conclusion

Copula theory is relatively new to the field of statistics, but thanks to
economics and finance, they are quickly growing in popularity. In fact, copulas were
a huge success on Wall Street, and at the same time are also being blamed for a part
of the collapse (Salmon, 2009). Although the theory is relatively new, it is quite

complex and in depth. There are two different families of copulas, each with their
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own variety of functions and dependence structures. Elliptical copulas are used
where elliptical distributions are involved, while Archimedean copulas are popular
because they support much more complex forms and skewness. Between these two
families, numerous multivariate distributions can be defined to model data.

Sklar’s theory is instrumental in describing and understanding the basis of
these functions. It explains that multivariate distributions can be completely
explained with their individual marginals and the copulas that joins the random
variables together. This idea was the basis for being able to fit multivariate
distributions through empirical moments of the marginals and correlation. This was
supported with exercises in R where distributions were simulated and fitted with
both the moment method and the built-in R functions, with comparative results.
Moving on to higher dimensions, the copulas and the multivariate distributions
become much more complex. Even though trivariate distributions were
experimented with this is an area that has been left for further discovery in this
thesis.

Researching the theory on copulas is a difficult but yet rewarding task. The
theory and computations quickly become very detailed. With the desire to model
complex multivariate distributions, it is no surprise there is a growing interest in

this topic. This thesis is a good stepping stone to the much larger world of copulas.
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Appendix I - R code from “Empirical Copula”

>library(Ccopula)
library(mvtnorm)
library(sn)
library(scatterplot3d)
library(MASS)

set.seed(1) #to replicate the results

sigma=matrix(c(1,0,0,1), byrow=T, nrow=2) #covariance matrix with 0
correlation between X and Y
mu=c(@,0) #zero mean for X and Y

data=mvrnorm(n=10, mu, sigma)

x=data[,1]

y=data[,?2]

n=length(x)

o=order(x)

datal=rbind(x[o], y[o])

x=datal[1,]

y=datal[2,]

plot(x,y, pch=20) #scatterplot of the pairs (Xi,Yi)

z=exp(x)
t=exp(3*y)
plot(z,t, pch=20) #scatterplot of the pairs (Zi,Ti)

par(mfrow=c(2,1))

plot(x,y, pch=20)

plot(z,t, pch=20)

##Ranks of X and Y

R=rank(x)

S=rank(y)
rho=C(12/(n*(n+1)*(n-1)))*(sum(R*S)))-(3*(n+1)/(n-1))
rho; cor(x,y)

sgrt(n-1)*abs(rho)
B L T
set.seed(1)

par(mfrow=c(1,1))

sigma=matrix(c(1,0,0,1), byrow=T, nrow=2)
mu=c(@,d)
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data=mvrnorm(n=1000, mu, sigma)
x=data[,1]

y=data[,?2]

n=length(x)

o=order(x)

datal=rbind(x[o], y[o])
x=datal[1,]

y=datal[2,]

plot(x,y, pch=19)

##Ranks of X and Y
R=rank(x)
S=rank(y)

rho=C((12/(n*(n+1)*(n-1)))*(sum(R*S)))-(3*(n+1)/(n-1))
rho; cor(x,y)
sgrt(n-1)*abs(rho)

Appendix II
Misspecifying multiple parameter estimates

norm.cop <- normalCopula(@.8, dim =2)

myD <- mvdc(Cnhorm.cop, margins = c("norm", "exp"), paramMargins =
list(list(mean = @, sd = 1), list(rate=2)))

contour(myD, dmvdc, xlim = c(-3, 3), ylim = c(-3, 3))
X=rmvdc(myD, 500)

plot(X[,11, X[,21)

hist(X[,11)

hist(X[,21)

start=c(0.1,0.89,1.74,0.5)

fit=fitMvdc(X,myD, start=start, optim.control = list(trace = TRUE,
maxit = 2000))

initial value 657.100272

iter 10 value 578.531779

final value 578.531616

converged

initial value 578.531616

final value 578.531607

stopped after 2 iterations
fit

The Maximum Likelihood estimation is based on 500 observations.
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Margin 1 :

Estimate Std. Error
ml.mean -0.07074 0.041
ml.sd 0.96803 0.027
Margin 2 :

Estimate Std. Error
m2.rate 2.162 9.097
Copula:

Estimate Std. Error

rho. 1 0.774 0.016

The maximized loglikelihood is -578.5316
Optimization converged
Number of loglikelihood evaluations:
function gradient

52 12

Changing the sample size
For n=50, the fitted model is as follows:

> fit=fitMvdc(X,myD, start=start, optim.control = list(trace =
TRUE, maxit = 2000))

initial value 75.574811

iter 10 value 61.406876

final value 61.406866

converged

initial value 61.406866

final value 61.406866

stopped after 1 iterations

> fit
The Maximum Likelihood estimation is based on 50 observations.
Margin 1 :

Estimate Std. Error
ml.mean 0.1889 0.120
ml.sd 0.9127 0.076
Margin 2 :

Estimate Std. Error
m2.rate 1.628 0.23
Copula:

Estimate Std. Error

rho.1 0.8404 0.037

The maximized loglikelihood is -61.40687
Optimization converged
Number of loglikelihood evaluations:
function gradient

41 12

For n=500, the fitted model returned
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> fit=fitMvdc(X,myD, start=start, optim.control = list(trace =
TRUE, maxit = 2000))

initial value 708.936880

iter 10 value 614.516442

final value 614.514495

converged

initial value 614.514495

final value 614.514495

stopped after 1 iterations

> fit
The Maximum Likelihood estimation is based on 500 observations.
Margin 1 :

Estimate Std. Error
ml.mean 0.004734 0.043
ml.sd 1.022908 0.026
Margin 2 :

Estimate Std. Error
m2.rate 1.94 0.080
Copula:

Estimate Std. Error

rho.1 0.8185 0.013

The maximized loglikelihood is -614.5145
Optimization converged
Number of loglikelihood evaluations:
function gradient

64 15

Appendix III - differing dependence structures
Auto-regressive 1:

norm. cop=normalCopula(@.85, dim=3, dispstr="arl")
Xn=rcopula(norm.cop, 500)

pairs(Xn, main="arl")

cor(Xn)

[1,] 1.0000000 ©.8393743 0.6957665
[2,] 0.8393743 1.0000000 ©.8245148
[3,] 0.6957665 0.8245148 1.0000000



var 1

var 2

0.8

0.4

Toelpitz:

norm. cop=normalCopula(param=c(@.85,0.6), dim=3, dispstr="toep")
Xn=rcopula(norm.cop, 500)

pairs(Xn, main="toep™)

cor(Xn)

[,1] [,2] [,3]
[1,] 1.0000000 @.8432308 0.5863669
[2,] 0.8432308 1.0000000 @.8261980
[3,] 0.5863669 0.8261980 1.0000000

56



var 1

0.0

Unstructured:

norm. cop=normalCopula(param=c(0.85,0.6,0.75),
Xn=rcopula(norm.cop, 500)

pairs(Xn, main="un")

cor(Xn)

[,1] [,2] [,3]
[1,] 1.0000000 ©.8395342 ©.5998914
[2,] ©0.8395342 1.0000000 0.7502231
[3,] ©0.5998914 0.7502231 1.0000000

0.8

0.4

0.0

dim=3, dispstr=

un™)
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var 1

var 2

0.4 0.8

0.0
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