
A COMPARATIVE STUDY OF VARIOUS NEURAL
NETWORK ARCHITECTURES ON CIFAR-10

by

Hongren Zhu

B00962582

hongren.zhu@dal.ca

Supervised by Dr. Lam Ho

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science: Honour in Statistics

at

Dalhousie University
Halifax, Nova Scotia

April 2025

© Copyright by Hongren Zhu, 2025

Table of Contents

Acknowledgements . v

Abstract . vi

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 5

2.1 Overview of Neural Networks . 5

2.2 Loss Functions in Neural Networks 6

2.2.1 Mean Square Error (MSE) . 6

2.2.2 L2 Loss . 6

2.2.3 The Role of L2 Boosting in Regression and Classification . . . 7

2.2.4 Comparison of Loss Functions in Image Processing 7

2.2.5 The Collaboration Between Loss Functions and Regularization 8

2.2.6 Conclusion . 8

2.3 Common Architectures: SNN, DNN, FNN, CNN, and ResNet 9

2.3.1 Simple Neural Network(SNN) 9

2.3.2 Deep Neural Networks (DNN) 9

2.3.3 Feedforward Neural Networks (FNN) 10

2.3.4 Convolutional Neural Networks (CNN) 10

2.3.5 Residual Networks (ResNet) 11

Chapter 3 Methodology . 13

3.1 Dataset and Preprocessing . 13

3.2 Model Architectures . 14

3.3 Optimization and Training Parameters 14

3.4 Training Procedure and Monitoring 15

ii

Chapter 4 Experiments and Results 17

4.1 Experimental Setup . 17

4.2 Training Dynamics . 19

4.2.1 Learning Curves . 19

4.2.2 Convergence Rates . 21

4.3 Performance Metrics . 22

4.3.1 Accuracy and Loss . 22

4.3.2 Computational Efficiency . 23

4.3.3 Model Size and Complexity 24

4.4 Summary of Results . 25

Chapter 5 Analysis . 27

5.1 Comparison of Fully Connected Architectures 27

5.2 Comprehensive Comparison of FNN and CNN 28

5.2.1 Architectural Differences and Their Impact 28

5.2.2 Parameter Efficiency . 29

5.2.3 Training Dynamics . 29

5.3 Extending the Comparison: ResNet vs. Other Networks 30

5.3.1 Performance Gains from Residual Connections 30

5.3.2 Complexity vs. Performance Trade-off 30

5.3.3 Overfitting Characteristics . 31

5.4 Architectural Design Implications . 31

Chapter 6 Discussion . 33

6.1 Model Complexity and Accuracy Trade-off 33

6.2 Optimizer Considerations . 34

6.3 Practical Implications and Limitations 35

6.3.1 Application-Specific Considerations 35

6.3.2 Dataset Considerations . 36

6.3.3 Limitations of Study . 36

iii

6.3.4 Future Research Directions . 37

6.4 Summary of Key Insights . 37

Chapter 7 Conclusion . 39

7.1 Summary of Findings . 39

7.2 Implications for Neural Network Design 40

7.3 Limitations and Future Work . 41

7.4 Concluding Remarks . 42

References . 43

iv

Acknowledgements

I would like to express my sincere and profound gratitude to my supervisor,

Dr. Lam Ho, for his invaluable guidance, unwavering support, and patient mentorship

throughout my thesis journey. Dr. Ho’s insightful suggestions, extensive knowledge,

and continuous encouragement have significantly enriched my academic experience.

From initial topic selection, learning directions at different stages, navigating through

complex data generation and coding processes, to the final stages of writing, his

meticulous advice and kind-hearted support have been instrumental.

Moreover, Dr. Ho’s guidance extended beyond mere academic assistance; his

thoughtful insights have profoundly influenced my academic career and future pro-

fessional aspirations. His dedication and genuine concern for my academic growth

have been a constant source of motivation, enabling me to overcome challenges and

realize my full potential. It is with heartfelt appreciation and deepest respect that I

acknowledge his indispensable role in my undergraduate journey.

v

Abstract

This thesis fills the void in the research which systematically internally com-

pares at least two neural architectures for image classification tasks. The research

which estimates the performance of various neural architectures has either ignored

the computational efficiency or not insulated the effects of the fundamental architec-

tural principles. Using best experimental methodology, evaluation, and comparison

of five neural network architectures, such as Simple Neural Network (SNN), Feedfor-

ward Neural Network (FNN), Deep Neural Network (DNN), Convolutional Neural

Network (CNN), and Residual Neural Network (ResNet), is performed through same

hyperparameters and training process. To experimentally validate our theoretical

findings, we leverage the CIFAR-10 benchmark dataset, which consists of 60,000 la-

beled 32×32 color images across 10 distinct classes. We establish a strict testing

methodology that includes uniform preprocessing and evaluation criteria to guaran-

tee a level playing field for the comparison of the architectures. We observe a distinct

performance ordering (ResNet: 93.68%, CNN: 86.21%, DNN: 68.06%, SNN: 60.61%,

FNN: 54.23%) in our experiments, but also show CNN is the most parameter efficient

(76.56×10−6 accuracy per parameter), complex architectures have inferior parameter

efficiency, and convolution is an important spatial inductive bias, necessary to adapt a

deep network to a visual task. The findings offer real-world guidance for architecture

choices; architectural principles often matter more than brute model size; for many

applications, a simpler convolutional architecture will be the most efficiently accurate

choice, despite being less accurate in absolute terms; and understanding these fun-

damental tradeoffs will enable efficient image classification under whatever compute

constraints are present.

vi

Chapter 1

Introduction

One of the basic problems of computer vision and pattern recognition is image

classification. It has vast applications in several areas, for instance, medical, automo-

tive, defense, among others. The ability of computer systems to accurately classify

images is a crucial technological ability that affects the performance of many AI sys-

tems. Neural network methods have taken the centre stage in image classification and

performance benchmarks on standard data set and their applications have increased

significantly in the last decade. New and improved neural network architectures are

a key part of this trend. Formerly impossible visual recognition problems are now

practically solvable thanks to this. The CIFAR-10 dataset contains 60,000 32 × 32

colour images from 10 classes. The dataset has become a common benchmark for

implementing image classification algorithms. This dataset presents an appropriately

challenging problem that is not too easy, yet still solvable in a reasonable amount of

time.

This useful research solves the image classification problem by empirically

comparing the performance characteristics of five different neural network architec-

tures. The architectures being tested are Simple Neural Network (SNN), Feedforward

Neural Network (FNN), Deep Neural Network (DNN), Convolutional Neural Network

(CNN) and Residual Neural Network (ResNet). These structures now go from basic

most consistent layers to convolutional layers to application of residuals, indicating

an increase in complexity and structural principles. This study aims at measuring the

1

2

performance gain, computer intensity, and efficiency cost among the various architec-

tures. This research provides empirical guidance for practitioners facing architecture

selection decisions in image classification tasks as it systematically evaluates these

architectures on the CIFAR-10 benchmark under controlled experimental conditions.

Architectures of neural networks for image classification have come a long way

in the last 10 years, thanks to numerous innovations. Earlier models were mainly mul-

tilayer perceptrons with fully connected layers. These early designs for CNNs showed

the power of NNs for classification, but they lacked the ability to capture the spatial

relationships in image data. Furthermore, complicating matters were issues related

to parameter scaling and optimization. The means of implementing Convolutional

Neural Networks (CNNs) was a considerable improvement. Architectures like LeNet

reflected the usefulness of convolutional operations for the visual recognition task.

In recent years, a variety of new architectural improvements have emerged which

address optimization issues that may save deeper nets. The use of residual connec-

tions by He et al. (2016a) came to fruition in allowing for the training of networks

with significantly greater depth by helping the flow of gradients in backpropagation.

This breakthrough resulted in the development of ResNet architectures that have set

new performance records on several image classification benchmark datasets. Various

regularization techniques, activation functions, and normalization methods that fur-

ther enhance the performance of these architectures and training stability have been

explored in concurrent research.

Research on image classification with various neural networks architectures

has been an extensively studied area of research. Many important major limitations

and many other gaps finds out in the literature. Many studies focus on maximum

performance and minimum use of parameters but not on computation. This narrow

focus could result in suggestions that are less than ideal for applications with limited

3

resources or where training efficiency is critical. Evaluating innovations in architec-

ture is mostly done on particular implementations and not in a comparison-based

way (like a controlled experiment). Thus, it is important to separate out the conse-

quences of core architectural ideas from other issues arising from the implementation

or hyperparameter choices. Studies of how networks train and generalize, across dif-

ferent architectures, are incomplete. Yet understanding how different architectures

converge during training, and then subsequently generalize from training to validation

data, could be helpful for practitioners. An emphasis on increasingly more compli-

cated architectures in recent research has overshadowed systematic comparisons to

simpler architectures. This lack of systematic comparison hampers understanding of

when simpler architectures might suffice or perform better than a more complicated

architecture in some contexts. Studies are often only concerned with maximizing ac-

curacy for a specific benchmark but do not provide any advice on criteria for selecting

architectures for other applications.

This study will systematically assess five neural network architectures on

CIFAR-10, a standard dataset of images, to circumvent these limitations. To system-

atically evaluate and compare the performance characteristics of five neural network

architectures comprising SNN, FNN, DNN, CNN, and ResNet under controlled exper-

imental conditions, to analyze the training dynamics across architectures with a focus

on convergence rates, optimization behaviour, etc., and to see the impact of archi-

tecture complexity on training efficiency, to investigate the generalization capabilities

of different architectures, and assess the gap between training and validation perfor-

mance, and to provide practical guidelines for the selection of an architecture based

on application-specific requirements. The CIFAR-10 dataset represents a moderate-

complexity image classification task, meaning our scope is limited to it. All the

experiments use the same preprocessing, optimization methods and hyperparameters

to compare the architectures fairly.

4

In the next sections, we build the theory behind our analysis, starting from

a general comprehension of neural networks, loss functions, and architectural princi-

ples of the five network types considered. We present our experimental design next,

describing the dataset, preprocessing, models and metrics needed to conduct our fair

comparison. After that, we present our empirical findings, which are the learning

curves, convergence analysis, performance metrics, and efficiency aspects. Then, we

provide an in-depth analysis of these results, focusing on architectural comparisons

and their impact on the design of neural networks. Next, we discuss the implications of

our results, including model complexity and optimizer choice, practical implications,

and study limitations. To sum up, we conclude by summarizing important findings,

acknowledging limitations, and providing promising directions for future work.

Chapter 2

Literature Review

In this chapter the essential background knowledge that will be most relevant

to the thesis will be introduced which will include basic concepts of neural networks,

common loss functions, different network structures (SNN, DNN, FNN, CNN, ResNet)

and their theoretical and practical application scenarios. The goal of this chapter is

to present the background knowledge most relevant to this thesis.

2.1 Overview of Neural Networks

Artificial neural networks are a type of computational system inspired by the

networks of neurons within our brains. Neural networks use connected nodes to solve

problems by learning from data. The average neural network will have an input layer,

one or more hidden layers, and an output layer. Each neuron receives signals from the

neurons of the previous layer, multiply by some weights and add some bias, and apply

an activation function and produce an output signal. Neural networks learn through

backpropagation, identify patterns, and perform classifications, using iterative weight

adjustments, after providing an output, and make predictions (Cox and Dean 2014).

Due to this, the flexibility and adaptability of neural networks, they have

been applied in various domains like image recognition, natural language processing,

and robotics. Recently, relation networks (RNs) have been proposed as additional

modules to neural networks to enable them to perform relational reasoning tasks, like

recognizing the relation between several objects in an image or solving text-based

reasoning problems (Jing et al. 2020). Overall, neural networks form the fundamental

5

6

building blocks of artificial intelligence systems owing to their power to model and

capture complex functions and relationships in data.

2.2 Loss Functions in Neural Networks

Loss functions play a critical role in the field of machine learning, as they

help models minimize prediction errors. The choice of loss function is very crucial

for different tasks. For regression tasks, in which we need to predict continuous

values, the usual choice is the Mean Square Error (MSE) or L2 loss. These functions

help the model to become stronger in dealing with noise data and make sure the

convergence status is good by minimizing the square error of predicted value and

true value (Ciampiconi et al. 2024).

2.2.1 Mean Square Error (MSE)

The formula for MSE is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.1)

where yi is the true value, and ŷi is the predicted value. MSE calculates the average

of the squared differences, so it penalizes larger errors more heavily.

2.2.2 L2 Loss

L2 Loss is very similar to MSE, but it does not include the normalization

factor:

L2 =
n∑

i=1

(yi − ŷi)
2 (2.2)

MSE and L2 loss help in a regression task by minimizing large errors as much

as possible. Classification tasks are trying to put one into categories and have loss

7

functions such as Cross-Entropy or Hinge loss. Cross-Entropy is a popular choice for

multi-class classification tasks, and its formula is below:

Cross-Entropy = −
n∑

i=1

yi log(ŷi) (2.3)

where yi is the true class label (usually one-hot encoded), and ŷi is the predicted

probability for that class.

These loss functions help optimize the decision boundaries, making the classifi-

cation more accurate (Ciampiconi et al. 2024). Although regression and classification

may seem comparable in certain situations, their performance in testing might be

quite different, as seen by Muthukumar et al. (2021).

2.2.3 The Role of L2 Boosting in Regression and Classification

A very notable use of L2 loss is in the L2Boosting algorithm. In this algo-

rithm the residuals are fit iteratively in a regression problem, reducing the errors in

a stepwise manner. L2Boosting is especially applied to high-dimensional data where

it does not overfit (Bühlmann 2006). L2Boosting has been shown by Bühlmann and

Yu (2003) to not only perform well in regression, but also to approach optimal per-

formance in classification close to Bayes risk. This property also makes L2Boosting

useful for both tasks when the dataset is large.

2.2.4 Comparison of Loss Functions in Image Processing

In the domain of image processing, L2 loss is commonly the default used

loss due to its easy operation in optimization. But, loss functions beyond MSE,

including L1 loss and perceptually driven metrics (SSIM: Structural Similarity Index)

are gaining popularity since they more accurately represent human vision (Zhao et al.

8

2018). The formula for L1 loss is:

L1 =
n∑

i=1

|yi − ŷi| (2.4)

where |yi − ŷi| is the absolute difference between the predicted and true value. As

noted by Zhao et al. (2018), while L2 loss can lead to artifacts in flat regions of

images, L1 loss and SSIM help preserve finer details and improve the visual quality

of restored images.

2.2.5 The Collaboration Between Loss Functions and Regularization

Loss functions, and how they interact with regularization, is another important

aspect. Tikhonov regularization is an example of a regularization method that dis-

courages overfitting by penalising model’s complexity (Hastie, Tibshirani, and Fried-

man 2009). For classification tasks, Support Vector Machines (SVMs) typically utilize

Hinge loss along with regularization to maximize the margin between classes (Cortes

and Vapnik 1995). The formula for Hinge loss is:

Hinge Loss =
n∑

i=1

max(0, 1− yi · ŷi) (2.5)

where yi is the true class label (either −1 or 1), and ŷi is the predicted value. Hastie,

Tibshirani, and Friedman (2009) emphasize that combining loss functions with regu-

larization ensures that models generalize well, especially in high-dimensional data.

2.2.6 Conclusion

Machine learning models gain success due to loss functions. L2 loss is effective

in minimizing prediction error in a regression task, while in a classification task,

Cross-Entropy and Hinge loss are better suited. In specialized areas such as image

9

processing, perceptual metrics like SSIM are becoming better options. In the end,

different losses along with regularization provide a balance among model complexity

and performance.

2.3 Common Architectures: SNN, DNN, FNN, CNN, and ResNet

2.3.1 Simple Neural Network(SNN)

Simple Neural Network (SNN) is the basic form of artificial intelligence with

only one layer of input nodes connected to output nodes. These are the very simple

version of neural networks, usually known as single-layer perceptrons which make

linear combinations of inputs and apply an activation function to it to give outputs.

The architecture is simple and includes input units, weights, and an output unit

making SNN applicable for simple tasks like linear classification. However, they do

not consist of hidden layers, which are able to learn complex relationships within data

thus their modelling capacity is limited (Widrow and Lehr 1990).

2.3.2 Deep Neural Networks (DNN)

DNN extends the SNN concept by adding multiple Hidden Layers between

input and output. Its multi-layered arrangement enables DNNs to learn hierarchical

representations of data, allowing them to detect sophisticated patterns and correla-

tions (Basheer and Hajmeer 2000). A DNN normally has an input layer, multiple

hidden layers, and an output layer. When the hidden layers are introduced, the

network is capable of capturing sophisticated functions using the non-linear trans-

formation at each layer, usually carried out via activation functions like (ReLU or

sigmoid).

The backpropagation algorithm introduced by Rumelhart, Hintont, andWilliams

10

(1986) greatly boosted the theoretical foundations of neural networks and enabled effi-

cient training of multi-layer networks by systematically propagating errors backward

through the networkarchitecture(Rumelhart, Hintont, and Williams 1986). Early

work on multi-layer perceptrons (MLPs) provided fundamental insights into how ad-

ditional, temporally, structurally, and functionally distributed layers helps a network

learn. Despite their biological inspiration, SNNs have shown inferior performance

compared to traditional Deep Neural Networks (DNNs) in a number of studies up

to 2023 due to the fact that DNNs can learn with greater speed and on significantly

larger data sets as well as being more flexible in their architecture. Applications

like knowledge distillation from DNNs to SNNs have shown ways to improve SNNs’

performance by utilizing the strengths of DNNs.

2.3.3 Feedforward Neural Networks (FNN)

Feedforward Neural Networks (FNN) also known as fully connected networks.

These are sequential layers, which means that each neuron is connected to all the neu-

rons in the following layer, and there are no feedback-loop between layers (Knutsson

and Lindahl 2019). This design is easy to implement and thus FNNs are ubiquitous

as a baseline for classification and regression tasks. Nevertheless, the closely placed

connections usually result in containing more parameters, and therefore increase both

computational time and overfitting risk without enforced regularization.

2.3.4 Convolutional Neural Networks (CNN)

CNNs have been designed to process and identify grid (image) like data. They

use convolutional layers to apply learnable filters to local patterns, pooling layers to

reduce spatial dimensions, and fully connected layers for final classification. CNNs are

good at automated feature extraction by learning hierarchical representations from

raw data, which reduces the need for manual feature extraction.

11

In image classification problems, CNNs generally obtain a higher accuracy as

well as generalization performance than pure fully connected networks (FNN or deeper

DNN) (Knutsson and Lindahl 2019). This outperforms by a big margin because CNN

learns local area correlations through convolutions on data. One important aspect of

convolution layers is that they combine parameter sharing mechanism, which reduces

the total number of parameters in the network by several times with respect to a fully

connected network; therefore, CNNs are much more efficient when dealing with high-

dimensional inputs like images and also are much less prone to overfitting (Elngar

et al. 2021).

Moreover, the hierarchical feature learning ability allows CNNs to discover

hierarchical representations ranging from lower layers where systems detect low-level

features, such as edges and textures, to deeper layers where they identify higher-

level semantic concepts, which is essential for accurate image recognition. Features

Map Reduction through pooling layers is used to combat overfitting as well as ensure

minimum loss of important information. Indeed, across numerous datasets, experi-

mental results show that CNNs always outperform more traditional neural networks

on image-related tasks, and they have established themselves as a dominant archi-

tecture in visual tasks from image recognition to object detection (Girshick et al.

2014).

2.3.5 Residual Networks (ResNet)

Residual Networks or ResNet provide a novel architecture to combat the in-

creased difficulty of training networks that grow very deep, specifically the vanishing

gradient problem (He et al. 2016a). Now, ResNet uses residual learning, such that

the shortcut connections skip one or multiple layers, enabling the network to learn

residual mappings instead of learning the desired underlying mapping directly. This

technique promotes gradient flow through the network which enables training of very

12

deep architectures (He et al. 2016a). Such advantages also led ResNet to be widely

employed on a wide range of tasks, especially on large scale models. ResNet improves

upon the depletion problem with depth instead of width by including identity map-

pings to a network and simply stacking them does not cause a degradation effect (He

et al. 2016b). More versions of ResNet architecture, so-called ResNet-50, ResNet-101

and ResNet-152, show a common tendency that deeper models tend to achieve better

accuracy on tough tasks (He et al. 2016a).

Chapter 3

Methodology

In this chapter, the experimental methodology employed to compare the per-

formance of five different neural network architectures on the CIFAR-10 image clas-

sification task, namely Simple Neural Network (SNN), Feedforward Neural Network

(FNN), Deep Neural Network (DNN), Convolutional Neural Network (CNN), and

Residual Neural Network (ResNet), is presented. The methodology will have data

pre-processing, model architecture specifications, optimization configurations, and

training diagnostics.

3.1 Dataset and Preprocessing

With 6,000 images each class, the CIFAR-10 dataset offers 60,000 32×32 color

photos spread over 10 object categories. There are 10,000 test photos and 50,000

training ones in the dataset. The following preprocessing processes are conducted

consistently across all experiments to guarantee fair model comparisons:

• The original training set is split into 45,000 training and 5,000 validation sam-

ples.

• Pixel values are normalized by subtracting the mean [0.4914, 0.4822, 0.4465]

and dividing by the standard deviation [0.2023, 0.1994, 0.2010] calculated from

the training set.

• For data augmentation, we apply horizontal flipping and random cropping with

padding of 4 pixels. The same augmentation policy is applied across all models

13

14

to maintain consistency.

3.2 Model Architectures

We implement five models in PyTorch as defined in models.py. All models use

CrossEntropyLoss as the objective function and apply the ReLU activation function

unless otherwise stated.

Table 3.1: Neural Network Architecture Comparison

Feature SNN FNN DNN CNN ResNet

Input Layer 3× 32× 32 3× 32× 32 3× 32× 32 3× 32× 32 3× 32× 32
Hidden Layers 1 3 5 2 conv + 1 FC 4 groups
Hidden Units 512 1024, 512, 256 1024 each 64, 128, 128 64–512
Kernel Size – – – 3× 3 3× 3
Pooling – – – Max (2× 2) Global avg
Batch Norm No No Yes No Yes
Dropout No No p = 0.3 p = 0.5 No
Activation ReLU ReLU ReLU ReLU ReLU
Output Layer 10 (softmax) 10 (softmax) 10 (softmax) 10 (softmax) 10 (softmax)
Special – – – – Residual connections

∗We implement a modified version of ResNet-18 adapted for CIFAR-10.

3.3 Optimization and Training Parameters

We employed consistent optimization strategies and training parameter con-

figurations across all models, as detailed in Table 3.2, which includes Adam optimizer

settings, OneCycleLR learning rate scheduling, and model-specific training epochs

among other key parameters.

15

Table 3.2: Training Configuration Parameters

Parameter Value

Optimizer (Adam)
Learning rate 0.001
Weight decay 5× 10−4

β1, β2 (default) 0.9, 0.999

Learning Rate Scheduler (OneCycleLR)
Maximum learning rate 0.001
Warmup epochs 10 (5% of training)
Annealing policy Cosine

Training Parameters
Batch size 512

Number of epochs

SNN: 16000
FNN: 1000

DNN: 10000
CNN: 8000

ResNet: 4000
Mixed precision Enabled
Random seed 42
Device NVIDIA GPU (CUDA)

3.4 Training Procedure and Monitoring

The training procedure follows these steps:

1. Initialize model weights with default PyTorch initialization

2. For each epoch:

• Train the model on the training set

• Evaluate on the validation set

• Update learning rate using the scheduler

• Save model if validation accuracy improves

3. After training completes, evaluate the best model on the test set

To monitor and analyze the training process, we track the following metrics:

16

• Training and validation loss

• Training and validation accuracy

• Learning rate changes

• Total training time

• Model parameter count

For post-training analysis, we employ the following methods:

• Plotting learning curves (loss and accuracy) for each model

• Comparing validation accuracy across models

• Analyzing the parameter efficiency (accuracy per parameter)

• Measuring convergence speed by identifying when models reach 90% of their

final accuracy

These monitoring and analysis techniques allow us to comprehensively com-

pare the performance characteristics of the different neural network architectures on

the CIFAR-10 classification task.

Chapter 4

Experiments and Results

This chapter presents the experimental results obtained from training and eval-

uating the five neural network architectures—SNN, FNN, DNN, CNN, and ResNet—on

the CIFAR-10 image classification task. We present objective measurements of per-

formance metrics and training dynamics, providing the empirical foundation for the

analysis in subsequent chapters.

4.1 Experimental Setup

All experiments were conducted using the CIFAR-10 dataset with consistent

preprocessing and training conditions.

Although the default configuration allowed for a maximum of 200 epochs, we

manually customized the number of training epochs for each architecture to ensure

sufficient convergence and fair comparison under tailored training dynamics. Specifi-

cally, we set the number of epochs as follows:

• SNN: 16,000 epochs were used to allow the simple architecture to converge

fully.

• FNN: Initially trained for 6,000 epochs, but we observed that performance

saturated before epoch 1,000. We therefore retrained the model with 1,000

epochs to reduce redundancy.

• DNN: Trained for 10,000 epochs due to its deeper architecture requiring more

iterations.

17

18

• CNN: Trained for 8,000 epochs.

• ResNet: Trained for 4,000 epochs, balancing training time and convergence.

These choices were empirically verified through early-stage experiments and

performance plateaus observed in training curves (see Figures 4.1–4.5). Final results

reported in Tables 4.3 and 4.4 are based on these updated epoch configurations.

Additionally, a complete summary of the training and dataset configurations

used in our experiments is provided in the configuration table (see Table 4.1).

Table 4.1: Dataset and Configuration Information

Dataset Configuration

Dataset CIFAR10
Number of Classes 10
Image Size 32×32
Channels 3
Train Set Size 45000
Validation Set Size 5000
Test Set Size 10000

Image Normalization
mean=[0.4914, 0.4822, 0.4465]
std=[0.2023, 0.1994, 0.2010]

Data Augmentation
Random horizontal flipping and

random cropping with 4-pixel padding

Training Configuration

Batch Size 512
Maximum Epochs 200 (default, user-specified per model)
Optimizer Adam
Learning Rate 0.001
Learning Rate Scheduler OneCycleLR with 10 epochs warmup
Loss Function Cross-Entropy Loss
Weight Decay 5e-4
Mixed Precision True
Number of Workers 8
Random Seed 42

Model Configuration

SNN Hidden Size 512
FNN Hidden Sizes [1024, 512, 256]
DNN Hidden Sizes [1024, 1024, 1024, 1024, 1024]
CNN Channels [64, 128]
ResNet Blocks [2, 2, 2, 2]

19

All models were implemented in PyTorch and trained on a CUDA-compatible

GPU. For each model, we recorded the training and validation metrics after every

epoch, and measured the total training time and parameter count.

4.2 Training Dynamics

4.2.1 Learning Curves

The learning curves provide insight into how each model progressed during

training, capturing both training and validation accuracy/loss over time.

Figure 4.1: ResNet Learning Curves

Figure 4.1 shows the accuracy and loss curves for ResNet. The model exhibits

rapid initial convergence, with training accuracy quickly exceeding 90% within the

first 100 epochs. The validation accuracy rises steadily, reaching approximately 100%

by the end of training. The loss curves show continuous improvement in training loss,

decreasing to near zero, while validation loss stabilizes at approximately 0.3.

Figure 4.2 presents the CNN learning curves. The model demonstrates a simi-

lar pattern of rapid initial learning, with validation accuracy reaching approximately

94% by the end of training. The gap between training and validation accuracy is

smaller than with ResNet, suggesting less overfitting despite the simpler architecture.

20

Figure 4.2: CNN Learning Curves

Figure 4.3: DNN Learning Curves

Figure 4.3 shows the learning curves for the DNN model. There is a notable

divergence between training and validation performance, with training accuracy ap-

proaching 67.96% while validation accuracy plateaus at approximately 65.30%. The

validation loss increases after the initial drop, indicating challenges in generalization.

Figure 4.4 shows the learning curves of the FNN. Around epoch 50, both

validation and test losses start to increase instead of decreasing, while training loss

continues to drop, eventually falling below 0.25. Training accuracy reaches nearly

95%, but validation and test accuracies plateau around 56–58%. This divergence

clearly indicates overfitting.

21

Figure 4.4: FNN Learning Curves

Figure 4.5: SNN Learning Curves

Figure 4.5 displays the learning patterns of the SNN model. Despite its sim-

plicity, the model achieves validation accuracy of approximately 65%. Both training

and validation curves follow similar trajectories, with accuracy improving steadily

throughout training.

4.2.2 Convergence Rates

Table 4.2 provides a quantitative comparison of convergence rates, showing

the number of epochs required for each model to reach 90% of its final validation

accuracy.

22

Table 4.2: Model Convergence Rates

Metric SNN FNN DNN CNN ResNet

Epochs to 90% of final accuracy 16,000+ 660 10,000+ 5000 80

Convolutional architectures (CNN and ResNet) demonstrate significantly faster

convergence compared to fully connected networks. ResNet reaches 90% of its final

accuracy in the fewest epochs, highlighting the optimization benefits of residual con-

nections.

4.3 Performance Metrics

4.3.1 Accuracy and Loss

Table 4.3 summarizes the final accuracy and loss values for all models on the

training, validation, and test sets.

Table 4.3: Final Accuracy and Loss Values (Test Set)

Metric SNN FNN DNN CNN ResNet

Test Accuracy (%) 60.61 54.23 68.06 86.21 93.68
Test Loss 1.1619 1.9310 0.9271 0.4323 0.3392

Test results establish the performance hierarchy: ResNet (93.68%) > CNN

(86.21%) > DNN (68.06%) > SNN (60.61%) > FNN (54.23%). Convolutional archi-

tectures substantially outperform fully connected architectures, with ResNet achiev-

ing the highest accuracy across all datasets. The large gap between training and

validation accuracy for DNN and FNN indicates significant overfitting, while ResNet

and CNN maintain better generalization despite their high training accuracy. This

performance hierarchy and generalization behavior are further visualized in Figure 4.7,

which compares each model’s test accuracy alongside its best validation accuracy.

Figure 4.6 (top left) provides a visual comparison of test accuracy across

all models, clearly showing the superior performance of convolutional architectures.

23

Figure 4.6: Models Comparison

ResNet achieves the highest accuracy at approximately 93%, followed by CNN at

about 86%, while DNN, SNN, and FNN show lower performance at around 68%,

60%, and 55% respectively.

4.3.2 Computational Efficiency

Figure 4.6 (bottom left) illustrates the total training time required for each

model. Both ResNet and SNN require significantly more computation time (approx-

imately 17,000 seconds each) compared to other architectures. FNN demonstrates

the shortest training time at around 1,000 seconds, while DNN and CNN require

moderate training times of approximately 11,000 and 9,000 seconds respectively. The

24

Figure 4.7: Model Performance Comparison

bottom right panel shows the average epoch time, with ResNet requiring significantly

more time per epoch (about 4.3 seconds) compared to all other models (SNN, FNN,

DNN, and CNN) which maintain similar epoch times of approximately 1 second each.

4.3.3 Model Size and Complexity

Figure 4.6 (top right) shows the parameter count for each architecture. These

counts range from approximately 1.13 million for CNN to 11.18 million for ResNet,

with SNN, FNN, and DNN having intermediate values of around 1.58, 3.81, and

7.37 million parameters respectively. Despite having fewer parameters than FNN

and DNN, CNN achieves substantially higher accuracy, highlighting the efficiency of

convolutional operations.

25

Table 4.4 provides efficiency metrics, calculating the accuracy-to-parameter

ratio and accuracy-to-training-time ratio for each model.

Table 4.4: Efficiency Metrics (Based on Test Set)

Metric SNN FNN DNN CNN ResNet

Parameters (millions) 1.58 3.81 7.37 1.13 11.18
Training Time (seconds) 16918 1050 10799 8917 17107
Accuracy/Parameters (×10−6) 38.4 14.3 9.2 76.6 8.4
Accuracy/Training Time (×10−2) 0.36 5.16 0.63 0.97 0.55

CNN demonstrates the highest parameter efficiency, producing substantial ac-

curacy with minimal parameters. While ResNet achieves the highest absolute accu-

racy, it has the lowest efficiency in terms of both parameters and training time.

4.4 Summary of Results

The experimental results provide clear evidence of performance differences

across the five neural network architectures:

• Accuracy Hierarchy: ResNet (93.68%) > CNN (86.21%) > DNN (68.06%)

> SNN (60.61%) > FNN (54.23%)

• Convergence Speed: ResNet converges most rapidly, requiring only 80 epochs

to reach 90% of its final accuracy, followed by FNN (660 epochs), CNN (5,000

epochs), DNN (10,000 epochs), and SNN (16,000 epochs) .

• Computational Requirements: ResNet demands substantially more compu-

tational resources (11.0M parameters, 7,520 seconds training time) compared

to other architectures.

• Efficiency: CNN provides the best parameter efficiency (76.6× 10−6 accuracy

per parameter) and time efficiency (0.97× 10−2 accuracy per second).

26

• Generalization: Convolutional architectures (CNN and ResNet) demonstrate

better generalization compared to fully connected architectures, with DNN

showing the most significant overfitting.

These results establish the empirical foundation for the in-depth analysis pre-

sented in Chapter 5, where we examine the architectural factors contributing to these

performance differences and their implications for neural network design.

Chapter 5

Analysis

This chapter offers thorough examination of the experimental findings shown in

Chapter 4. We look at performance trends over several network topologies, study the

connection between model complexity and accuracy, and consider how architectural

design decisions affect picture categorization performance.

5.1 Comparison of Fully Connected Architectures

The experimental results show that the performance of the fully connected

architectures (SNN, FNN, and DNN) differ from each other. These networks are

structurally similar but differ in terms of classification performance and training be-

haviour. The SNN is achieving a test accuracy of 60.61% and validation accuracy of

60.26% with a single hidden layer of 512 units. Despite the SNN’s simple architec-

ture, it managed to achieve a test accuracy of 60.61% and a validation accuracy of

60.26%. The training curve of SNN shows underfitting (similar training, validation

accuracies). Hence, the representational capacity of SNN is limited.

FNN experiences a bit of a drop compared to SNN as the test accuracy is

54.23% and the validation accuracy is 57.08%, which is surprising as FNN has three

hidden layers and has considerably more parameters (3.8M as compared to 1.6M for

SNN). This finding shows that more hidden fully connected layers in a model, does

not always mean improved performance. The learning graphs show that FNN has

some optimization issues, showing a slow convergence compared to the other ones.

Among the fully connected models, DNN gives the best performance when

27

28

tested with a 68.06% accuracy and 65.30% validation accuracy. This model’s five

hidden layers with batch normalization and dropout provide it capacity to learn

more complex representations. However, the relatively small gap between training

accuracy (67.96%) and validation accuracy suggests limited learning capacity rather

than overfitting. Even with dropout and batch normalization, the model struggles

to fully capture the training data distribution. This indicates that fully connected

architectures may be fundamentally unsuited to capturing the spatial structure of

images.

The comparison of these architectures shows us that for fully connected net-

works for image classification, deeper is not always better without proper regular-

ization and architecture. Making the SNN into a DNN improved the performance

by approximately 7.3 percentage points (cc 8.716), but at the cost of 5.9M extra

parameters and greater overfitting.

5.2 Comprehensive Comparison of FNN and CNN

Fundamentally different methods to neural network design, Feedforward Neu-

ral Networks (FNNs) and Convolutional Neural Networks (CNNs) have distinctive

strengths and weaknesses that become especially clear in picture categorization ac-

tivities.

5.2.1 Architectural Differences and Their Impact

FNNs and CNNs mainly differ in how they process input and their architecture.

FNNs image processing flattens data into vectors, losing pixel spatial relations. Unlike

FNNs, CNNs preserve spatial information through local receptive fields and pooling

operations. Due to the above reason, we can see in our experiments that if we just

trained CNN to get 86.21% test accuracy and 84.98% validation accuracy. On the

other hand, FNN which actually has more parameters (3.8 Million vs 1.2 Million)

29

gets only 54.23% test accuracy. The 28% difference in performance highlights the

significance of inductive bias in neural network architecture. The layers of CNN learn

the local patterns and spatial hierarchies that are essential for the distinction of object

classes in CIFAR-10. The model’s ability to identify objects no matter their precise

positions in images is further improved by the pooling layers.

5.2.2 Parameter Efficiency

Our experiments expose very different behavior in parameter efficiency be-

tween FNN and CNN. This results in CNN achieving approximately 76.6 × 10−6

accuracy points per parameter compared to only 14.2×10−6 points per parameter for

FNN. This efficiency, which is 4.7 times higher, shows the potential of convolutional

operations to drastically decrease the numbers of parameters through weight sharing

and improve their ability to extract features. The efficiency edge yielded a direct

generalization benefit. As CNN has fewer parameters than FNN, CNN is less prone

to overfitting. It attests to the theoretical superiority of CNNs in both capacity, being

able to train smaller models while able to learn features in the task.

5.2.3 Training Dynamics

The learning curves reveal distinct training behaviors between FNN and CNN.

CNN shows rapid initial learning, with validation accuracy exceeding 80% within the

first 500 epochs, followed by more gradual improvement. In contrast, FNN exhibits

slower convergence and plateaus at a much lower accuracy level.

Furthermore, CNN demonstrates more stable training, with smoother learning

curves and less fluctuation in validation accuracy. This stability likely stems from the

more structured parameter space created by convolutional operations, which provides

a more navigable optimization landscape for the Adam optimizer.

30

5.3 Extending the Comparison: ResNet vs. Other Networks

ResNet represents a significant architectural advancement over traditional

CNNs through the introduction of residual connections. Our experimental results

demonstrate both the advantages and trade-offs of this approach.

5.3.1 Performance Gains from Residual Connections

ResNet achieves the highest test accuracy among all tested architectures at

93.68%, and validation accuracy of 93.68%, surpassing CNN by 7.5 percentage points.

This improvement validates the theoretical advantages of residual connections, which

facilitate gradient flow during backpropagation and enable the training of deeper

networks.

The learning curves illustrate how ResNet’s architecture translates to perfor-

mance advantages. ResNet shows even faster initial convergence than CNN, reaching

approximately 85% validation accuracy in fewer epochs. More importantly, while

CNN’s validation accuracy begins to plateau, ResNet continues to improve, suggesting

that residual connections help the network escape local minima during optimization.

5.3.2 Complexity vs. Performance Trade-off

The performance gains from ResNet come at a considerable computational

cost. ResNet contains approximately 11.18 million parameters and requires 17,107

seconds of training time for training (3.8× longer than CNN). This raises important

questions about the efficiency of this architecture, particularly for applications with

limited computational resources.

From an efficiency perspective, ResNet achieves only 8.4×10−6 accuracy points

per parameter, significantly lower than CNN’s 76.6× 10−6. Similarly, ResNet’s time

efficiency (0.55× 10−2 accuracy points per second) is substantially lower than CNN’s

31

(0.97× 10−2).

These efficiency metrics suggest that for datasets of moderate complexity like

CIFAR-10, the additional complexity of ResNet may offer diminishing returns relative

to computational investment. The 7.9 percentage point accuracy improvement may

be crucial for applications requiring maximum accuracy, but the standard CNN ar-

chitecture provides a more balanced performance-to-resource ratio for many practical

scenarios.

5.3.3 Overfitting Characteristics

Both CNN and ResNet exhibit some degree of overfitting, as indicated by

the gap between training and validation accuracy. However, ResNet shows better

generalization relative to its capacity, with a training accuracy approaching 100%

and validation accuracy of 93.1%. The smaller relative gap (despite having more

parameters) suggests that residual connections not only improve performance but

also enhance generalization.

This observation supports the theory that skip connections in ResNet have a

regularizing effect, creating smoother optimization landscapes that lead to solutions

with better generalization properties. This characteristic makes ResNet particularly

valuable for complex image classification tasks where both high accuracy and good

generalization are required.

5.4 Architectural Design Implications

Our comprehensive analysis reveals several important implications for neural

network architecture design for image classification tasks:

1. Inductive Bias Matters: The large performance difference between convolu-

tional (e.g., ResNet) and fully connected architectures (e.g., FNN, 39.4% points)

32

suggests that applying a proper inductive bias on model architecture is more

impactful than merely scaling model size.

2. Depth vs. Width Trade-offs: Making fully connected networks deeper (up-

grading from SNN to DNN) yields small improvements, but raises danger of

overfitting. On the other hand, the use of new architectures (like ResNet) with

added depth can drastically improve performance without overfitting.

3. Efficiency Considerations: CNN only shows the best parameter efficiency

among all the tested architectures that were present. ResNet yields the top

overall performance but at much lower efficiency. As such, it is better suited to

an application that prioritises accuracy.

4. Regularization Requirements: Deeper architectures require stronger regu-

larization. DNN is suffering from a huge overfitting problem, despite dropout

and batch normalization. Thus, the architectural choice needs an adequate

regularization choice.

The findings can serve as a guideline for architectural decisions that can help

meet the requirements of an application.

Chapter 6

Discussion

Using the experimental results and analysis given in the earlier chapters, this

chapter interprets our findings at a more abstract level and discusses their significance

for the design and use of neural networks. We will focus on three things; complexity-

accuracy relationship, optimizers selection choice and implications for the real-world

application.

6.1 Model Complexity and Accuracy Trade-off

We did multiple experiments with five different neural network architectures

and found a relation between complexity and accuracy. Our experiments with five

different neural network architectures reveal a nuanced relationship between model

complexity and classification accuracy. For all experiments, model sizes grew signif-

icantly with the SNN having 1.58M parameters, FNN (3.81M), DNN (7.37M), CNN

(1.13M) and ResNet (11.18M). But, the validation accuracies don’t follow this pro-

gression in a linear manner. Most importantly, with only 1.13M parameters, CNN

achieves 86.21% test accuracy, outperforming DNN (7.37M parameters) by 18.73%.

This shows that architectural design choice could be much more critical than the

actual count.

ResNet’s case highlights the complexity-accuracy trade-off. Even though ResNet

gets 93.68% accuracy on test and that is highest but CNN achieves the accuracy with

only 1× parameters, which means ResNet required nearly 10× parameters but only

for 6.76 percentage point accuracy gain. When should we assign multiple complex

33

34

architecture is not clear because of the diminishing return. The ResNet architecture

may be worth the extra complexity for applications requiring maximum accuracy on

CIFAR-10, which is a small-scale classification. But, for many actual use cases with

a similar amount of complexity, the normal CNN would strike a better balance.

These observations align with broader trends in deep learning research, where

architectural innovations that improve parameter efficiency (like convolutions) of-

ten yield greater benefits than simply scaling model size. This principle becomes

particularly important when working with smaller datasets where large models risk

overfitting or when deploying models in resource-constrained environments.

6.2 Optimizer Considerations

Our experimental setup employed the Adam optimizer across all models, which

provided stable and relatively rapid convergence. This choice was motivated by

Adam’s adaptive learning rate properties, which reduce the need for careful learning

rate tuning and generally provide good performance across a wide range of architec-

tures.

While our experiments did not directly compare different optimizers, our re-

sults do provide insight into optimizer behavior across different architectures. The

learning curves reveal that Adam led to rapid initial convergence for convolutional

architectures (CNN and ResNet), with most performance gains occurring in the first

500 epochs. For fully connected architectures, particularly FNN, convergence was

notably slower.

This differential behavior suggests that optimizer selection may need to be

architecture-dependent. For complex architectures like ResNet, Adam’s ability to

adapt learning rates for each parameter proves highly effective, especially during

early training phases. For simpler architectures, particularly in cases where maxi-

mum generalization is more important than rapid convergence, classical SGD with

35

momentum and a well-tuned learning rate schedule might yield better final results,

as suggested in some literature.

The OneCycleLR scheduler used in our experiments provided effective learning

rate management, with an initial warmup phase followed by cosine annealing. This

scheduling approach worked well across architectures, though the optimal schedule

duration likely varies based on architecture complexity. More complex models like

ResNet might benefit from longer training schedules, while simpler models might

achieve their maximum performance more quickly.

6.3 Practical Implications and Limitations

The test performance hierarchy observed in our experiments is: ResNet (93.68%)

> CNN (86.21%) > DNN (68.06%) > SNN (60.61%) > FNN (54.23%), provides

practical guidance for model selection in image classification tasks. However, several

important considerations and limitations should be noted.

6.3.1 Application-Specific Considerations

For real-world applications, model selection should consider more than just

accuracy. Our efficiency analysis (accuracy per parameter and accuracy per training

second) suggests that CNN provides the most balanced option for many practical sce-

narios, especially when computational resources are limited or when rapid deployment

is necessary.

Applications requiring maximum accuracy regardless of computational cost

would benefit from ResNet or potentially even more complex architectures. Con-

versely, extremely resource-constrained environments (such as edge devices) might

need to utilize lightweight CNNs with further optimizations or even simpler architec-

tures with domain-specific features.

The substantial performance gap between convolutional and fully connected

36

architectures confirms that for image classification tasks, convolutional architectures

should almost always be preferred unless there are specific reasons to use fully con-

nected networks.

6.3.2 Dataset Considerations

Our experiments were conducted exclusively on CIFAR-10, a dataset compris-

ing small (32× 32) RGB images categorized into 10 classes, representing a moderate-

complexity image classification task. Thus, the findings presented should be inter-

preted within this specific context. The relative performance observed among different

architectures may vary when generalized to datasets with differing scales and com-

plexities. Specifically, for simpler datasets such as MNIST, performance disparities

between various architectures would likely diminish, as even basic models are capable

of achieving high accuracy. Conversely, for more challenging datasets like ImageNet,

the advantages of architectures such as ResNet would presumably become more pro-

nounced, reflecting their enhanced ability to capture complex feature hierarchies.

Additionally, architectural suitability might vary significantly within specialized do-

mains, such as medical imaging, due to distinct, domain-specific requirements.

6.3.3 Limitations of Study

Our study presents several limitations that warrant consideration. Testing was

confined to a single dataset (CIFAR-10), which constrains the generalizability of our

results to broader image classification domains. Although we employed consistent

hyperparameters across all models to ensure fair comparison, this approach poten-

tially disadvantages architectures that might perform optimally under customized

hyperparameter configurations.

The five conventional architectures studied do not include new models such

as EfficientNet, Vision Transformers, and MobileNet which could provide a different

37

efficiency-accuracy trade-off. Moreover, the sole employment of the Adam optimizer

limits knowledge on how the various optimization might assist in the comparison

performance from the said architectures.

6.3.4 Future Research Directions

Our results indicate many directions for future work. Broadening the architec-

tural scope to the modern Vision Transformers framework could yield more compre-

hensive insights into current image classification practices. Looking into thoroughly

optimizing the hyperparameters for each architecture could reveal their maximum

performance capabilities beyond our standard configuration. We should look at other

datasets to see how broadly applicable our conclusions are. We can also try out differ-

ent optimization algorithms apart from Adam to see how they affect the architecture.

To gain insight into how models trained from scratch perform in various applications,

we plan to experiment with transfer learning tasks lastly.

6.4 Summary of Key Insights

From our experiments and analysis, we note down some interesting lessons

for practitioners of deep learning technologies for image classification. The choice of

architecture is more important than the number of parameters, especially when it

comes to using convolutions. Using residual connections in deep networks can speed

up the convergence of the model and improve the accuracy. However, it comes at a

heavy computation cost. Regardless of how deep and well-regularized they are, fully

connected architectures are inferior to convolutional architectures on image tasks due

to the absence of spatial inductive bias. CNN has the highest accuracy-to-parameter

ratio (76.6× 10−6) while ResNet is significantly worse (8.4× 10−6).

For many useful applications with a moderate amount of complexity, simpler

convolutional architectures will probably give the best accuracy-complexity trade-off.

38

These findings point out the need to consider not just basic architectural principles,

but also real-world constraints when developing neural network architectures for ap-

plication in image classification.

Chapter 7

Conclusion

This thesis has systematically presented empirical comparison of five neural

network simple neural network (SNN), feedforward neural network (FNN), deep neu-

ral network (DNN), convolutional neural network (CNN) and a residual neural net-

work (ResNet) on CIFAR-10 image classification benchmark. We have been through

many experiments on their performance characteristics, training dynamics and effi-

ciency considerations to provide insights into our architecture selection rationale for

image classification task.

7.1 Summary of Findings

The results of our experiments show that the different architectures performed

better depending on the task, which has implications for picking the right models.

The fully connected models struggled to beat the convolutional architectures on image

classification tasks. The test accuracy result is highest for ResNet at 93.68% and

second highest for CNN at 86.21%. The best fully connected architecture (DNN) has

less than half the accuracy at 68.06%. CNN showed amazing output per parameter

efficiency of 76.6 × 10−6 accuracy points/parameter better than other architectures

This highlights that a well-designed architectural inductive bias could significantly

improve performance without enlarging the model. Nevertheless, ResNet required

much larger training time than other architectures (17,107 seconds), that is, (1,800-

2,000 seconds). So, the performance gains from complex architectures come with

increased training times.

39

40

Convolutional architectures converged faster and improved during training

with high confidence. Fully connected architectures either converged more slowly

or plateaued early, with some (like FNN) showing significant overfitting, and others

(like DNN) exhibiting underfitting due to limited capacity or optimization challenges.

Even though ResNet has more parameters than DNN, it generalizes better, achieving

both higher training (100%) and validation (93.68%) accuracy. In contrast, DNN

shows relatively lower accuracy across both sets, suggesting limited capacity rather

than overfitting. So, architecture plays a role in performance and generalization.

These results taken together show that decisions on architectural design sig-

nificantly influence both efficiency traits in neural networks for image categorization

and absolute performance.

7.2 Implications for Neural Network Design

Our research has several important implications for neural network design

and use. The large difference in performance of convolutional ay fully-connected

architectures shows that putting the right inductive bias into your neural network

is crucial. Because CNNs (Convolutional Neural Networks) benefit from the spatial

inductive bias, they become a natural consideration for image data. But, we do not see

this in the case of fully connected layers. ResNet may give you more accurate results,

but its much higher monetary cost may not be justified for all implementations.

CNN is a good compromise between performance and efficiency, making it a good

default choice for many image classification applications. FNN shows 6.38 percentage

point worse performance than SNN. This is because adding layers or parameters

does not guarantee better performance, as shown by FNN and SNN performance.

Scaling neural networks effectively requires architectural improvements like residual

connections, which enhance optimization properties.

41

To avoid causing overfitting, deeper architectures require proper regulariza-

tion. The fact that the DNN overfits badly even though dropout and batch nor-

malization were attempted highlights that architecture limitations cannot be always

mitigated through regularization. This gives direction to practitioners facing the ar-

chitecture selection problem in image classification. The chose we now see really

depends on the application and constraints..

7.3 Limitations and Future Work

The study presents comparisons of neural network architectures but it has

some limitations to note. We have only used CIFAR-10 dataset in our experiments.

This dataset is a moderate-complexity image classification task. Comparative perfor-

mance of architectures can vary a lot across datasets that vary in scale and complexity.

We used a common hyperparameter setting for all models to have a fair comparison,

however, tuning hyperparameters specific to the architectures can significantly mod-

ify the performance landscape. We used five classical neural network architectures

and refrained from using novel ones like vision transformers, efficient nets, and mo-

bile nets. Further, all experiments were carried out using the Adam optimizer with

OneCycleLR scheduling, which may hide how different optimization settings alter the

performance of the architectures.

Going forward, ideally, future studies should be undertaken to cover these

limitations by broadening the architectural comparison to not only stateof-the-art ar-

chitectures but also newer ones. in particular, transformer-based architectures which

entail a fundamentally different architecture for extracting features from images. To

enhance generalization from digit recognition to large-scale and fine-grained classifi-

cation tasks, performance on a wider range of datasets of varying complexity should

be evaluated. Running systematic hyperparameter optimization on each architec-

ture would show their best possible performance. Examining various optimization

42

strategies in further works, especially how adaptive strategies like Adam compare to

classical SGD with various learning rate schedules, would be insightful. Looking into

transfer learning, where pre-trained models are adjusted for specific jobs, could show

different links between efficiency and accuracy than what we see when training from

scratch. These extensions would create a better understanding of neural network

architecture selection in more contexts and applications.

7.4 Concluding Remarks

This thesis has shown through systematic experimentation that the design of

neural network architectures continues to be an important factor for image classifi-

cation performance. Using a ResNet architecture will get you the highest guaranteed

“absolute” accuracy possible. A simpler convolutional architecture may be more ef-

ficient (and so preferable) than a more complex one. Having noted the big gap in

the performance of convolutional and fully connected architectures, we have further

confirmed the fundamental importance of using suitable inductive bias in the model

design—something that goes beyond the particular architectures tested in this thesis

to all neural network design. As deep learning progresses, understanding these archi-

tectural trade-offs will become increasingly important to developing systems that yield

good performance, good efficiency, and good deployability. By providing metrics and

insights to make architecture selection decisions in image classification applications,

this work enhances this understanding.

References

Basheer, I. A and M Hajmeer (Dec. 2000). “Artificial neural networks: fundamentals,

computing, design, and application”. In: Journal of Microbiological Methods.

Neural Computting in Micrbiology 43.1, pp. 3–31. issn: 0167-7012. doi: 10.

1016/S0167-7012(00)00201-3. url: https://www.sciencedirect.com/

science/article/pii/S0167701200002013 (visited on 03/30/2025).

Bühlmann, Peter (Apr. 2006). “Boosting for high-dimensional linear models”. In:

The Annals of Statistics 34.2. Publisher: Institute of Mathematical Statistics,

pp. 559–583. issn: 0090-5364, 2168-8966. doi: 10.1214/009053606000000092.

url: https://projecteuclid.org/journals/annals- of- statistics/

volume-34/issue-2/Boosting-for-high-dimensional-linear-models/

10.1214/009053606000000092.full (visited on 03/30/2025).

Bühlmann, Peter and Bin Yu (June 2003). “Boosting With the L2 Loss: Regression

and Classification”. In: Journal of the American Statistical Association 98.462.

Publisher: ASA Website eprint: https://doi.org/10.1198/016214503000125,

pp. 324–339. issn: 0162-1459. doi: 10.1198/016214503000125. url: https:

//doi.org/10.1198/016214503000125 (visited on 03/30/2025).

Ciampiconi, Lorenzo et al. (Nov. 2024). A survey and taxonomy of loss functions in

machine learning. arXiv:2301.05579 [cs]. doi: 10.48550/arXiv.2301.05579.

url: http://arxiv.org/abs/2301.05579 (visited on 03/30/2025).

Cortes, Corinna and Vladimir Vapnik (Sept. 1995). “Support-vector networks”. en.

In: Machine Learning 20.3, pp. 273–297. issn: 1573-0565. doi: 10 . 1007 /

BF00994018. url: https : / / doi . org / 10 . 1007 / BF00994018 (visited on

03/30/2025).

43

https://doi.org/10.1016/S0167-7012(00)00201-3
https://doi.org/10.1016/S0167-7012(00)00201-3
https://www.sciencedirect.com/science/article/pii/S0167701200002013
https://www.sciencedirect.com/science/article/pii/S0167701200002013
https://doi.org/10.1214/009053606000000092
https://projecteuclid.org/journals/annals-of-statistics/volume-34/issue-2/Boosting-for-high-dimensional-linear-models/10.1214/009053606000000092.full
https://projecteuclid.org/journals/annals-of-statistics/volume-34/issue-2/Boosting-for-high-dimensional-linear-models/10.1214/009053606000000092.full
https://projecteuclid.org/journals/annals-of-statistics/volume-34/issue-2/Boosting-for-high-dimensional-linear-models/10.1214/009053606000000092.full
https://doi.org/10.1198/016214503000125
https://doi.org/10.1198/016214503000125
https://doi.org/10.1198/016214503000125
https://doi.org/10.48550/arXiv.2301.05579
http://arxiv.org/abs/2301.05579
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018

44

Cox, David Daniel and Thomas Dean (Sept. 2014). “Neural Networks and Neuroscience-

Inspired Computer Vision”. In: Current Biology 24.18, R921–R929. issn: 0960-

9822. doi: 10.1016/j.cub.2014.08.026. url: https://www.sciencedirect.

com/science/article/pii/S0960982214010392 (visited on 03/30/2025).

Elngar, Ahmed A. et al. (Jan. 2021). “Image Classification Based On CNN: A Survey”.

In: Journal of Cybersecurity and Information Management Issue 1. Publisher:

American Scientific Publishing Group (ASPG), PP. 18–50. doi: 10.54216/

JCIM.060102. url: https://www.americaspg.com/articleinfo/2/show/

692 (visited on 04/02/2025).

Girshick, Ross et al. (June 2014). “Rich Feature Hierarchies for Accurate Object De-

tection and Semantic Segmentation”. In: 2014 IEEE Conference on Computer

Vision and Pattern Recognition. ISSN: 1063-6919, pp. 580–587. doi: 10.1109/

CVPR.2014.81. url: https://ieeexplore.ieee.org/document/6909475

(visited on 04/02/2025).

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of

Statistical Learning. Springer Series in Statistics. New York, NY: Springer.

isbn: 978-0-387-84858-7. doi: 10.1007/978-0-387-84858-7. url: http://

link.springer.com/10.1007/978-0-387-84858-7 (visited on 03/30/2025).

He, Kaiming et al. (June 2016a). “Deep Residual Learning for Image Recognition”. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

ISSN: 1063-6919, pp. 770–778. doi: 10.1109/CVPR.2016.90. url: https:

//ieeexplore.ieee.org/document/7780459 (visited on 04/02/2025).

— (July 2016b). Identity Mappings in Deep Residual Networks. arXiv:1603.05027

[cs]. doi: 10.48550/arXiv.1603.05027. url: http://arxiv.org/abs/1603.

05027 (visited on 04/02/2025).

Jing, Ya et al. (Dec. 2020). “Relational graph neural network for situation recogni-

tion”. In: Pattern Recognition 108, p. 107544. issn: 0031-3203. doi: 10.1016/

https://doi.org/10.1016/j.cub.2014.08.026
https://www.sciencedirect.com/science/article/pii/S0960982214010392
https://www.sciencedirect.com/science/article/pii/S0960982214010392
https://doi.org/10.54216/JCIM.060102
https://doi.org/10.54216/JCIM.060102
https://www.americaspg.com/articleinfo/2/show/692
https://www.americaspg.com/articleinfo/2/show/692
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://ieeexplore.ieee.org/document/6909475
https://doi.org/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
https://doi.org/10.1109/CVPR.2016.90
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
https://doi.org/10.48550/arXiv.1603.05027
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1603.05027
https://doi.org/10.1016/j.patcog.2020.107544

45

j.patcog.2020.107544. url: https://www.sciencedirect.com/science/

article/pii/S0031320320303472 (visited on 03/30/2025).

Knutsson, Magnus and Linus Lindahl (2019). A COMPARATIVE STUDY OF FFN

AND CNN WITHIN IMAGE RECOGNITION : The effects of training and

accuracy of different artificial neural network designs. eng. url: https://urn.

kb.se/resolve?urn=urn:nbn:se:his:diva-17214 (visited on 04/02/2025).

Muthukumar, Vidya et al. (Oct. 2021). Classification vs regression in overparam-

eterized regimes: Does the loss function matter? arXiv:2005.08054 [cs]. doi:

10.48550/arXiv.2005.08054. url: http://arxiv.org/abs/2005.08054

(visited on 03/30/2025).

Rumelhart, David E, Geoffrey E Hintont, and Ronald J Williams (1986). “Learning

representations by back-propagating errors”. en. In.

Widrow, B. and M.A. Lehr (Sept. 1990). “30 years of adaptive neural networks: per-

ceptron, Madaline, and backpropagation”. In: Proceedings of the IEEE 78.9.

Conference Name: Proceedings of the IEEE, pp. 1415–1442. issn: 1558-2256.

doi: 10.1109/5.58323. url: https://ieeexplore.ieee.org/document/

58323 (visited on 03/30/2025).

Zhao, Hang et al. (Apr. 2018). Loss Functions for Neural Networks for Image Process-

ing. arXiv:1511.08861 [cs]. doi: 10.48550/arXiv.1511.08861. url: http:

//arxiv.org/abs/1511.08861 (visited on 03/30/2025).

https://doi.org/10.1016/j.patcog.2020.107544
https://doi.org/10.1016/j.patcog.2020.107544
https://www.sciencedirect.com/science/article/pii/S0031320320303472
https://www.sciencedirect.com/science/article/pii/S0031320320303472
https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17214
https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17214
https://doi.org/10.48550/arXiv.2005.08054
http://arxiv.org/abs/2005.08054
https://doi.org/10.1109/5.58323
https://ieeexplore.ieee.org/document/58323
https://ieeexplore.ieee.org/document/58323
https://doi.org/10.48550/arXiv.1511.08861
http://arxiv.org/abs/1511.08861
http://arxiv.org/abs/1511.08861

	Title Page
	Table of Contents
	Acknowledgements
	Abstract
	Introduction
	Literature Review
	Overview of Neural Networks
	Loss Functions in Neural Networks
	Mean Square Error (MSE)
	L2 Loss
	The Role of L2 Boosting in Regression and Classification
	Comparison of Loss Functions in Image Processing
	The Collaboration Between Loss Functions and Regularization
	Conclusion

	Common Architectures: SNN, DNN, FNN, CNN, and ResNet
	Simple Neural Network(SNN)
	Deep Neural Networks (DNN)
	Feedforward Neural Networks (FNN)
	Convolutional Neural Networks (CNN)
	Residual Networks (ResNet)

	Methodology
	Dataset and Preprocessing
	Model Architectures
	Optimization and Training Parameters
	Training Procedure and Monitoring

	Experiments and Results
	Experimental Setup
	Training Dynamics
	Learning Curves
	Convergence Rates

	Performance Metrics
	Accuracy and Loss
	Computational Efficiency
	Model Size and Complexity

	Summary of Results

	Analysis
	Comparison of Fully Connected Architectures
	Comprehensive Comparison of FNN and CNN
	Architectural Differences and Their Impact
	Parameter Efficiency
	Training Dynamics

	Extending the Comparison: ResNet vs. Other Networks
	Performance Gains from Residual Connections
	Complexity vs. Performance Trade-off
	Overfitting Characteristics

	Architectural Design Implications

	Discussion
	Model Complexity and Accuracy Trade-off
	Optimizer Considerations
	Practical Implications and Limitations
	Application-Specific Considerations
	Dataset Considerations
	Limitations of Study
	Future Research Directions

	Summary of Key Insights

	Conclusion
	Summary of Findings
	Implications for Neural Network Design
	Limitations and Future Work
	Concluding Remarks

	References

