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1 Abstract

This thesis will examine the effectiveness of bootstrapping on the confidence intervals of

various parameters of interest. Analysis will be built up to see how bootstrapping behaves

when it comes to the censoring issue in survival analysis. In order to do this, we start by

looking at one samples (a single parameter) and then two samples (the ratio between two

parameters) without and with censoring all from an exponential distribution. A real data

analysis was also done to show a realistic depiction. Percentile and Percentile-t bootstrapping

confidence intervals were calculated and compared with the Wald, which is a common method

in survival analysis. A series of 1000 simulations were conducted, and we looked at the

coverage percentage, width, lower and upper bounds to evaluate how well the methods

performed. Some interesting results include, but are not limited to, seeing bootstrapping

perform better with higher sample sizes and surprisingly with increased censoring.
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2 Introduction

One of the interesting problems in survival analysis is estimating the unknown parameters

that are included in the model that describe the lifetime of an individual in the study. We

use X to represent the individual lifetime. There are different models that can be used to

describe X. One of the commonly used lifetime models in survival analysis is the Weibull

model. The probability density and survival functions for the Weibull model, respectively

are

f(x; θ) = λβxβ−1e−λx
β

, x > 0 , (2.1)

and

S(x; θ) = P (X > x; θ) = e−λx
β

, x > 0 , (2.2)

where λ > 0, β > 0 are the model parameters. For simplicity, we use θ = (λ, β) to denote

the vector of the model parameters.

This type of modeling is valuable in a real world setting when looking at the difference

between two or more groups begin studied. For example, Leukemia data which entails two

groups that have been treated with a different bone marrow are being analyzed with respect

to their differences. To analyze this, we could look at the differences in the means of the

Leukemia-free time between the two groups. However, the mean is not the only possible

way of looking at the difference between the two but other entities such as the relative risk,

interaction coefficients, etc...

Analysis will be built up, by first, making comparisons using a single sample from

an exponential distribution with the point estimate of interest being λ. The comparisons

will then be extended to two samples also from an exponential distribution with the point

estimate of interest being λ1
λ0

; without censoring. Further extension of this two sample study

will be done through incorporating censored data, which is a special issue in survival analysis.

It is essential to point out that the exponential distribution is a special case of the Weibull
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model, mentioned above, where β = 1. The Wald test or confidence interval is the most

common confidence interval construction procedure in survival analysis. On the other hand,

bootstrapping methods provide a way of getting confidence intervals that have been shown,

in some settings, to be robust to model assumption violations and that can have higher-order

correctness properties. In this thesis, we will be testing the effectiveness of bootstrapping on

the confidence intervals, of the above mentioned point estimates, using the Percentile and

Percentile-t methods in comparison to the Wald test. At the end of this study, the Channing

House real data will be analyzed for a real life representation.

3 Regression Models in Survival Analysis & Censoring

When it comes to any statistical analysis of any sort, it is important to note the notation

used for random sampling, x1, ..., xn. This random sample is what is used to make inference

about a parameter of interest regarding the population from which the sample was taken.

The n serves as the size of this random sample and each xi represents the value of interest

observed for the ith observation. Specifically speaking, when it comes to survival analysis,

the values of interest represent the lifetime of individuals, objects, etc...

Regarding survival data, there is a possibility that we run into censoring, which is

a special problem arising in survival analysis. To elaborate, censoring occurs under the

condition where a value is partially known. For instance, during a certain study lasting 5

years, patients going through chemotherapy are observed to see their lifetime progress during

this period. Through the 5 years’ time, some patients could pass away and others could live

past the 5 years they were observed for. Those who pass away during the study time, we have

an observed value for their lifetime notated regularly as xi. On the other hand, patients that

live past the study time, an exact lifetime is unknown, but rather we have partial information

in that their lifetime was past those 5 years. Such an observation is considered censored and
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is notated as xi
∗. The length of study or the time by which an individual leaves the study is

annotated as c, and so a censored observation could be expressed as xi ≥ c; note that c could

be fixed or random. Putting this all together, each observation is supposed to have a possibly

unobserved failure time, xi, and a censoring time, ci. Explicitly speaking, any observed value

during a study, where there is censoring involved, is observed as ti = min(xi, ci). xi and ci

are usually assumed independent. An additional indicator of failed vs censored observation,

is the use of δi where δi = 0 if the ith observation is censored and δi = 1 if it has failed.

With this said, the observations will be noted as (xi, δi), where i = 1, 2, · · · , n

An important note, for the purpose of this paper, focus will be on the Weibull model

where β = 1; which yields an Exponential distribution. Given this, the likelihood equation

is derived as follows:

L(θ) =
n∏
i=1

[f(ti; θ)]
I(δi=1)[S(ti; θ)]

I(δi=0), (3.3)

where I(A) is an indicator function defined as

I(A) =

 1, if A is true,

0, otherwise.

Substituting (2.1) and (2.2), when β = 1, into (3.3), the likelihood function for the exponen-

tial case is,

L(λ) =
n∏
i=1

[
λe−λti

]I(δi=1) [
e−λti

]I(δi=0)

= λ
∑n
i=1 δie−λ

∑n
i=1 ti . (3.4)

Using (3.4), the maximum likelihood estimate (MLE) will be derived and serves as an

estimate of the parameter λ, denoted as λ̂. The standard error (SE) of λ̂ will be calculated
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from the observed information matrix, which is also derived using the likelihood function.

The way to which these entities are calculated will be outlined bellow.

The log-likelihood function is

l(λ) = log(L(λ)) = log λ
∑n
i=1 δi + log e−λ

∑n
i=1 ti

=

(
n∑
i=1

δi

)
log λ− λ

n∑
i=1

ti.

The first derivative of the log-likelihood function is

dl(λ)

dλ
=

∑n
i=1 δi
λ

−
n∑
i=1

ti.

To get the MLE of λ, we have to solve dl(λ)
dλ

= 0. Doing so, the MLE becomes,

λ̂ =

∑n
i=1 δi∑n
i=1 ti

=
n∗

n

1

T̄
, (3.5)

where n∗ =
∑n

i=1 δi. Note: when there is no censoring n∗ = n.

Now to get the SE, the observed information matrix needs to be calculated, J(θ). Gen-

erally, this information matrix is calculated as follows,

J(θ) = −d
2l(θ)

d2θ

For our purposes, the observed information matrix is arrived as shown bellow:

Using,

d2l(λ)

d2λ
= −n

∗

λ2
,

therefore,

J(λ) = −(−n
∗

λ2
) =

n∗

λ2
.
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From the above calculations, the SE is,

SE[λ̂] =

√
J(λ̂)−1 =

√
λ̂2

n∗ .

A part of the interest in this paper, as stated in the introduction, is looking at the Wald

confidence interval and comparing it to the bootstrap confidence intervals of interest; will be

mentioned later on. In order to calculate the Wald confidence interval, the aloft MLE of λ̂

and its SE are used.

λ̂± zα/2SE[λ̂].

When it comes to survival regression models, the following log-linear model is most

frequently used:

log(xi) = B0 +B1zi + εi, where xi > 0 in a survival setting (3.6)

B0 and B1 are unknown constants (parameters) and zi is a covariate. One of the differences

with regards to the survival regression model, compared to the regular regression, is that the

least squares are replaced using the likelihood method to adjust for the censoring. Addition-

ally, the eεi would follow a lifetime distribution. In this study, we will consider eεi follows a

Weibull or exponential distribution, instead of the usual case where εi ∼ N(0, σ2).

This regression model can be applied using the ’survreg’ function in the R package

to estimate the parameters of interest and their standard error. Note that this function uses

the maximum likelihood methods like those mentioned above.

The regression model in (3.6) can be used to estimate λ. Under the assumption that

eεi follows W (λ, 1), one can show that B0 = logE[X] = − log λ and therefore. In order to

execute the log transformation, which will be analyzed in the One Sample section, we will
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use the output from the ’survreg’ function to first get the confidence interval of B0.

B̂0 ± zα/2SE(B̂0) = [L1, U1] (3.7)

and then using this relationship, we can transform back to get the λ confidence interval after

the transformation. This easily done as follows,

[
eU1 , eL1

]
When working with the two sample case, without and with censoring, where one of

the samples come from a population with parameter λ0 (W (λ0, 1) = exponential(λ0)) and

the other from a population with λ1 (W (λ1, 1) = exponential(λ1)). The regression method

was used to acquire the confidence interval of the ratio, λ1
λ0

. In this situation, the zi in the

model is a factor that identifies which of the two samples the ith observation is from. Similar

to before, B0 = − log λ0 while B1 = − log λ1 + log λ0. The ratio of λ1
λ0

is related to B1 as

follows,

e−B1 =
λ1
λ0

(3.8)

where B1 is estimated by B̂1. Both B̂1 and SE(B̂1) are taken from the ’survreg’ output

used. First, the confidence interval of B̂1 should be calculated as such,

B̂1 ± zα/2SE(B̂1) = [L2, U2] (3.9)

Then from the relationship noted in (3.8), we can get the ratios’ confidence interval by

exponentiating the lower and upper bound of B̂1 like so,

[
eU2 , eL2

]
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4 How does Bootstrapping Work?

Major methods of bootstrapping include both parametric and non-parametric methods.

The advantage of the non-parametric methods is that there are no assumptions made on the

distribution which can lead to more precise results. On the other hand, parametric methods

can be easier to solve but may lead to incorrect results due to making assumptions about

the distribution.

4.1 The Bootstrap Principle

Most generally, we have a homogeneous simple random sample X1, ..., Xn from a distribu-

tion whose cumulative distribution function (CDF) is denoted by F (x; θ). The given sample

can be used to estimate the unknown parameter θ. Unfortunately, in several cases, it is very

difficult to get the distribution of this parameters’ estimate. As a result, we cannot calculate

the confidence interval of the parameter. The bootstrap methods can be used to overcome

this problem, as will be discussed later. This CDF can be estimated non-parametrically

with what is known as the empirical distribution function, F̂ . Using a set of observation,

x1, x2, . . . , xn, F̂ is defined as the sample proportion given bellow

F̂ (x) =
1

n

n∑
i=1

I(xi ≤ x).

With large values of n, F̂ ≈ F .

Consider a probability of interest where C is a fixed region and g(θ̂, θ) is a function

of a random estimator θ̂ and the true but unknown θ. For instance, g(θ̂, θ) =
(θ̂ − θ)
SE(θ̂)

, which

can be used to construct the confidence intervals.

Now, sampling from the above given sample we have, X∗
1 , ..., X

∗
n ∼ F̂ . In the same

way that PF (g(θ̂, θ) ∈ C) can be calculated in theory, so can PF̂ ((g(θ̂∗, θ̂) ∈ C); where θ̂∗ is

the point estimate of θ from the bootstrap sample. What the bootstrap principle states is
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that with large n, usually,

PF̂ (g(θ̂∗, θ̂) ∈ C) ≈ PF (g(θ̂, θ) ∈ C)

Since PF̂ (g(θ̂∗, θ̂) ∈ C), theoretically, does not have unknown values it can be calculated and

used to get approximate confidence intervals; as will be demonstrated in subsequent sections.

4.2 Bootstrap Sampling

To begin, it is important to state that for the bootstrap confidence intervals, sampling

with replacement from the the original sample was executed B times; total number of boot-

strap samples. Using the bth bootstrap sample, x∗1, . . . , x
∗
n, the estimate of θ, is denoted

as θ̂(b), where b = 1, . . . , B. This is equivalent to taking a simple random sample from F̂ .

When B = +∞, the corresponding distribution is that of PF̂ (g(θ̂∗, θ̂) ∈ C), which is the one

of interest. It is important to point out that we cannot usually calculate PF̂ (g(θ̂∗, θ̂) ∈ C)

in closed form. g(θ̂∗, θ̂) ∈ C can be estimated through obtaining a large number of samples

from F̂ and then calculating the proportion of times g(θ̂∗, θ̂) ∈ C.

Why use bootstrap instead of large sample theory?

1. If we do not have a large sample (n) and can not assume the sampling distribution is

normal.

2. If it is difficult to work out the standard error of the estimate.

4.3 Types of Bootstrapping Confidence Intervals

The distribution of θ̂(b) or θ̂ are generated using all the B bootstrap samples. Also, cα
2

and c1−α
2

are the α
2

and 1− α
2

quantiles of the θ̂(b) or θ̂ distribution respectively.

1. Percentile
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The Percentile confidence interval is derived based on the distribution of θ̂(b) as

[
cα

2
, c1−α

2

]

2. Percentile-t (Studentized)

It is well known that

θ̂ ∼
(
θ0,

v̂

n

)
The studentized confidence interval is derived based on the distribution of θ̂(b)−θ̂√

v̂(b)

n

' θ̂−θ0√
v̂
n

[
θ̂ − c(1−α

2
)

√
v

n
, θ̂ − c(α

2
)

√
v

n

]

The above confidence interval is derived through the following steps:

1− α = P

cα/2 ≤ θ̂(b) − θ̂√
v̂(b)

n

≤ c1−α
2


' P

cα/2 ≤ θ̂ − θ0√
v̂
n

≤ c1−α
2


= P

(
θ̂ − c1−α

2

√
v̂

n
≤ θ0 ≤ θ̂ − cα

2

√
v̂

n

)

Note that, v̂ is the variance from the original sample, while v̂(b) is the variance from

the bth bootstrap sample.

4.4 Higher Order Accuracy of Bootstrap Confidence Intervals

1. Percentile:

p[θ0εCI] = 1− α +O(n− 1
2 ))

11



Where O(n− 1
2 ) means p[θ0εCI] = 1− α +Rn

∣∣∣∣ Rn

n− 1
2

∣∣∣∣ =
∣∣∣n 1

2Rn

∣∣∣ ≤M(someM)

2. Percentile-t

p[θ0εCI] = 1− α +O(n−1))

Where O(n−1) means p[θ0εCI] = 1− α +Rn
1

∣∣∣∣ Rn

n−1

∣∣∣∣ =
∣∣n1Rn

∣∣ ≤M(someM)

4.5 Choice of Bootstrap Size

To make a choice regarding the value of B which works best, we perform a bootstrap on

top of bootstrap. Meaning after sampling a bootstrap sample (x1
∗, ..., xn

∗) with confidence

interval represented as [L,U ], we resample from this bootstrap sample (x1
∗∗, ..., xn

∗∗). We

do this resampling, from the bootstrap sample (x1
∗, ..., xn

∗), B times and so we will have

B confidence intervals represented as [L(b), U (b)]; where b = 1, 2, . . . , B. The standard error

between all of these B resampled bootstrap samples is calculated as follows:

SE =

√√√√∑b=B
b=1

(
L(b) −

∑b=B
b=1 L(b)

b

)2
B − 1

.

We expect the L from the original bootstrap sample to be within 2 SE of L with B = +∞.

The smaller the value of the SE corresponding to the B value used to calculate in relation to

the confidence interval of the original sample [L,U ]. Doing this method to choose the best

B is more valuable if bootstrap is expensive. The cons to this method is that it is messy

to implement. Although this was not done in this particular paper, it is a possible way of

1Davison and Hinkley, Bootstrap Methods and their Application, pg.39-40
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making a choice regarding B. In principle, it is best to choose as large a B as possible. Yet

since this is not feasible, we will point out how sensitive the results are to B through the

simulations performed.

5 One Sample Results

This section will hold bootstrapping results based on working with one sample x1, ..., xn,

with n = 20 first and then n = 100, from an exponential distribution with λ = 1. One

thousand simulation were conducted, where every simulation calculations are based on a

different randomly generated sample. Wald, Percentile, and Percentile-t confidence intervals

for λ̂ =
1

X̄
are generated for all of these randomly generated samples. Analysis is done

on these confidence intervals using the coverage percentage, the mean and variance of the

confidence interval width, and the mean and variance of the lower and upper bounds.

The coverage percentage is an indicator of how many of the one thousand simulated

confidence intervals include the true value of λ. The higher the value of the coverage per-

centage, the better due to this indicating more of the simulated confidence intervals actually

including the value of interest. With respect to the mean width, the narrower the value of

this the more improved the estimate. Since the range of possibilities for the estimate of λ

will be less than that from a wider interval. Values of the mean of the lower and upper

bounds that are closer to 1 are desirable. Finally, the lower the variance of the width, lower

and upper bounds, the less variability exists between the simulated confidence intervals.

Prior to getting into the details, further clarification of how the 1000 simulations were

used and what we are looking for. The simulations are used to approximate P (θ ∈ CI; θ).

Simply explained, for any given CI construction procedure, with 1000 simulations we have

flipped a coin 1000 times and counted a head every time θ ∈ CI. The number of heads, X,

is then binomial with parameters 1000 and p = P (θ ∈ CI; θ). It follows that a 95% CI for
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the true P (θ ∈ CI; θ) is given by p̂ ± 2
√

p̂(1−p̂)
1000

. Since the true p ≈ 0.95, half the width of

the interval is roughly 2
√

0.95∗0.05
1000

= 0.01378405. In short, accounting for simulation error,

the observed percentages, over the simulations, are likely to be within 1% or 2% of the true

simulation error.

5.1 Tables of Results

The first set of two tables hold the coverage percentages for both x1, ..., x20 and x1, ..., x100

both coming from an exponential distribution with λ = 1. For the bootstrap confidence

intervals, analysis was executed using 4 values of B; B = 100, 1000, 5000, 10000.

Table 1: Coverage percentages based on 1000 simulations at 4 different B values before the
logarithmic transformation.

n=20

Wald 95.4%

B = 100 B = 1, 000 B = 5, 000 B = 10, 000

Percentile 88.9% 90% 90.8% 90.5%

Percentile-t 89.3% 91% 91.3% 91.4%

n=100

Wald 95.9%

B = 100 B = 1, 000 B = 5, 000 B = 10, 000

Percentile 93.8% 94.5% 94.9% 94.8%

Percentile-t 93.6% 94.6% 95.2% 95.4%
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Table 2: Coverage percentages based on 1000 simulations at 4 different B values after the
logarithmic transformation.

n=20

Wald 94.2%

B = 100 B = 1, 000 B = 5, 000 B = 10, 000

Percentile 88.7% 90.3% 90.6% 90.4%

Percentile-t 89.1% 90.9% 91.4% 91.6%

n=100

Wald 95.7%

B = 100 B = 1, 000 B = 5, 000 B = 10, 000

Percentile 93.7% 95% 95.1% 94.8%

Percentile-t 93.4% 94.9% 95% 95.5%

A quick overview of Tables 1 and 2, deeper analysis is done in the Comments section,

conducting a log transformation of the parameters and doing bootstrapping with B = 100

did not seem to lead to better results. As a consequence, further analysis of the log trans-

formation and B = 100 was not inquired.

Table 3: Mean and variance of the confidence interval widths based on the 1000 previously
simulated samples at 3 different B values.

B = 1000 B = 5, 000 B = 10, 000

Method µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Wald 0.3949 0.0015 0.3949 0.0015 0.3949 0.0015

Percentile 0.3934 0.0031 0.3952 0.0030 0.3955 0.0030

Percentile-t 0.3856 0.0030 0.3875 0.0029 0.3874 0.0029
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Table 4: Mean and variance of the confidence interval lower bounds based on the 1000
previously simulated samples at 3 different B values

B = 1000 B = 5, 000 B = 10, 000

Method µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Wald 0.8100 0.0063 0.8100 0.0063 0.8100 0.0063

Percentile 0.8401 0.0071 0.8393 0.0070 0.8392 0.0070

Percentile-t 0.8228 0.0069 0.8223 0.0068 0.8222 0.0068

Table 5: Mean and variance of the confidence interval upper bounds based on the 1000
previously simulated samples at 3 different B values

B = 1000 B = 5, 000 B = 10, 000

Method µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Wald 1.2048 0.0140 1.2048 0.0140 1.2048 0.0140

Percentile 1.2335 0.0155 1.2345 0.0153 1.2348 0.0153

Percentile-t 1.2085 0.0148 1.2099 0.0147 1.2096 0.0147

5.2 Comments

Coverage Percentage:

Based on both Table 1 and Table 2 coverage percentage results, we can see that with

n = 20, the bootstrapping methods do not seem to have a very high coverage with values

ranging from 88% to 91%; regardless the value of B. Increasing the sample size from n = 20

to n = 100, we can see that the bootstrapping has much with coverage percentages ranging

from 93% to 96%. Additionally, we can see that the increased values ofB also show significant

increase in the coverage. With that said, the coverage values for n = 20 and B = 100, before

and after transformation, show fairly low results ≈ 93% compared to other values of B with
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percentages ≈ 94%, 95%. As a result, the cases where n = 20 and/or B = 100 are eliminated

from further analysis.

Now looking at the affect of the log transformation, we see that doing this has not illus-

trated significant improvement in the coverage percentage for the bootstrapping confidence

interval. For example, the coverage with n = 100 at B = 10, 000 does not change and remains

at 94.8% for the Percentile method. As for the Percentile-t, the increase in coverage is only

by 0.1 from 95.4% to 95.5%. Contrarily, the Percentile-t results seem to be doing slightly

better by rouphly a 1% increase for B = 5, 000 and B = 10, 000. However at B = 100 and

B = 1, 000 there is barely any difference in the coverage between the two methods.

In regards to comparison between the overall performance of the Percentile method versus

the Wald test. Looking at the outcomes when n = 20, we can see that the Wald test is doing

significantly better with a coverage percentage of 94% in contrast to 90.4% and 91.6% for the

Percentile and Percentile-t respectively. When n = 100 we see that at B = 100 the bootstrap

method yield values of 93.7% and 93.4%, which is slightly less better than a 95.7% coverage

coming from the Wald test. Yet when we look at the other values of B we see that the

bootstrap methods are doing much better with percentages ranging from 94.8%-95.5%. This

range of values is still slightly lower than the 95.7%. However, it is important to note that,

through increasing the sample size from 20 to 100 the difference between the Wald test and

the bootstrap methods has decreased at values of B; with the exception of B = 100.

Finally, we will look at the differences between the two different bootstrap samples.

Regardless of the value of n and B, we notice that the Percentile-t method always has a

slightly higher coverage than the Percentile one. However, even though Percenile-t might

be better, the difference between the two bootstrap methods is very little, with a maximum

difference of 1%.

To further analyze the affects of the bootstrapping on the strength of the confidence

intervals we will take a look at the confidence interval widths’ mean and variance.
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Confidence Interval Width mean and variance:

As mentioned previously continued analysis with n = 20, a log transformation and at

B = 100 was removed due to the poor coverage percentage results illustrated. Looking at

Table 3, which hosts the confidence interval widths’ mean and variance with n = 100 and at

3 different B values, we can deduce the following observations. First, we will be commenting

on the overall influence that the increase in B has on the mean and variance of the bootstrap

methods. As the value of B increases for the Percentile method, the mean width shows very

small increases of 0.0004 and 0.0021. The larger increase of 0.0021 occurs when going from

B = 1000 to B = 5000 while the smaller increase is from B = 5000 to B = 10000. The

difference within the Percentile-t method is very similar to that of the Percentile. An increase

of 0.0019 in the mean width is seen when going from B = 1000 to B = 5000. Going from

B = 5000 to B = 10000 however, and unlike in Percentile, we see a decrease of 0.0001 in

the mean width. On the other hand, the variance of the width shows an opposite change to

that of the mean. As the value of B increases from B = 1000 to B = 5000, and regardless of

the bootstrap method, the variance decreases by 0.0001. Notice how it remains unchanged

between B = 5000 and B = 10000.

Secondly, we will focus on the difference seen between the Wald and bootstrap method.

When it comes to the mean of the width we see that there is an overall decreasing range

of about 0.0006 − 0.0015 and 0.0075 − 0.0093 between Wald and Percentile and Wald and

Percentile-t, respectively. So, with respect to the mean, the bootstrap methods provide

narrower widths than that provided by the Wald. In contrast, the variance shows an increase

of about 0.0015−0.0016 and 0.0014−0.0015, respectively. Hence, it is notable that there is a

possible trade off between the mean and variance, although boostrapping provides narrower

widths, it in turn has an increase in the variance; although very small.

Lastly, comments will be made on the difference seen between the bootstrap methods

themselves. In general, it is apparent that the Percentile-t method provide both narrower
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widths and smaller variances compared to the Percentile one. The decrease in the mean

values, ranges from 0.0078 to 0.0081, while the variance decreases by 0.0001.

Lower Bound Mean and Variance:

As a reminder, when comparing lower bounds to one another, a higher value is better

since that would be the closer to 1. As a start, let us look at the influence of increasing B on

the mean and variance of the lower bound for the bootstrap methods. Most generally, as the

value of B increases the mean seems to slowly decrease, while the variance decreases by a

very small amount and then settles off. To elaborate, for the Percentile method, going from

B = 1, 000 to B = 5, 000 the mean decreases by 0.0008 and from B = 5, 000 to B = 10, 000

by 0.0001. As for the Percentile-t, the mean value decreased by 0.0005 from B = 1, 000 to

B = 5, 000 and by 0.0001 from B = 5, 000 to B = 10, 000. From this we notice that the

amount of decrease in the mean value between B = 1, 000 and B = 5, 000 is larger than that

from the decrease from B = 5, 000 and B = 10, 000; decreasing difference with increasing B.

With respect to the variance, it is unlike the mean in terms of becoming consistent between

B = 5, 000 and B = 10, 000 and decreases by 0.0001 from B = 1, 000 to B = 5, 000; such is

the case with both of the bootstrap methods.

Regarding the difference between Wald and the bootstrap method, it is noticeable that

the mean displays better values from the bootstrapping methods than the Wald. The boot-

strapping method have a higher lower bound mean value than the Wald by at least 0.0128.

The variance, contrarily, is lowest for the Wald with a value of 0.0063, and the maximum

variance occurs for the Percentile with a value of 0.0070. So, the Wald is doing best with

respect to the variance with a maximum difference of 0.0007 compared to the bootstrapping.

Finally, let us compare the two bootstrap methods to one another. Simply put, the

Percentile showed the best performance when it comes to the mean compared to Percentile-

t. Yet, Percentile-t shows smaller variance. Again, we see somewhat of a trade off between
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the best mean values and the best variance when comparing any of the methods to one

another.

Upper Bound Mean and Variance:

As a final attribute of analysis to test the affects of bootstrapping, we will look into the

details of the upper bound mean and variance. Like the analysis of the lower bounds, we

start off with studying the affect of B on the upper bound values. Recall that, lower values

of the mean are considered better since they are closer to 1. As B increases, we see very

small increases in the mean with the amount of increase being 0.0010 and 0.0003 for the

Percentile. Notice that the amount of increase decreases from B = 5, 000 to B = 10, 000

with the value of 0.0003. For Percentile-t, there is an increase in the

Now, contrasting Wald to the bootstrapping methods, we see that the Wald is doing the

best regarding both the mean and variance with values of 1.2048 and 0.0140, respectively.

The difference between the Wald results and the maximum results from the bootstrap meth-

ods when it comes to the mean is 0.03. Quite a large difference relative to the difference we

are used to seeing. So, the bootstrapping methods did not really result in the improvement

of the upper bounds.

Our last observation is with regards to the difference between the two bootstrap ways. At

a glance, it is clear that the Percentile-t method is doing significantly better than Percentile

with smaller values of both mean and variance. The difference in means between the two

range from 0.0246-0.0252, which is quite a large difference compared to what we have been

seeing. The variance difference is 0.0007 (at B = 1, 000) or 0.0006 (at both B = 5, 000 and

B = 10, 000), and both methods display consistent variance values at the two high levels of

B.
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6 Two Sample Results

To further extend this study of the influence of bootstrapping method effectiveness, we

will now study the confidence intervals of the ratio of two parameters from two different

exponential samples. This analysis is more realistic for real life situations where we are

interested in studying two or more groups. To elaborate, the bootstrapping results bellow

are based on two exponential samples, each with a sample size of 100. One of the samples is

from a population with parameter λ0 = 1 and the other with parameter λ1 = 1.5. With this

said, the point estimate of interest is the ratio of
λ1
λ0

. A thousand simulations were generated

from each of these two populations, and the Wald, Percentile, and Percentile-t confidence

intervals were calculated by taking a pair from these 1000 paired samples; the first part of

the pair is from the first population and the other from the second population. Similar to the

analysis executed with the one sample above, we evaluate the effectiveness of the methods

by looking at the coverage percentage, the width, and the lower and upper bounds. Note

that, this two parameter investigation will be executed under two situations, without and

with censoring.

6.1 Without Censoring

Coverage Percentage

These coverage percentage values look strange relative to what we expect. The values

greatly fluctuate and are not consistent. As B increases the values go back and forth between

93% and 94%. Similarly, within the bootstrap methods, there is no consistent distinction

between the two. This could be due to what is known as the Monte Carlo or simulation

error.
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Table 6: Coverage percentages based on 1000 simulations, each with a sample size of 100 at
3 different B values.

Method n = 100

Wald 94.6%

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 94.1% 93.8% 94.3%

Percentile-t 94.2% 93.9% 93.9%

Confidence Interval Width

To start, we notice that the increase in the value of B results in an increase in the mean

width, yet a decrease and stabilization in the variance. More explicitly, the mean increased

by 0.0017 and 0.0002 for the Percentile and by 0.0039 and 0.00064 for the Percentile-t. Notice

how the amount of increases decreases when B goes from 5,000 to 10,000; the high values

of B. With respect to the variance, it decreases as B increases regardless the method. It

decreases by 0.0007 (Percentile) and by 0.0003 (Percentile-t) when going from B = 1, 000 to

B = 5, 000 and then stabilizes. The amount of increase is larger for mean in the Percentile-t

and smaller for the variance.

Now, comparing the two methods together, we see that the Percentile-t method performs

better than Percentile with regards to both the mean and the variance. The differences

between the mean values are 0.0044, 0.0022, 0.0018. From this, we see that as B increases,

the difference between the methods decreases. Variance differs between the two by either

0.0004 or 0 at B = 1, 000, and B = 5, 000 and B = 10, 000, respectively.

Finally, looking at the difference between Wald and bootstrapping, we notice that the

width of the better bootstrap method is narrower than that of the Wald. However, the

variance of Wald is lower than that of the Percentile-t; again a trade off. The difference

between the means of Wald and Percentile-t 0.0109−0.0154, while the difference in variance
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is either 0.0031 and 0.0034. Note that the difference has a range , since the bootstrap method

differs at different B values.

Table 7: Mean and variance of the confidence interval width based on the 1000 previously
simulated at 4 different B values.

B = 1000 B = 5, 000 B = 10, 000

Method µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Wald 0.8487 0.0146 0.8487 0.0146 0.8487 0.0146

Percentile 0.8377 0.0184 0.8394 0.0177 0.8396 0.0177

Percentile-t 0.8333 0.0180 0.8372 0.0177 0.8378 0.0177

Confidence Interval Lower Bound

Just like the case of the mean width, the lower bound values decreases in correspondence

to the increasing B values; getting worse. The variance shows little to know variation de-

pending on the method. In the Percentile method, the mean value decreases by 0.0009 an

0.0002 and the variance remains unchanged relative to B. Notice again the amount of dif-

ference as B becomes bigger, decreases. Similarly, the Percentile-t method shows difference

of 0.002 and 0.0003, while the variance decreases by 0.0005 when going from B = 1, 000 to

B = 5, 000 and remains the same.

Now, looking between the bootstrap ways, we notice that Percentile-t is doing better with

mean values that are always higher than those of the Percentile. The difference between them

ranges from 0.0003 − 0.0008. The variance however does not illustrate a consistent trend

throughout, there are time at which the variance is lower for Percentile and other times vice

versa. It is important to note however, that the Percentile variance is doing better by 0.0004

only at B = 1, 000 and then not so at higher Bs with a smaller difference of 0.0001.

Wald is doing better than the bootstrap methods when the bootstraps is at the two

highest levels of B. To elaborate, the only time at which the bootstrap performs better
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than the Wald, when it comes to the mean, is at B = 1, 000. Regarding the variance, Wald

is continuously better with the smallest variance of 0.0026 compared to the other values of

0.0273, 0.0274, or 0.0278.

Table 8: Mean and variance of the confidence interval lower bound based on the 1000
previously simulated at 4 different B values

B = 1000 B = 5, 000 B = 10, 000

Method µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Wald 1.1456 0.0266 1.1456 0.0266 1.1456 0.0266

Percentile 1.1502 0.0274 1.1493 0.0274 1.1495 0.0274

Percentile-t 1.1522 0.0278 1.1501 0.0273 1.1498 0.0273

Confidence Interval Upper Bound

Once again, increasing values of B, correspond to increasing mean values of the upper

bound; which is worse. The mean increases by 0.0006 and 0.0005 for Percentile, and by 0.018

and 0.0003 for Percentile-t. Yet again, there is a decrease in the difference as B increases.

With respect to the variance, it decreases steadily as B increases.

Overall, there is no significantly better method since the difference between the methods’

values are very slight. Regardless of this, the Percentile-t has both better mean and variance

values than Percentile; as seen previously. The difference in mean between the two ranges

from 0.0013−0.0025. On the contrary, variance does not show a strict pattern distinguishing

a method over the other. At B = 1, 000, Percentile-t is best by 0.0003, at B = 5, 000 they

are the same, and at B = 10, 000 the Percentile-t once again does better but by 0.0002 now.

It is possible that the 0 difference between the two ways is an exceptionaly case, given that

Percentile-t does better once again at a higher B.

Comparing Wald to the bootstrap, we see that once more there is a trade off between the

better mean value and the variance. The mean values of the bootstrap methods show better
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results with differences ranging from 0.0052 − 0.0088. The variance, perhaps as would be

expected due to consistency in previous analysis, is the smallest compared to all bootstrap

methods with difference ranging from 0.0007− 0.0012.

Table 9: Mean and variance of the confidence interval upper bound based on the 1000
previously simulated at 4 different B values

B = 1000 B = 5, 000 B = 10, 000

Method µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Wald 1.9943 0.0806 1.9943 0.0806 1.9943 0.0806

Percentile 1.9880 0.0818 1.9886 0.0814 1.9891 0.0815

Percentile-t 1.9855 0.0815 1.9873 0.0814 1.9876 0.0813

Final Overall Comment

With increasing values of B (from 1,000 to 10,000), specific entities might not be necessar-

ily doing better in terms of wanted values. Yet, it is important to note that we consistently

see the differences decrease between the entity values (mean width, lower bound, and upper

bound) as B increases. This perhaps, illustrates that although increasing B does not provide

improved estimates, there is a stabilization of the values shown in the decreased differences.

6.2 With Censoring

6.2.1 Dealing with Censoring When Bootstrapping

To deal with the censoring evident in this case, the only difference is the the ’survreg’

function used. Unlike before, we have incorporated censored values in the setup of the

function. From here on the same procedure is done, as explained at the end of the third

section of this paper.
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6.2.2 Fixed Censoring

In order to test the bootstrapping affects on the estimation accuracy of parameters of in-

terest when it comes to censoring, fixed censoring was done for simplicity. Three fixed censor-

ing values were calculated based on three corresponding proportions, p = 0.10, 0.20, and 0.50,

where p is the proportion of censored values in a sample; recall p =
n− n∗

n
. The following

steps show how the censoring values were calculated:

Note: Given our overall sample is split in half, 50% from a population an exponential

population with λ0 and 50% from a population with parameter λ1. Since we want p of this

overall sample to be censored, then half of this p will come from population 0 and the other

half from population 1. Thus the sum is expressed as follows.

1

2
e−λ0c +

1

2
e−λ1c = p, where λ0 = 1 and λ1 = 1.5

e−c + e−1.5c = 2p

If e−1.5c > p, then e−c + e−1.5c > 2p as well, and so c would be too small since c < − log(p)
1.5

.

If however, e−c < p, then e−c + e−1.5c < 2p and c would then be too large since c > − log(p).

As a result,

− log(p)

1.5
< c < − log(p)

Therefore the best approximate of c would be the minimum of the set of values that satisfy

e−c+e−1.5c < 2p. Now, when going through the above steps with the three different p values,

we get c1 = 1.9323, c2 = 1.3313, and c3 = 0.5625.
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6.2.3 Results

Coverage Percentage

In order to take a look at the affect of bootstrapping when it comes to censoring, we

will specifically look at the affect as censoring increases in addition to the same points of

analysis as before. To start, we will look at the overall coverage percentages as the amount

of censoring increases. From the following Table 10, we can see that there is a continuous

slight increase in the coverage as cr decreases (p increases). For the bootstrapping methods,

at c1 we have about 93% and low 94%, then slowly increase at c2 to higher 94%, and then

we go up to 95% at c3. Wald on the other just hovers at about 94%/95% coverage regardless

of the censoring.

Looking specifically at the way B influences the coverage when censoring is involved,

we see that there is slight increases ranging from 0.1 - 0.3 and then a steadiness at the

two higher B values. However, it is important to note that there were three exceptions to

this. The Percentile-t at c1, the coverage goes up and down by 0.1, which does not exactly

illustrate the increase and steadiness mentioned above. Similarly, at c3 we see that same

fluctuation. Yet, such small fluctuations are not significant and could be due to what has

been previously introduced as the Monte Carlo or simulation error. In general, it does not

seem that increases in B show more steady or improved results with the increased censoring.

Now, regarding which bootstrap method shows better results, it seems that mostly Per-

centile is doing best. This is seen at both c1 and c3, with the exception of c2 where Percentile-t

shows better performance. This is somewhat different than what we have seen before, with-

out censoring, where Percentile-t illustrated better results; in accordance with the theory.

Now comparing the Wald with the bootstrap, we see that the Wald is doing better yet as the

censoring increases the gape between the bootstrap methods and the Wald decreases. Hence,

from this we can say that the censoring seemed to bridge the gap between the bootstrap

methods and the Wald. Yet, it also caused strange results by showing better values for the
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Percentile than the Percentile-t as apposed to what we expect.

Table 10: Coverage percentages based on 1000 simulations, each with a sample size of 100
at 3 different B values.

c1 = 1.9323

Wald 94.5%

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 93.9% 94.2% 94.2%

Percentile-t 94.0% 93.8% 94.1%

c2 = 1.3313

Wald 94.3%

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 94.2% 94.4% 94.4%

Percentile-t 94.4% 94.5% 94.5%

c3 = 0.5625

Wald 95.4%

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 95.1% 95.3% 95.2%

Percentile-t 95.0% 94.9% 95.0%

Confidence Interval Width

From Table 11, it is inevitable that with increased censoring values, there is an increase

in both the mean width and the variance of the confidence intervals. The largest mean

width value is 1.2877 at c3 and B = 10, 000, while the lowest value is 0.8935 at c1 and

B = 1, 000, showing the maximum difference between the mean width being 0.3942; quite

a large difference. The variance on the other hand, is largest at c3 and B = 1, 000 with a

value of 0.0907 and smallest at c1 with value of 0.0199; difference being 0.0708.
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The increase in B shows an overall similar behavior to the results received in the without

censoring, and that is regardless of the censoring level. To elaborate, as B increases, we see

that the mean width increases while the variance decreases; just like before. Hence, involving

censoring did not result in different findings. Similarly, Percentile-t exhibits better values

with respect to both the mean and variance compared to the Percentile values. However,

recall that previously both bootstrapping methods were performing better with respect to

the mean width, while the Wald had lower variance; the trade off. With censoring, the Wald

seems to be doing worse only in comparison to the Percentile method in regards to the mean;

unlike before.

Table 11: Mean and variance of the confidence interval width based on the 1000, each with
a sample size of 100 at 3 different B values.

c1 = 1.9323

Wald µ̂ = 0.9018 σ̂2 = 0.0199

B = 1, 000 B = 5, 000 B = 10, 000

µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Percentile 0.9023 0.0235 0.9052 0.0230 0.9057 0.0229

Percentile-t 0.8935 0.0224 0.8979 0.0223 0.8986 0.0223

c2 = 1.3313

Wald µ̂ = 0.9621 σ̂2 = 0.0262

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 0.9671 0.0303 0.9706 0.0295 0.9711 0.0295

Percentile-t 0.9557 0.0287 0.9607 0.0286 0.9616 0.0283

c3 = 0.5625

Wald µ̂ = 1.2571 σ̂2 = 0.0796

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 1.2814 0.0907 1.2871 0.0897 1.2877 0.0889

Percentile-t 1.2502 0.0813 1.2550 0.0806 1.2560 0.0809
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Confidence Interval Lower Bound

In the same way that the mean width and variance worsened with higher censoring,

poorer lower bound values are seen with the increased censoring. More explicitly, the lower

bound decreases as we transition from c1 to c2 to c3, which is undesired since we want higher

lower bound values. Correspondingly the variance also increases; again undesired.

Similar to before, the variance continuous decreases with increasing B, yet the mean

does not show similar distinct results as seen prior. At times, the mean decreases, and in

the case of c1 for Percentile the mean increases, and a lot of times there is no specific trend,

just fluctuating. When it comes to differences between the bootstraps, the Percentile-t is not

doing best in most cases like before, it is only doing better because of the continuous lower

variance values. Finally, comparing Wald with the bootstraps we see that the bootstrap is

doing better for the mean only at c1 and c2 but not so at c3, while the variance is lower for

Wald; similar to without censoring results. At c3, there are not distinct results, as there is

a lot of fluctuations.
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Table 12: Mean and variance of the confidence interval lower bound based on the 1000, each
with a sample size of 100 at 3 different B values.

c1 = 1.9323

Wald µ̂ = 1.1325 σ̂2 = 0.0291

B = 1, 000 B = 5, 000 B = 10, 000

µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Percentile 1.1369 0.0301 1.3557 0.0300 1.3571 0.0299

Percentile-t 1.1356 0.0299 1.3375 0.0294 1.1332 0.0292

c2 = 1.3313

Wald µ̂ = 1.1118 σ̂2 = 0.0312

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 1.1154 0.0324 1.1148 0.0323 1.1147 0.0322

Percentile-t 1.1148 0.0317 1.1128 0.0315 1.1124 0.0314

c3 = 0.5625

Wald µ̂ = 1.0271 σ̂2 = 0.0425

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 1.0328 0.0451 1.0271 0.0425 1.0312 0.0448

Percentile-t 1.0329 0.0441 1.0308 0.0446 1.0309 0.0435

Confidence Interval Upper Bound

Once again we see that the censoring results in the values of the upper bound to become

worse. That is since with increased censoring the values of the mean and variance are

increasing which is contrary to what we want.

With increased B, the upper bound values are increasing while the variance is de-

creases. This is, again, similar to our conclusion without censoring involved. Additionally,

the Percentile-t is performing better with smaller values for the upper bound mean and vari-

ance. Now, comparing these bootstraps to the Wald, we can see that only the Percentile-t
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is continuously doing better with respect to the mean, unlike the Percentile. The variance

however, is always best from the Wald.

Table 13: Mean and variance of the confidence interval upper bound based on the 1000, each
with a sample size of 100 at 3 different B values.

c1 = 1.9323

Wald µ̂ = 2.0342 σ̂2 = 0.0968

B = 1, 000 B = 5, 000 B = 10, 000

µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

Percentile 2.0392 0.0999 2.0408 0.1001 2.0414 0.1000

Percentile-t 2.0291 0.0976 2.0317 0.0976 2.0318 0.0974

c2 = 1.3313

Wald µ̂ = 2.0740 σ̂2 = 0.1141

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 2.0825 0.1193 2.0854 0.1189 2.0859 0.1190

Percentile-t 2.0705 0.1153 2.0736 0.1157 2.0740 0.1152

c3 = 0.5625

Wald µ̂ = 2.2841 σ̂2 = 0.2348

B = 1, 000 B = 5, 000 B = 10, 000

Percentile 2.3143 0.2559 2.3179 0.2547 2.3189 0.2542

Percentile-t 2.2830 0.2379 2.2862 0.2375 2.2869 0.2377

7 Real Life Data Analysis

In this part, we will be analyzing the Channing House Data. This data set consists

of 462 individuals in a retirement community and we are interested in whether there is a

difference in the time of death between men and women. The data consists of 7 columns

which are death status, the age of entry in the retirement home, age of exit or death from
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the retirement home, the time difference between the above two ages, and the gender. The

relative risk is the point estimate of interest and is the value that shows the difference in

time of death between the two genders. We will fit the data to both Weibull and Log-logistic

models. Comparison will be done based on the Wald, Percentile and Percentile-t confidence

intervals obtained from the two regression outputs, the maximized log likelihood values, and

the deviance residuals. Similar to previous analysis, the bootstrap intervals will be calculated

using B = 1, 000, B = 5, 000, and B = 10, 000. Note that, this data set consists of not only

right censored observations, but also left truncated ones. The ’survreg’ R function, which is

used in this analysis, does not allow taking into account the left truncated individuals, and

hence the truncation was ignored.

To elaborate, relative risk is ζz
ζ0

= ez
T γ; relative to baseline. In our case, the baseline is

set as the women, and the outputed relative risk values are e−0.3436 = 0.7399 from Weibull

and e−0.3436 = 0.7092 from Log-logistic. Theses values imply that lifetime is expected to be

shorter for men than that for women in this study.

To start, Table 14 exhibits the confidence interval results for both models.

Table 14: Confidence Intervals for the Channing House data set when the data is fitted using
both Weibull and Log-logistic

Weibull

Wald [0.5818, 0.9411]

B = 1, 000 B = 5, 000 B = 10, 000

Percentile [0.5798, 0.9457] [0.5774, 0.9494] [0.5800, 0.9431]

Percentile-t [0.7007, 1.0301] [0.6984, 1.1292] [0.6983, 1.1069]

Log-logistic

Wald [0.5371, 0.9365]

Percentile [0.5374, 0.9406] [0.5379, 0.9356] [0.5407, 0.9370]

Percentile-t [0.6649, 1.0698] [0.6640, 1.1444] [0.6639, 1.1281]
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From the above Weibull confidence interval results, in Table 14, we can see that the

confidence interval widths range from 0.3594 to 0.4308. On the other hand, we have the

widths for the Log-logistic ranging from 0.3963 to 0.4804. From this, we can see that the

Log-logistic confidence intervals tend to have slightly wider intervals; recall that we desire

narrower confidence intervals. Thus, based on this analysis of the widths of the confidence

intervals, we can expect the Weibull model to be a better fit for this data.

Another way of determining the best fit model is by looking at the values of the maximized

log likelihood for each of the distributions from the summary output of the regression model.

The distribution which yields the larger log likelihood value is chosen as the best option. In

doing so, Weibull had a value of -1102.82 compared to that of -1105.10 from the Log-logistic

model; the difference is small but it is still there. Hence, based on the log likelihood values,

Weibull is a slightly better fit for the data as previously anticipated.

Finally, we will take a look at the deviance residuals in order to assess the more appro-

priate functional form for the Channing House data. From the below Figure 1, we can see

that the deviance residuals from the Weibull model have an average that is closer to the

0 horizontal line for the males (gender = 1); which is desired for residuals. The average

residuals for the females (gender = 2) however, does not show much differences between the

two models. Additionally, the Weibull plot does not have any outliers at all in comparison to

the Log-logistic. When it comes to the IQR, both genders in both models do not show great

differences from one another, although the Weibull shows very slightly larger IQR than Log-

logistic. Therefore, once again the Weibull model shows slightly better performance than

the Log-logistic one.
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Figure 1: The deviance residuals of both the Weibull and Log-logistic models.

8 Conclusion

In conclusion, it is clear that based on the generated data in this study, there is no

distinct answer as to the effectiveness of the bootstrapping methods. Throughout all of the

analysis with one and two samples, the bootstrapping did not seem to perform significantly

better in a lot of the cases. Additionally, contrary to the theory that Percentile-t is a better

method than Percentile, the analysis showed some comparable variability with respect to

this. Bootstrapping also did not show consistent findings when involved with censoring. At

times it would perform better compared to no censoring and at other time not so.

It is however important to note some interesting conclusions. The bootstrapping seemed

to perform better when the sample size was increased from n = 20 to n = 100 in the one

sample results. Coverages went from ≈ 90% to ≈ 94% due to the increase in the sample size.

B = 100 seemed to be a really small value and so it seemed to helped at times to have the

other values of B. However, having having B = 10, 000 was not really necessary, especially
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since we continuously noticed that the differences between B = 5, 000 and B = 10, 000 was

really small. Another surprising result was how the coverage got better with an increasing

presence of censoring. Additionally, it was unexpected to see the Percentile and Percentile-t

methods being so comparable, and how the Percentile-t was so different than Percentile and

the Wald in the Channing House analysis.

In a future study, it would be worthwhile to incorporate results based on higher values

of samples size to see whether bootstrapping would perform better and better as the size

increases. Also, since it is said that bootstrapping has an advantage when it comes to robust

model specification, it would be significant to perhaps perform this study without specifying

a certain model.
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