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Abstract

Survival analysis is a statistical method used to analyze the time until an event of

interest occurs, commonly applied in medical research, epidemiology, engineering,

finance, and many other fields where the focus is on understanding the time until an

event happens. The primary objective of this study is to conduct survival analysis

aimed at identifying risk factors associated with the time from initiation of treatment

to death among individuals diagnosed with breast cancer. Methods employed include

Kaplan-Meier analysis, log-rank test, and the Cox proportional hazards model. Step-

wise Akaike Information Criterion (AIC) is utilized for model selection to identify

the final multivariable model. Schoenfeld residuals and Martingale residuals are em-

ployed to assess the validity of model assumptions. Additionally, Chi-square test

and Wilcoxon rank sum test is utilized to remain focus on the modeling techniques

related to survival analysis. Some potential issues, such as the limited sample size

and violations of the proportional hazards assumption, are present in the final model.

Plausible solutions to address these challenges are discussed.
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Chapter 1

Introduction

Survival analysis, also known as “Time to Event” Analysis, is an analysis method

that focuses on the time between the start of a particular event and a subsequent

event [1]. One of the most common practices of survival analysis is to analyze the

time from treatment to death but it is also widely utilized in other areas, such as

economics, engineering, etc.

The main purpose of this paper is to conduct a survival analysis to study the du-

ration between initiation of treatments and death among individuals diagnosed with

breast cancer based on SEER data. Factors such as race, age, marital status, tumor

status, and hormone stage are considered in the analysis. There are several reasons

for choosing survival analysis as the major analysis method. Firstly, the dataset

includes censored data, where the outcome of interest is only partially known, due

to various reasons, such as: a) A patient has not yet encountered the pertinent out-

come, such as relapse or mortality, by the study’s conclusion, b) A patient becomes

unavailable for follow-up during the study duration, c) A patient undergoes an alter-

nate event that precludes further follow-up [2]. Moreover, the survival time is most
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unlikely to be normally distributed [1]. Given the unique characteristics, survival

analysis method is the most appropriate approach for the study described in this

paper.

In addition to the basic data exploration and generations of descriptive statistics,

two major statistical models and tests in survival analysis will be utilized to explore

the SEER breast dataset. Firstly, the Kaplan-Meier Survival Curves will be used to

estimate and visualize survival probabilities stratified by covariates of interest. Next,

the Cox Proportional Hazards (PH) Model will be employed to assess the relationship

between covariates and breast cancer mortality and interpret the model coefficients to

understand the impact of each covariate on the hazard rate. Moreover, the step AIC

technique and likelihood ratio tests will be utilized to select the most appropriate

final cox regression model. Then, to examine model assumptions, martingale, and

Schoenfeld residuals are used.



Chapter 2

Data

This dataset, obtained from the November 2017 update of the Surveillance, Epidemi-

ology, and End Results (SEER) Program by the (National Cancer Institute) NCI of

the United States, provides valuable insights into population-based cancer statistics.

The study specifically focused on female patients diagnosed with infiltrating duct and

lobular carcinoma breast cancer (SEER primary sites recode NOS histology codes

8522/3) between 2006 and 2010. The dataset contains basic information from 4024

subjects, which includes age, race, marital status, and cancer information such as T

stage, N stage, etc. With survival month and status data available for subjects, the

dataset is well suited for conducting survival analysis. Additionally, approximately

84.7% of the individuals in the dataset are censored , i.e., did not experience the death

during the study period or were lost to follow-up before the death occurred. The

dataset is from Zenodo, a multi-disciplinary open repository maintained by CERN

[3]. R studio is the main programming language used to generate all the necessary

results and data visualizations. Libraries used include survival, ggplot, ggfortify, etc.

Data Description:

3
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• Age (Continuous): The age of the patient at diagnosis for this cancer. The

code represents the patient’s actual age in years.

• Race (Categorical): The race recode is determined by the race variables and the

American Indian/Native American IHS link variable. This recode is designed

to connect with populations categorized as white, black, and other, regardless

of Hispanic ethnicity. (Levels: White, Black, Other (American Indian/AK

Native, Asian/Pacific Islander)

• Marital Status (Categorical): The patient’s marital status at the time of di-

agnosis for the reportable tumor. (Levels: Single (never married), Married

(including common law), Separated, Divorced, Widowed)

• T Stage (Categorical): Based on the size of the tumor and the extent to which

it has grown into neighboring breast tissue. The higher the T number, the

larger the tumor and/or the more it may have grown into the breast tissue.

(Levels: T1, T2, T3, T4)

• N Stage (Categorical): Based on the number of lymph nodes involved and how

much cancer is found in them. The higher the N number, the greater the extent

of the lymph node involvement. (Levels: N1, N2, N3)

• 6th Stage (Categorical):Describes invasive breast cancer (cancer cells are break-

ing through to or invading normal surrounding breast tissue) (Levels: IIA, IIB,

IIIA, IIIB, IIIC)

• Grade (Categorical): A measurement of how much the cancer cells look like
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normal cells. (Levels:Grade I, Grade II, Grade III, Grade IV)

• A Stage (Categorical): The extent of cancer spread beyond the primary tumor

site. (Levels:Regional, Distant)

• Tumor Size (Continuous): The patient’s current tumor size.

• Estrogen Status (Categorical): Whether the cancer cells may receive signals

from estrogen that tell them to grow. (Levels:Positive, Negative)

• Progesterone Status (Categorical): Whether the cancer cells may receive signals

from progesterone that tell them to grow. (Levels:Positive, Negative)

• Regional Node Examined (Continuous): Records the total number of regional

lymph nodes that were removed and examined by the pathologist.

• Regional Node Positive (Continuous): Records the exact number of regional

lymph nodes examined by the pathologist that were found to contain metas-

tases.

• Survival Month (Continuous): The survival months of patients from the start

to the end of the study.

• Status (Categorical): Any patient that dies after the follow-up cut-off date is

recoded to alive as of the cut-off date. (Levels: Alive, Dead)



Chapter 3

Methods

Time-to-event variable is the variable of interest in survival analysis. A distinct

feature of time-to-event variable is that it is often incomplete. In survival analysis,

when the duration of observation for a subject is shorter than the time until the event

of interest occurs, it is termed ’right censoring.’ This incompleteness arises from

the event not being observed within the study’s time frame. Due to the difficulty

of estimating the mean and variance for censoring data, different approaches are

developed: Non-parametric and semi-parametric methods [4]. Specifically, the non-

parametric method does not require distributions to analyze specific distributions[5],

while semi-parametric statistical methods combine both non-parametric components

and parametric components[6].

3.1 Non-parametric Methods

Non-parametric statistical methods do not make many assumptions, or none at all,

about the shape or characteristics of the population distribution from which the

6
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sample was taken.

3.1.1 Censoring and Survival Analysis Fundamentals

Censoring

Censored data refers to the condition in statistical analysis and data collection where

the value of a measurement or observation is only partially known [7]. This typically

occurred when certain aspects of the data are obscured, leading to various types of

censoring:

Right Censoring: The most common type, where the observation ends before

the event occurs. For example, if a study ends and a participant has not yet ex-

perienced the event being studied (like relapse or equipment failure), their data is

right-censored. All censored data in this research is right-censored [8].

Left Censoring: When the event of interest has already occurred before the start

of the observation period. For instance, if a study starts observing patients after

they have already contracted a disease [8].

Interval Censoring: Occurs when the event happens within a certain time interval,

but the exact time is unknown. This can happen in medical studies where patients

are checked at intervals, and the exact time of change (like tumor growth) between

checks is unknown [8].

Random Censoring: This assumes that the censoring of an observation is inde-

pendent of the event time. It’s a more general assumption and can be unrealistic in

certain studies [8].
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Hazard Function

The hazard function, also known as the hazard rate, is a fundamental concept in

survival analysis . It describes the instantaneous rate of occurrence of the event

of interest (like failure or death) at a given time, assuming that the event has not

occurred up to that time. The hazard function is used to provide insights into the

dynamics of event occurrence over time and can vary significantly depending on the

type and conditions of the data being analyzed [9].

The formula of hazard function is given by:

h(t) = lim
∆t→0

Pr(t ≤ T < t+∆t | T ≥ t)

∆t

where the variables are defined as follows:

h(t) - Hazard function at time t, representing the instantaneous event rate.

∆t - A very small time interval.

T - A random variable representing the time until the occurrence of the event.

Pr(t ≤ T < t+∆t | T ≥ t) - Probability that the event occurs within the interval

[t, t+∆t), given that it has not occurred by time t.

A continuous failure rate is contingent on the presence of a failure distribution,

denoted as F (t). This function is a cumulative distribution function that outlines

the likelihood of a failure occurring by or before time t, and is defined as follows

Pr(T ≤ t) = F (t) = 1− S(t), t ≥ 0

Here, T symbolizes the time until failure. S(t) denotes the survival function
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and it represents the probability that the time until an event (like failure, death, or

another endpoint) is longer than a specific time t. The function F (t) is computed as

the integral of the failure density function f(t), over the interval from zero to t:

F (t) =

∫ t

0

f(τ) dτ

Based on these definitions, the hazard function h(t) is then defined by the ratio of

the failure density function to the remaining probability of survival, which simplifies

to:

h(t) =
f(t)

1− F (t)
=

f(t)

S(t)

This formulation provides insight into the rate at which failures occur as a func-

tion of time, taking into account the cumulative probability of failure and the prob-

ability of not having failed up to that point [10].

3.1.2 Kaplan-Meier Analysis

The Kaplan–Meier estimator is a non-parametric statistic used to estimate the sur-

vival function from lifetime data and it analyzes time-to-event data such as the time

until a patient experiences a certain event, such as death [11].

The Kaplan–Meier analysis is a common method for survival analysis. One dis-

tinguished feature of survival analysis is censored observation. Censoring data is

defined as a scenario within a study where only incomplete information is avail-

able for some subjects due to various reasons such as non-cooperation, dropouts, or
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the study’s conclusion before the occurrence of the event of interest. These cases are

known as right-censored observations. They offer partial insight since it’s only known

that these subjects have survived up until a certain last known point, and the pre-

cise timing of the event post-follow-up remains unknown. Although the exact event

timing for these individuals is not determined, their data is still useful and should

not be discarded, as it confirms survival up to the last observation point. These

considerations are vital in survival analysis, as they contribute to the understanding

of survival probabilities without skewing the overall findings. [12].

The Kaplan–Meier estimator is calculated as:

Ŝ(t) =
∏

ti<t

(
1− di

ni

)
Where:

Ŝ(t) is the estimated survival probability at time t.

ti are the distinct observed time points.

di is the number of events (e.g., deaths) observed at time ti.

ni is the number of individuals at risk of experiencing the event at time ti, which

means all subjects who have not yet experienced an event (like failure or death) at

time ti.

The estimator works by calculating the probability of survival at each distinct

time point in the dataset. It does this by dividing the number of individuals who

have not experienced the event of interest by the number of individuals at risk just

before that time point. The probability of survival is then multiplied cumulatively

across time points to estimate the overall survival function.

There are three assumptions for the Kaplan-Meier Analysis. Firstly, it is pre-
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sumed that individuals whose data are censored at any given point maintain equiv-

alent survival likelihoods to those who remain under observation. Secondly, the

assumption is that the survival probabilities do not differ between participants en-

rolled at the beginning of the study and those who join later, which means that

the survival times are supposed to be independent? Lastly, it is presumed that the

events of interest occur precisely at the times recorded.

The Kaplan–Meier curve graphically represents the survival rate or survival func-

tion. Time is plotted on the x-axis and the survival rate is plotted on the y-axis.

The steeper the curve, the higher event rate or death rate, which means a worse sur-

vival prognosis. Conversely, the flatter the curve, the lower event rate or death rate,

therefore a better survival prognosis. The survival probabilities can be compared

between groups if multiple curves are included in the graph. If curves are parallel to

each other, the survival probabilities are similar between groups. If curves intersect

or diverge, the survival probabilities are notably different [13].

3.1.3 Logrank Test

The logrank test is a non-parametric hypothesis test used for censored data in survival

analysis to compare the survival distributions of two or more groups. The null

hypothesis for the logrank test is that there is no distinction between the populations

in terms of the likelihood of an event (in this case, a death) occurring at any given

time, while the alternative hypothesis is there is distinction between the populations

in terms of the likelihood of an event occurring at any given time [15].

To perform the logrank test, various assumptions are needed. Firstly, it assumes
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independent censoring, where the censored data is not related to the chances of

the event of interest. Secondly, the test presumes that all groups being compared

have the same survival distributions when the null hypothesis holds true. Thirdly, a

consistent ratio of hazard rates between groups over time is presumed, an assumption

known as proportional hazards. Additionally, the test assumes that event times are

accurately recorded, and that there are no drop-outs or withdrawals other than those

accounted for by censoring. Finally, the test assumes homogeneity in the event rates

across the study period, with no fluctuations in the survival differences between the

groups.

The logrank test statistic evaluates the hazard functions of two groups at each

observed event time by comparing their estimated values. It is calculated by deter-

mining the observed and expected number of events in one of the groups at each

event time and then combining these values to generate a comprehensive summary

across all event times where an event occurs [14].

The logrank test statistic is defined as:

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

(3.1)
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where:

X2 = the chi-squared test statistic.

Oi = the observed number of events in the group i.

Ei = the expected number of events in the group i,

k = the total number of distinct event times observed in the study.

Performing the logrank test is divided into five step. Firstly, divide the observa-

tion period into distinct time intervals or event times. Then, for each event time,

calculate the observed number of events (e.g., deaths) in each group. Next, calcu-

late the expected number of events in each group under the null hypothesis of no

difference. This is typically based on the assumption that the hazard functions are

the same for all groups. Moreover, compute the logrank test statistic, which mea-

sures the discrepancy between the observed and expected numbers of events across

all event times. Lastly, assess the significance of the logrank test statistic using the

chi-squared distribution with appropriate degrees of freedom [15].

As an illustration of logrank test, suppose we want to compare the survival prob-

ability among the ethnicity groups, i.e., white, black and other). Below shows the

output using survdiff function in the survival package in R.
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Here is the interpretation of key components in the output:

N: This column indicates the number of individuals in each racial group included

in the analysis.

Observed: This column shows the actual number of events (deaths) observed in

each racial group.

Expected: This column displays the expected number of events in each racial

group under the null hypothesis of no difference between the groups. It’s typically

calculated based on the overall event rate in the entire sample.

(O − E)2/E: This column presents the contribution of each racial group to the

overall chi-squared statistic. It measures the discrepancy between the observed (O)

and expected (E) numbers of events, standardized by the expected number of events.

(O−E)2/V : This column is similar to the previous one but standardized by the

total variance (V) of the observed minus expected counts across all groups.

Chisq: This value represents the overall chi-squared statistic, which quantifies

the overall difference in survival distributions among the racial groups.

Degrees of freedom: This indicates the number of categories minus 1. In this

case, there are three racial groups, so the degrees of freedom are 2.

p-value: This value indicates the statistical significance of the chi-squared statis-
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tic. A small p-value (e.g., 2e-07) suggests that there is strong evidence to reject

the null hypothesis of no difference between the racial groups in terms of survival

outcomes.

Additionally, the expected number of events for each group in the output can be

calculated as:

Expected number of events for group i =
∑
j

(
nij

nj

· dj
)

where the variables are defined as:

nij is the number of individuals at risk in group i just before time j.

nj is the total number of individuals at risk in all groups just before time j.

dj is the total number of events (such as deaths) observed at time j across all

groups.

To calculate the expected number of events for a group across the entire study

period, sum the products of the proportion of individuals at risk in the group and

the number of events at each time point[16].

Overall expected number of events for group i =
∑
j

(
nij∑
k nkj

· dj
)

This sum is taken over all time points j where events occur, providing the total

expected number of events for group i under the null hypothesis that the survival

functions are the same across all groups[16].
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3.2 Cox Proportional Hazards Model

The Cox proportional hazards model is a statistical technique introduced by David

Cox in 1972 that can be used for survival-time (time-to-event) outcomes on one or

more predictors. Proportional hazards regression, often referred to as the Cox re-

gression model, holds significance as a multivariable model, particularly in situations

where the outcome involves the duration until a specific event occurs, such as infec-

tion or death. This model is commonly used to evaluate the relationship between

the survival time of patients and one or more predictor variables.

A key advantage of using the Cox regression model in survival analysis is its

ability to handle censoring data. Censored data occur when the event of interest

has not occurred by the end of the study for some participants. These patients

contribute data only up to the time they are censored, thereby influencing the overall

estimation of the time to events within the population. It’s important to recognize

that in scenarios where there’s no censorship, such as when all patients experience

the event, a generalized linear regression model would be suitable for modeling the

time to the event.

In Cox model, he response variable is the hazard function h(t), which assesses

the probability that the event of interest (in this case, death) occurred before t. The

equation models this hazard as an exponential function exp of an arbitrary baseline

hazard h0(t) when all covariates are all set at zero, and β is the regression coefficient

of the covariate, x [17].
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Here is the formula for the Cox proportional hazards model:

h(t | X) = h0(t) exp(β1X1 + β2X2 + . . .+ βiXi)

where:

h(t | X) is the hazard at time t for an individual given the covariate X.

h0(t) is the baseline hazard, which is the hazard function for an individual with

the baseline level (typically zero) of the covariates.

exp(β1X1+β2X2+ . . .+βiXi) is the exponential function of the linear predictor,

which is the sum of the products of covariates Xi and their corresponding coefficients

βi.

βi represents the coefficient for the i-th covariate, indicating the effect size of the

covariate on the hazard.

Xi represents the value of the i-th covariate.

The exp(βi) terms are referred to as hazard ratios, and they describe how the

hazard changes in response to a one-unit change in the i-th covariate, assuming

other covariates are held constant. The model’s assumption of proportional hazards

implies that the effect of the covariates on the hazard is multiplicative and does not

change over time.

One of the model’s core assumptions is the proportional hazards assumption,

which indicates that the effects of the covariates on the hazard are multiplicative

and remain constant over time. This implies that the hazard functions for different

groups (strata) are proportional and do not cross over time.

Another key assumption of the Cox model is that the relationship between the
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natural logarithm of the hazard and each covariate is linear. This linear relationship

can often be verified through residual plots, which help assess whether the model

assumptions are reasonably satisfied in the given data.

Cox proportional hazards regression model

In the Cox Proportional Hazards (PH) model, the estimates for the parameters are

derived by maximizing the partial likelihood . The partial likelihood, which is utilized

for this purpose, is presented as follows:

L(β) =
k∏

i=1

exp(β′Xi)∑
j∈R(ti)

exp(β′Xj)

where:

L(β) is the partial likelihood function.

β represents the vector of coefficients associated with the covariates.

β′Xi is the dot product of the coefficients vector and the covariates vector for the

i-th individual who experienced the event.

R(ti) denotes the risk set at time ti, which is the set of all individuals who are at

risk of the event just prior to time ti. In other words, it represents all subjects who

have not yet experienced an event (like failure or death) at time ti.

The numerator exp(β′Xi) is the estimated hazard for the i-th individual who

experienced the event.

The denominator
∑

j∈R(ti)
exp(β′Xj) is the sum of the estimated hazards for all

individuals in the risk set at ti.

The log partial likelihood function for the Cox proportional hazards model is
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expressed as the logarithm of the partial likelihood function, given by:

l(β) = logL(β) =
∑
i:δi=1

Xiβ − log

 ∑
j:Yj≥Yi

exp(Xjβ)


where:

l(β) is the log partial likelihood function.

L(β) is the partial likelihood function.

β represents the vector of coefficients associated with the covariates.

Xi is the vector of covariates for the i-th individual.

Yi is the observed survival time for the i-th individual.

δi is an indicator that is 1 if the i-th observation is uncensored and 0 otherwise.

The inner sum is taken over all individuals j whose survival time Yj is greater

than or equal to Yi, signifying that they are at risk at time Yi.

Cox and others have demonstrated that the partial log-likelihood from the Cox

Proportional Hazards model functions can be considered as an ordinary log-likelihood.

This similarity allows for the derivation of valid (partial) maximum likelihood esti-

mates (MLEs) of the coefficients . As a result, it is feasible to estimate hazard ratios

and confidence intervals using maximum likelihood methods that are traditionally

applied to full likelihoods, though in this case, the calculations are based on the

partial likelihood. The use of the partial likelihood is considered valid and reliable as

long as there are no ties in the dataset, meaning no two subjects experience the event

at precisely the same time. However, if ties do occur, calculating the true partial

log-likelihood becomes considerably more complex and time-consuming, involving

permutations of the data [18].



3.2. Cox Proportional Hazards Model 20

3.2.1 Model Selection

Model selection is a critical step in building Cox PH model to identify most relevant

covariates associated with survival outcomes. Akaike information criterion [19] is a

commonly used metric for selecting variables in survival analysis.

The Akaike Information Criterion (AIC) assesses the quality of statistical models

by balancing the trade-off between goodness of fit and model complexity [20]. The

AIC can be utilized in model selections by comparing the AIC values of different

models fitted to the same dataset. Models with lower AIC values indicate a better

balance between goodness of fit and model complexity. Researchers will select the

model with the lowest AIC values as the most appropriate model for the data. In

this case, the risks of overfitting and underfitting for the model will be eliminated,

which maximizes the accuracy of the prediction model [21].

The AIC value is calculated using the following formula:

AIC = 2k - 2ln(L)

Where:

k = Number of parameters in the model

L = Likelihood of the observed data under the model

ln(L) = Natural logarithm of the likelihood function

The large parameter number(k) generally means a more complex model, which

can fit the data better but might also lead to overfitting (i.e., fitting the noise in the

data rather than just the underlying relationship).

The likelihood function measures how likely it is to observe the given data under

a specific statistical model with certain parameters. A higher value of L indicates
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that the model with the chosen parameters is more likely to produce the observed

data, which means that the model fits the data better with a high values of L. ln(L)

is used instead of L because the likelihood can be a very small number, making it

difficult to work with computationally. The logarithm transforms the product of

probabilities into a sum, simplifying the calculation [21].

In R, the step() function is commonly used for the context of model selection

procedures, particularly in the context of the Cox proportional hazards model in

survival analysis. The step() function performs backward step-wise regression by

default, which is a method for iteratively removing variables from the model based

on certain criteria, such as minimizing the Akaike Information Criterion (AIC) or

the Bayesian Information Criterion (BIC).

In the research, the response variable is created by ’Surv()’ function in R. This

function is used to create a survival object, which is a special type of data structure

used in survival analysis to represent survival times and censoring indicators. The

response variable is the survival object created by ’Survival Month’ and ’Status’

variables in the dataset, and it is named ’survivaldata
′.

The initial Cox proportional hazards model assumes all the covariates have an

impact on the survival outcome. Then, in order to select the most appropriate model

for the dataset, the step() function is utilized. The function with the lower AIC value

is selected as the final model for the dataset.
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3.2.2 Schoenfeld individual test

Schoenfeld residuals are a diagnostic tool used in survival analysis to assess the

proportional hazards assumption in Cox proportional hazards models. Schoenfeld

residuals are obtained by maximizing the partial likelihood function with respect to

regression coefficient of the Cox model, which are defined as the difference between

the observed and expected values of a covariate at each event time. If the assumption

of PH holds, a plot of these residuals against ordered death times should look like a

random walk without any pattern. [22].

The null hypothesis for the Schoenfeld individual test is that there is no violation

of the proportional hazards assumption. In other words, the hazard functions of the

groups being compared do not vary over time. The alternative hypothesis is that

there is a violation of the proportional hazards assumption. The hazard functions of

the groups being compared (e.g., treatment vs. control) vary over time, indicating

that the proportional hazards assumption is not met.

3.2.3 Martingale Residual

Martingale residuals are used to assess the goodness-of-fit for a Cox proportional

hazards model. Since the Cox model is a hazard model, traditional residuals don’t

apply. Martingale residuals are instead calculated as the difference between the

observed number of events and the expected number of events, as predicted by the

model, up to a certain time [23].

The formula for Martingale residuals is:
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Mi = δi −
∫ ti

0

h0(u)e
β′Xi du

where:

Mi is the Martingale residual for the i-th individual.

δi is the event indicator, which is 1 if the event (such as failure or death) has

occurred for the i-th individual, and 0 otherwise.

ti is the observed time until the event or censoring for the i-th individual.

h0(u) is the baseline hazard function at time u, which is unspecified in the Cox

model.

β is the vector of coefficients estimated from the Cox model.

Xi is the vector of covariates for the i-th individual.

While martingale residuals are useful for assessing the overall fit of a model, their

asymmetric nature can make it challenging to utilize them for identifying outliers.



Chapter 4

Results

The study focuses on the SEER Breast Cancer dataset encompassing 4,024 individ-

uals, incorporating essential demographic and clinical particulars such as age, race,

marital status, cancer stages, and hormone receptor status. Given the presence of

censored observations—wherein 84.7% of the data does not have the event of interest

occurring within the study period, survival analysis is an effective method to handle

such incomplete data effectively.

The primary goal of this research is to identify key determinants that signif-

icantly impact the survival probabilities of patients. To achieve this, a blend of

non-parametric techniques, specifically the Kaplan-Meier Analysis and logrank test,

alongside a semi-parametric approach, the Cox proportional hazards model, are em-

ployed.

This section is dedicated to presenting and interpreting the outcomes derived

from these statistical methodologies.

24
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4.1 Kaplan-Meier Analysis

Here are the Kaplan-Meier plots generated from all the covariates in the dataset.

In the study, all continuous variables are divided into four groups based on their

quantiles to simplify the process and enhance the clarity of the plots.

Figure 4.1: The Kaplan–Meier curve for age

From the Figure 4.1, it can be observed that the survival probability and age is

related negatively. For each curve, with the increase of age, the survival probability

decreases. Moreover, the survival probability varies between each group. ’Q4’ group

(the purple line) represents the subjects with highest ages in the dataset, and its

survival probability is obviously lower than the other groups. In terms of other

three groups, although the difference between them is relatively small, it can still

observe that the survival probability for groups with lower ages is higher than that



4.1. Kaplan-Meier Analysis 26

for groups with larger ages. Additionally, ’+’ signs on the curve represents censored

data. Therefore, it can be reasonably concluded that the survival probability is lower

for elder people with breast cancer compared to young people with breast cancer.

Figure 4.2: The Kaplan–Meier curve for race

From the Figure 4.2, it is evident that the survival probability for black individu-

als is notably lower compared to other racial groups, specifically Others and Whites.

Conversely, the group ’Other’ exhibits the highest survival probability among all the

groups depicted. Additionally, it’s worth noting that the confidence interval for the

black group appears to be broader in comparison to the intervals of other groups,

indicating higher uncertainty in the estimation of survival probabilities within that

demographic. On the other hand, the confidence interval for the white group is nar-

row among all the groups, which means that white group has the lowest uncertainty

in the estimation of survival probabilities.
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Figure 4.3: The Kaplan–Meier curve for marital status

The Figure 4.3 displays survival probabilities over time across five marital sta-

tuses. Married individuals exhibit the highest and most stable survival probability,

followed by single and separated categories which show moderate declines. The

divorced group’s survival probability decreases more noticeably, and the widowed

group’s curve declines the fastest, indicating the lowest survival probability over

time. The shaded areas around each line represent the confidence intervals, and the

’plus’ symbols indicate censored data, where participants left the study or were lost

to follow-up. The trends suggest differences in survival based on marital status, with

some groups consistently faring better or worse over the observed period.
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Figure 4.4: The Kaplan–Meier curve for cancer T stage

The Figure 4.4 represents survival probabilities for different cancer T stages over

time. The ’T’ in T stage refers to the size and extent of the main tumor. The

four curves, each color-coded for stages T1 through T4, show that higher stages

correspond to lower survival probabilities. T1 has the highest survival probability,

indicating that patients with the smallest tumors fare better over time, while T4,

representing the most advanced tumors, has the lowest survival probability. The

plot’s declining lines reflect decreasing survival probabilities as time progresses, with

the shaded areas around each curve representing confidence intervals. The plus

symbols indicate censored data points where patients were lost to follow-up or the
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study ended without an event occurring for those patients. The trend suggests that

as the T stage increases, the survival probability decreases.

Figure 4.5: The Kaplan–Meier curve for cancer N stage

The Figure 4.5 presents a comparative survival analysis for patients across three

nodal involvement levels: N1, N2, and N3. The red line represents N1, typically

indicating minimal lymph node involvement, and it shows a relatively gentle slope

downwards, indicating a higher survival probability over time. The green line for N2,

marking intermediate lymph node involvement, reveals a steeper descent, suggestive

of a quicker reduction in survival probability. The most pronounced decline is seen

in the blue line for N3, which denotes extensive nodal involvement, correlating with

the lowest survival rates across the time spectrum. The bands surrounding each line
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illustrate the confidence intervals, reflecting the statistical uncertainty of the survival

estimates. Plus symbols along the survival curves indicate censored observations,

representing patients who were lost to follow-up or whose study ended before an

event occurred. The plot clearly demarcates the survival impact of increasing nodal

involvement in cancer progression.

Figure 4.6: The Kaplan–Meier curve for cancer 6th stage

The Figure 4.6 here compares survival probabilities for various sub-stages of can-

cer stage 6: IIA, IIB, IIIA, IIIB, and IIIC. The plot indicates that patients with

stage IIA cancer, represented by the lightest colored line at the top, have the high-

est survival probability. As the sub-stages progress towards IIIC, depicted by the

purple line at the bottom, survival probabilities decrease notably. The plot shows a
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clear stratification of survival outcomes based on the sub-stage, with more advanced

stages correlating with lower survival probabilities. Shaded areas indicate the confi-

dence intervals for each sub-stage, offering a visual representation of the statistical

uncertainty associated with the survival estimates. Plus signs on the curves represent

censored data points for patients who were lost to follow-up or survived until the end

of the study period.

Figure 4.7: The Kaplan–Meier curve for grade

The Figure 4.7 for cancer grade demonstrates a clear stratification of patient

survival based on cellular differentiation. Well-differentiated (Grade I) tumors, shown

in purple, have the highest survival probabilities, reflecting their closer resemblance

to normal cells. As the grade increases in severity to moderately differentiated (Grade
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II in red), poorly differentiated (Grade III in green), and undifferentiated (Grade IV

in light blue), survival probabilities correspondingly decrease. The steepest decline

is seen with undifferentiated cancers, indicating the most aggressive behavior and

poorest prognosis. The shaded regions denote confidence intervals, while plus signs

mark censored data, signifying patients who did not have the event (e.g., death)

occur during the study period.

Figure 4.8: The Kaplan–Meier curve for cancer A stage

From Figure 4.8, two distinct cancer stages, Regional and Distant, are compared

in terms of patient survival over time. The teal curve represents patients with Re-

gional stage cancer, showing a higher survival probability that gently slopes down-

ward, indicating a better prognosis for these patients. Conversely, the pink curve
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denotes the Distant stage cancer, which has a much steeper decline, reflecting a sig-

nificantly lower survival probability over time and a worse prognosis. The plot’s plus

symbols indicate censored data points, where patients were lost to follow-up before

the study’s end or the event of interest occurred. The shaded areas represent the

confidence intervals, highlighting the precision of the survival probability estimates.

Figure 4.9: The Kaplan–Meier curve for tumor size

The Figure 4.9 compares the survival probabilities of cancer patients across four

quantiles (Q1-Q4) of tumor size, suggesting tumor size was categorized into four equal

groups based on patient distribution. The curve for Q1, representing the smallest

tumors, shows the highest survival probability, with a gradual decrease over time. As

tumor size increases through Q2 and Q3, there is a corresponding stepwise decrease in
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survival probabilities. The Q4 group, representing the largest tumors, has the lowest

survival probability with the steepest decline. The shaded areas around each curve

illustrate the confidence intervals, while plus symbols mark censored data points,

indicating patients who were lost to follow-up or were still alive at the study’s end.

The plot reveals a clear trend: larger tumor sizes are associated with lower survival

probabilities.

Figure 4.10: The Kaplan–Meier curve for estrogen status

The Figure 4.10 illustrates the survival probabilities of patients based on their

estrogen status, with two distinct groups represented: estrogen-positive and estrogen-

negative. The teal curve signifies patients who are estrogen-positive and shows a more

favorable survival probability that declines slowly over time. In contrast, the pink
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curve indicates estrogen-negative patients, displaying a steeper decline in survival

probability, suggesting a less favorable outcome. The shaded areas around each

curve represent the confidence intervals, providing a visual measure of the estimate’s

precision, while the plus symbols indicate censored data, for patients who were lost

to follow-up or did not experience the event by the study’s end.

Figure 4.11: The Kaplan–Meier curve for progesterone status

This Figure 4.11 displays survival probabilities over time for patients with differ-

ent progesterone receptor (PR) statuses, divided into PR-positive and PR-negative

groups. The teal curve represents PR-positive patients, showing a higher survival

probability with a more gradual decline over time. The pink curve, corresponding to

PR-negative patients, exhibits a steeper decrease in survival probability, indicating
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a less favorable prognosis. The shaded bands around the curves indicate the confi-

dence intervals, capturing the variability of the survival estimates. Plus signs along

the curves denote censored data, representing patients who either left the study early

or were alive at the end of the study period.

Figure 4.12: The Kaplan–Meier curve for regional node examined

Figure 4.12 represents survival probabilities based on the number of regional

lymph nodes examined in cancer patients, divided into four quantiles (Q1-Q4) to

handle the continuous nature of the variable. The patients in Q1, likely having the

fewest nodes examined, show the highest survival probability, and this probability

decreases with each subsequent quantile. Q4, representing the patients with the most

nodes examined, has the lowest survival probability and the steepest decline. This
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suggests a potential association between the number of lymph nodes examined and

patient survival outcomes. The plot’s descending lines with plus symbols indicate

censored data, while the surrounding shaded areas provide confidence intervals for

each quantile’s survival estimate.

Figure 4.13: The Kaplan–Meier curve for regional node positive

The Figure 4.13 depicted here illustrates the survival probabilities for patients

with regional lymph node involvement, categorized into four groups (Q1-Q4) based

on quantiles of the number of positive nodes. Q1, with the fewest positive nodes, dis-

plays the highest survival probabilities, starting near 100% and declining gently over

time. Survival probabilities progressively decrease with higher quantiles, indicating

more lymph node involvement. Q4 shows the lowest survival probability, with the
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most significant decrease, suggestive of a higher disease burden. The plot’s descend-

ing trend lines, along with plus symbols for censored data and shaded confidence

intervals, underscore the impact of lymph node involvement on survival outcomes.

4.2 Logrank Test

The following table is the summary of the logrank test results for each variable in

the dataset:

Table 4.1: Logrank Test results

Variable name P-value

Age 5× 10−6

Race 2× 10−7

Marital Status 2× 10−6

T Stage < 2.2× 10−16

N Stage < 2.2× 10−16

6th Stage < 2.2× 10−16

Grade < 2.2× 10−16

A Stage 5× 10−12

Tumor Size 0.3

Estrogen Status < 2.2× 10−16

Progesterone Status < 2.2× 10−16

Regional Node Examined 0.3

Regional Node Positive < 2.2× 10−16
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From the results for each variable, since the p values for ’tumor size’ and ’regional

node examined’ variables are larger than the given significant level ((α)= 0.05), it

can be concluded that we do not have enough evidence to reject the null hypothesis.

In other words, there are no distinctions between the populations in terms of the

likelihood of an event for ’tumor size’ and ’regional node examined’ variables.

Moreover, since the p values for other variables in the dataset are smaller than the

given significant level, we have enough evidence to reject the null hypothesis, which

means that there are distinctions between the populations in terms of the likelihood

of an event.

4.3 Cox Proportional Hazards Model

In order to select the most appropriate model for the dataset, the step() function is

utilized. The function with the lower AIC value is selected as the final model for the

dataset.

The final model is summarized as :
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Variable Coefficient Hazard Ratio 95% Confidence Interval

age 0.021 1.021 (1.012, 1.030)

raceOther -0.825 0.438 (0.290, 0.663)

raceWhite -0.434 0.648 (0.506, 0.830)

cancer TstageT2 -0.390 1.478 (1.213, 1.800)

cancer TstageT3 0.516 1.674 (1.304, 2.149)

cancer TstageT4 0.948 2.576 (1.794, 3.675)

cancer NstageN2 0.374 1.453 (1.250, 1.917)

cancer NstageN3 0.566 1.762 (1.241, 2.501)

Grade I -0.452 0.637 (0.455, 0.890)

Grade III 0.352 1.421 (1.193, 1.691)

Grade IV 1.074 2.926 (1.491, 5.742)

Estrogen StatusPositive -0.650 0.522 (0.401, 0.680)

Progesterone StatusPositive -0.493 0.611 (0.496, 0.753)

regional node examined 0.036 0.967 (0.955, 0.979)

regional node positive 0.063 1.065 (1.042, 1.089)

Table 4.2: Coefficient and Hazard Ratio Estimates from Cox PH Model

This table displays the results from the final Cox proportional hazards model.

Variable: The predictor or feature in the model.

Coefficient: A value representing the log hazard ratio for the corresponding vari-

able. A positive coefficient suggests that as the value of the variable increases, the

event hazard increases, while a negative coefficient suggests a decrease in hazard with
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an increase in the variable.

Hazard Ratio: This is the exponentiated coefficient, indicating the factor by

which the hazard (risk of the event occurring) is multiplied for a one-unit increase in

the variable. A hazard ratio above 1 indicates an increased hazard, while a hazard

ratio below 1 indicates a decreased hazard.

95% Confidence Interval: To display the uncertainty of the hazard ratio,the 95%

Confidence Interval of the hazard ratio is included in the table.

Here’s a brief interpretation of the results:

• age: For each one-year increase in age, the hazard increases by a factor of

about 1.021, which means older individuals have a slightly higher risk of the

event happening.

• raceOther: Being of a race classified as “Other” (American Indian/AK Native,

Asian/Pacific Islander) is associated with about a 56.2% decrease in the hazard

compared to the baseline race (Black), since the hazard ratio is less than 1.

• raceWhite: Being white is associated with a 35.2% decrease in the hazard

compared to the baseline race.

• cancer Tstage: The various stages of cancer T-stage have different effects.

For instance, T2 is associated with a 47.8% increase in hazard, T3 with a

67.4% increase, and T4 with a 157.6% increase, indicating progressively higher

risks with advancing T-stage. The baseline level used for comparison is T1

stage.
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• cancer NstageN2 and cancer NstageN3: Higher N-stages indicate a higher

hazard, with N3 being associated with a 76.2% increase in hazard. The baseline

level used for comparison is N1 stage.

• Grade: Different cancer grades show different risks. Poorly differentiated

(Grade III) increases hazard by 42.1%, while undifferentiated/anaplastic (Grade

IV) nearly triples the hazard. In contrast, well-differentiated (Grade I) de-

creases the hazard by 36.3%. The baseline level used for comparison is Grade

II.

• Estrogen StatusPositive: A positive estrogen status is associated with a

decrease in hazard by about 47.7%. The baseline level used for comparison is

negative estrogen status.

• Progesterone StatusPositive: A positive progesterone status is associated

with a decrease in hazard by about 39.0%. The baseline level used for compar-

ison is negative progesterone status.

• Regional node examined and Regional node positive:The hazard ratio

for examined regional node is 1.036199, which indicates that for each additional

examined regional node , there is a 3.62% increase in the hazard, and the

hazard ratio for positive regional node is 1.06545, so for each additional positive

regional node, there is 6.55% increase in the hazard.
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4.4 Schoenfeld Residual Diagnosis

In order to assess if the proportional hazards assumption is met for the final model

selected by step() function, the Schoenfeld residuals and score test is performed.

Here are the results for the test:

Variable P Value

Age 0.76

Race 0.57

Cancer Tstage 0.97

Cancer Nstage 0.38

Grade 0.55

Estrogen Status 3.0 ×10−8

Progesterone Status 8.4 ×10−9

Regional node examined 0.87

Regional node positive 0.79

Table 4.3: The Schoenfeld score test results

From the result, it can be observed that the covariates except ’Estrogen Status’

and ’Progesterone Status’ have the p-value larger than the significant level ((α) =

0.05). Therefore, we do not have enough evidence to reject null hypothesis, which can

be concluded that there is no violation of the proportional hazards assumption for

these covariates. However, since the p-values for ’Estrogen Status’ and ’Progesterone

Status’ are very small, which means that there is a violation of the proportional
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hazards assumption for these two covariates. With the effects of the significant

covariates, the global test result has the p-value much smaller than the significant

level, so the violation of the proportional hazards assumption exists for the final

model.

To further explore the result of the Schoenfeld individual test of the final model,

the Schoenfeld individual test plots are utilized. Here are the plots generated from

the final model:

Figure 4.14: The Schoenfeld individual test plots

If the Schoenfeld residuals plots exhibit a horizontal or random pattern, the pro-

portional hazards assumption is not violated. Conversely, if the Schoenfeld residuals

plots exhibit a clear and consistent pattern, the proportional hazards assumption is
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violated [24].

It can be observed from the plots generated from the final model, covariates

expect ’Estrogen Status’ and ’Progesterone Status’ manifest random or horizontal

patterns, so they do not violate the proportional hazards assumption. On the other

hand, the patterns for ’Estrogen Status’ and ’Progesterone Status’ are curvy with

consistent patterns, so they violate the proportional hazards assumption.

4.5 Martingale Residuals

The martingale residuals plot was an important tool in accessing the goodness-of-fit.

If the scatter plot does not show any obvious patterns or systematic deviations from

the horizontal line at zero, this typically suggests that the Cox proportional hazards

model may have a reasonable goodness of fit to the data. A lack of pattern means

that the model is not systematically over or under predicting the hazard at different

times, which is an indication that the functional form of the covariates in the model

might be appropriate.

Here is the martingale residuals plot generated from the continuous variables in

the dataset (age, tumor size, regional node examined, and regional node positive) of

this research:
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Figure 4.15: The Martingale Residuals Plot for Age

Figure 4.16: The Martingale Residuals Plot for Tumor Size
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Figure 4.17: The Martingale Residuals Plot for Regional Node Examined
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Figure 4.18: The Martingale Residuals Plot for Regional Node Positive

From the above plots, it can be observed that no obvious pattern is shown in the

graph. This lack of pattern suggests that the model may not be missing any major

non-linear effects of the covariates. Moreover, the residuals cluster around the zero

line, so the model reasonably fitted all the continuous data. Additionally, although

there are some potential outliers shown in the graph, it cannot be ensured if the

outliers exist in the data due to martingale residuals’ inherent property of lack of

symmetry.

The model’s goodness of fit cannot be affirmed from the martingale residuals

plot alone, but it can be concluded that there are no major evident issues with the

model’s fit to the data.
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Discussion

5.1 Comparing non-parametric models and the Cox proportional haz-

ards model

Non-parametric models and the Cox proportional hazards model are commonly used

in survival analysis due to their appropriate approach to censored data, which is the

most unique characteristic in survival analysis. Both advantages and disadvantages

exist in these models.

The most common non-parametric technique for modeling the survival function

is the Kaplan-Meier estimate. The Kaplan-Meier estimate has benefits in flexibility,

and the model complexities grow with the increase of observation sizes. However,

there are two major disadvantages exist. Firstly, it is hard for covariates to be

incorporated into the model. In other words, describing the differences between

individuals in their survival functions is challenging. To deal with the problem, one

approach is to compare different fitting models using different subpopulations, which

is infeasible as the sample size becomes larger. Secondly, the survival functions are

49
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not smooth. Although it is possible that the functions become more smooth as the

sample sizes increase, the models built from small sample sizes are not smooth and

are likely to generate unrealistic properties [25].

From the result of my research, the small sample size with only around 4000 causes

some limitations in the research. Firstly, it can be observed that the Kaplan-Meier

curves are not smooth all the time. The sample size limits the interpretation and

generalizability of the findings. Moreover, for the log-rank test, there exists results

that have higher observation values than the actual observations, such as the Black

racial group, which suggests potential disparities in survival outcomes. However,

caution should be exercised in drawing definitive conclusions, as the relatively small

sample size may introduce uncertainty and variability in the estimates. Further

research with larger and more diverse cohorts is warranted to corroborate these

findings and provide more robust insights into the impact of race on survival outcomes

in this population.

With the advantage of avoiding reliance on uncertain assumptions, such as con-

stant hazard and linearly increasing hazard, of the Cox Proportional hazard model,

it is an ideal statistical method to construct a regression model for censored data.

However, the Cox Proportional hazard model possesses some drawbacks. Firstly, the

assumption of proportional hazards is often unrealistic, posing challenges in its ver-

ification and potentially resulting in significant biases. Since the Cox Proportional

hazard model assumes that the hazard functions for different groups are proportional

over time, so the model’s results may be biased or inaccurate if this assumption is

violated. Secondly, the Cox model exhibits lower statistical efficiency compared to
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models like Weibull models, which utilize the complete survival time information.

Moreover, hazard ratios provided by the Cox model can sometimes be challenging to

interpret, especially when covariates are categorical or time-dependent [26].

5.2 Potential Problems in the final Cox Proportional Hazard Model

The final Cox proportional hazard model includes the covariates of age, race, cancer T

stage, cancer N stage, grade, estrogen status, progesterone status, examined regional

node, and positive regional node. As mentioned in the test of proportional hazard

assumptions, the covariates of Estrogen Status and Progesterone Status have the p

values smaller than the significant level of 0.05. This suggests that the proportional

hazards assumption for covariates is violated. Therefore, the whole model violates

the proportional hazards assumption.

One of the reasons that causes this violation is the binary covariate’s interaction

with other variables in the model, leading to time-dependent effects on the hazard

ratio over the observation period [27]. Estrogen Status and Progesterone Status are

binary covariates with two levels of positive and negative, so it is possible that their

effects on survival change over time, especially in the context of hormone-related

treatments or interventions. Additionally, the presence of unmeasured confounding

factors related to hormonal fluctuations or treatment responses may further con-

tribute to deviations from proportional hazards. Therefore, careful consideration of

these factors and potentially incorporating time-varying covariates or stratification

techniques may be necessary to address the violation of the proportional hazards

assumption in Cox regression modeling.
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Stratified Cox model is a plausible way to solve the problem. The Stratified

Cox model is an adaptation of the Cox proportional hazards (PH) model, enabling

the management of predictors that do not adhere to the PH assumption through

the technique of stratification. This approach involves dividing the dataset into dis-

tinct groups based on the stratifying variable, allowing for separate baseline hazard

functions within each stratum while still estimating the effects of other covariates

consistently across all strata. By stratifying on variables that violate the PH as-

sumption, such as categorical predictors or time-varying covariates, the Stratified

Cox model provides a flexible and robust framework for survival analysis, enhancing

the accuracy and reliability of the results [28].

An alternative model that can be employed is Accelerated failure time(AFT)

model. The accelerated failure time (AFT) model stands as a parametric alternative

to the more prevalent proportional hazards models. While the proportional hazards

model posits that a covariate impacts the hazard by a multiplicative constant, the

AFT model posits that a covariate affects the timeline of a disease’s progression by a

constant factor, either hastening or delaying the event of interest. It’s referred to as

“accelerated” because the model essentially estimates how much the covariates speed

up (accelerate) or slow down (decelerate) the time to the event [29]. Unlike the Cox

model, which models the hazard rate, the AFT model directly estimates the effect of

covariates on the survival time. It assumes that covariates accelerate or decelerate

the life process by a constant factor. The AFT model focuses on survival time as the

outcome of interest, rather than the hazard rate. This focus on time-to-event rather

than the rate of event occurrence makes the AFT model suitable for situations where
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the hazards are not proportional. Therefore, Accelerated failure time(AFT) model is

an ideal alternative model when the proportional hazards assumptions are not held

by the Cox proportional hazards model[30].
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Appendix A

Chi-square Test

The Chi-square statistic(χ2) serves as a non-parametric tool, free from distribution

assumptions, aimed at examining disparities between groups when the dependent

variable is assessed categorically at a nominal level [31]. Specifically, the research

utilized the Pearson’s chi-square test for independence.

In the research, the chi-square for independence is performed between all categor-

ical variables(race, marital status, T stage, N stage, grade, A stage, estrogen status,

progesterone status) in the dataset and the status to test if the variable is associated

with subjects’ status.

The significant level(α) is 0.05.

Null hypothesis(H0): The variable and status are independent.

Alternative hypothesis(HA):The variable and status are not independent.

The following table is the summary of the results.
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Table A.1: Chi-square Test Results

Variable name Levels P-value Proportion

Race Black, Other , White 8.411× 10−7 We have strong evidence

to reject the null hypothesis.

Marital Status 28.264 1.103× 10−5 We have strong evidence

to reject the null hypothesis.

T Stage 103.48 < 2.2× 10−16 We have strong evidence

to reject the null hypothesis.

N Stage 269.93 < 2.2× 10−16 We have strong evidence

to reject the null hypothesis.

Grade 112.56 < 2.2× 10−16 We have strong evidence

to reject the null hypothesis.

A Stage 35.765 2.226× 10−9 We have strong evidence

to reject the null hypothesis.

Estrogen Status 135.16 < 2.2× 10−16 We have strong evidence

to reject the null hypothesis.

Progesterone Status 124.89 < 2.2× 10−16 We have strong evidence

to reject the null hypothesis.

All chi-square test results for the categorical variables were statistically significant

(p < 0.05), indicating a significant association between each categorical variable and

subject’s status at the end of the study.



Appendix B

Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a non-parametric test used to test if two groups have

the same distribution, specifically to compare whether they have the same median.

The Wilcoxon rank sum test does not assume the variables are normally distributed,

and it assumes the variables are independent from each other [32]. Therefore, the

Wilcoxon rank sum test is ideal to assess the possible relationship between continuous

variables and the variable of interest.

In the research, the Wilcoxon rank sum test is performed between all continuous

variables (age, tumor size, regional node examined, regional node positive) in the

dataset and the status of subjects at the end of the study.

The significant level (α) is 0.05.

Null hypothesis (H0): There is no difference between the distributions of the

variable and status.

Alternative hypothesis (HA): There is difference between the distributions of the

variable and status.

The following table is the summary of the results.
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Table B.1: Wilcoxon Rank Sum Test results

Variable name Test statistics P-value Result

Age 944505 7.34× 10−5 We have strong evidence

to reject the null hypothesis.

Tumor Size 813236 < 2.2× 10−16 We have strong evidence

to reject the null hypothesis.

Regional Node Examined 1001152 0.0673 We do nothave strong evidence

to reject the null hypothesis.

Regional Node Positive 692562 < 2.2× 10−16 We have strong evidence

to reject the null hypothesis.

From the results, it can be concluded that given the significant level equals 0.05,

we have enough evidence to infer that the distributions of age, tumor size, and

regional node positive are different from the distribution of the status. Moreover,

because the p value of regional node examined is larger than 0.05, we do not have

enough evidence to conclude that the distributions of regional node examined and

the status are different.


	Abstract
	Introduction
	Data
	Methods
	Non-parametric Methods
	Censoring and Survival Analysis Fundamentals 
	Kaplan-Meier Analysis 
	Logrank Test

	Cox Proportional Hazards Model
	Model Selection
	Schoenfeld individual test
	Martingale Residual


	Results
	Kaplan-Meier Analysis 
	Logrank Test
	Cox Proportional Hazards Model
	 Schoenfeld Residual Diagnosis 
	Martingale Residuals

	Discussion
	Comparing non-parametric models and the Cox proportional hazards model
	Potential Problems in the final Cox Proportional Hazard Model 

	Reference
	Chi-square Test
	Wilcoxon Rank Sum Test

