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Abstract

The prevalence of breast cancer has made studies to predict survival time more familiar.

Not only linear regression and machine learning but also survival analysis have produced

a significant impact in the analysis of breast cancer clinical data. This thesis introduces

fundamental concepts about linear regression, random forests in machine learning, and

survival analysis. This thesis aims to predict the survival time based on linear regression

and random forest and predict the expected survival time through parametric survival

regression. We then analyze the reasons for using the parametric survival regression model,

AFT, instead of the prevalent semi-parametric COX model. We choose two types of AFT

models, AFT with log-logistic and AFT with Weibull, as candidates for survival analysis.

We applied these three models to breast cancer survival data to accomplish our goals. In the

final results, we conclude that the regression model is more accurate in predicting survival

times in this breast cancer dataset containing only observable death event data compared

to the random forest. Because the residuals of this data set are log-logistic distribution,

the AFT model with log-logistic distribution is more precise in predicting the expected

survival time than the AFT model with Weibull distribution. We show a drawback of the

AFT model regarding the distribution of the residuals and point out the potential way to

improve the AFT model to make it more accurate in predicting average survival time.
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Chapter 1

Introduction

Breast cancer is the most frequently diagnosed cancer in 154 countries and is the lead-

ing cause of cancer death in over 100 countries [1]. From the American Cancer Society,

approximately 1 in 8 women (13%) will be diagnosed with invasive breast cancer in their

lifetime, and 1 in 39 women (3%) will die from breast cancer [9].

The prevalence of breast cancer has led to many studies examining breast cancer factors

and predicting patient survival time more generally. Survival analysis can focus on the

time to the occurrence of an event (death), and an increasing number of studies are using

survival analysis to address more areas where mortality can be applied. Along with survival

analysis characteristic that allows studying the expected duration of an event of interest,

survival analysis is a valid statistical method to analyze breast cancer patients’ mortality

and survival time.

However, the general case in survival studies is that, at the end of follow-up, some indi-

viduals have not had the event of interest, and thus their true time to event is unknown [2].

Reasons behind this may include that the patients did not experience the event during the

study time and potentially withdrew from the experiment during the study time. This is

called right censoring. In general, the feature of censoring means that special methods of

analysis are needed, and standard graphical methods of data exploration and presentation,

notably scatter diagrams, cannot be used [2].

The standard methods for modelling the right-censored survival data are semi-parametric

and parametric survival regression. The popularity of the Cox proportional hazards (PH)

model as a semi-parametric is due to fewer assumptions on parameters. The PH model

assumes that the underlying hazard rate is a function of the independent covariates, but no

assumptions are made about the nature or shape of the hazard function [6]. Because of the

simplicity, the PH model cannot have a direct interpretation of estimates in terms of the

survival time for a subject but is helpful for testing and hazard ratio estimation [7]. Com-

pared to the PH model, the parametric proportional model requires assumptions about the

unknown parameters, such as the shape of the hazard function, which makes it a sufficient

way to analyze the average time to the occurrence of an event.

1
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Both linear regression and random forest techniques can evaluate survival time predic-

tions on exact event time data. The linear regression builds the linear relationship between

the response variable (survival time) and dependent variables that potentially affect the

model, and the random forest build criterion to split the predictor variables for the ”tree

growth.” The difference between the two methods is that the flexibility of random forest

makes it more accurate in predicting results in non-linear data, while the linearity assump-

tion of linear regression makes the prediction less precise if the assumption of linearity is

violated [8].

This paper will divide the breast cancer data into data with the deceased event and right-

censored data to predict survival time. This paper uses the conventional method, linear

regression and random forest, to predict the expected-to-event time for the uncensored data.

Since the parametric proportional model can predict the survival time by expectation values,

the right-censored data are analyzed using the parametric proportional model with different

distributions of hazard functions to predict survival time for breast cancer patients. Then,

the paper compares the estimated results modelling from training data sets with the actual

results from validation sets. The results will be discussed to indicate which method is more

effective for the uncensored data and right-censored used in this paper. The mathematical

formulas and terms used are explained in the methods section, and the relevant results

analyzed in R will be presented in the results section.



Chapter 2

Methods

2.1 Dataset

The data set contains 2509 observations and 36 variables, downloaded from the cBio Can-

cer Genomics Portal https://www.cbioportal.org/. According to relevant background

information on breast cancer, 24 variables are selected to estimate the expected lifetime

for patients (explained in Appendix). First, the dataset is randomly split into training and

validation data sets: 80% of the data in the training set is used for building models, and the

rest of the data is used for the models’ performances. Based on each model used, the train-

ing and testing datasets are also partitioned into datasets that only include deceased events

or not: right censoring is applied to datasets that contain deceased events, and uncensored

data is formed by deleting data on patients who have not experienced a death event at the

end of the recording.

2.2 Software

All data is manipulated and analyzed in R, and the functions used to analyze the data

are derived from existing packages: tidyr, mice, randomForest, reprtree, survival, survminer,

flexsurv, ggplot2, Hmisc, and ciTools.

2.3 Missing data Type

Missing data are typical in clinical research but may affect the accuracy of the models.

Reasons behind missing data include ’missing completely at random (MCAR), ’missing at

random (MAR), and ’missing not at random (MNAR). MCAR means that the missing

values of participants are independent of the other information in the data. For example,

participants with factor A have the same probability of missing data as those with factor B.

MCAR may include improper data collection or improperly processing the data. In these

instances, the missing data reduce the analyzable population of the study and, consequently,

the statistical power, but do not introduce bias [4]. MAR is another assumption of missing

data, and this assumption is often used for statistical purposes. The missing data under

3
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the MAR assumption are related to the observed data but not the unobserved data. In

this way, statistical methods such as the expectation-maximization (EM) algorithm and

multiple imputation (MI) can be applied to the unobserved data prediction predicted by

observed data. The MNAR is the most complicated case for data analysis; it means the

missing values are related to both the unobserved data and observed data, indicating that

if the missing data is missing not at random, any prediction based on observed data will

introduce the bias in the analysis. It is not easy to know what happened during data

collection or data transmission; we usually assume that the data is MCAR or MAR for

statistical analysis purposes.

This study uses the MI method to yield unbiased results for unobserved data, dependent

on assumptions that the missing variables of this research are MAR or MCAR. The general

steps for the MI method are that the missing values are imputed multiple times using the

selected model and yield multiply imputed datasets. Each of these datasets is analyzed

through the models the data selected (i.e. linear regression), and the results from the

selected model are then pooled (averaged) into a final study result. This study uses the MI

method with classification and regression trees (CART) method, developed by Burgette and

Reiter in 2010, Shah et al. in 2014 and Doove, Van Buuren, and Dusseldorp in 2014, whose

utilization is also proven to produce more efficient estimates than standard procedures [10].

The CART method is implemented in the second step of MI, which replaces the missing

values with imputed values predicted by the CART method. The advantages of the CART

method include that they are robust against outliers, can deal with multicollinearity and

skewed distributions, and are flexible enough to fit interactions and nonlinear relations [10].

It is helpful when the data set has both continuous and categorical variables.

2.4 Linear Regression

One of the methods used in this analysis for the data with the deceased event is the

multiple linear regression model, a primary tool for predicting the response variable. A

model is hypothesized as:

yi = β0 + β1xi1 + β2xi2 + βpxip + εi, for i = 1, . . . , n

where the model assumes ϵi
i.i.d∼ N(0, σ2). The matrix form is:

Y = Xβ + ϵ

where X is the n × (p + 1) design matrix, containing a 1 column vector and covariates

columns. The goal of the general linear model is to predict the survival time for breast cancer
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patients through the fitted linear model built by training dataset without living cases, which

has survival months as the response variable and remaining variables as the regressors. The

Gauss Markov assumptions can help validate the estimation of regression coefficients: these

assumptions are the zero of the expected value of the error term, collinearity, exogeneity,

and homoscedasticity. The assumptions can be tested by residual versus fitted plot, normal

Q-Q plot, scale-location plot, and residual versus leverage plot in R, respectively.

2.5 Random Forest Model

Random Forest, developed by Leo Breiman and Adele Cutler, is a machine learning

algorithm for classification and regression problems. The decision trees that help build

random forest starts with the prediction of survival length, and then the decision trees are

built by different variables, which become the decision nodes in the tree to split the training

data set shown by Fig.2.1

Figure 2.1: Part of a Tree Extracted From a Random Forest Model

Breiman extended the random-subspace method and formally proposed it as a random

forest in 2001. The random forest model is a tree-based ensemble learning algorithm; the

algorithm averages predictions over many individual trees. The individual trees are built

on bootstrap samples rather than the original ones. This is called bootstrap aggregating

or simple bagging, and it reduces over-fitting. The algorithm is as Fig.2.2. Each tree

comprises data samples with replacements taken from the training set, called bootstrap

samples. About one-third of the observations in the bootstrap sample is randomly left as



6

Figure 2.2: Random forest algorithm [8]

test data for a given tree, which is called an out-of-bag (OOB) sample. Finding parameters

that would produce a low OOB error is often a key consideration in model selection and

parameter tuning. M, the number of variables randomly sampled as candidates at each

split, is a parameter that needs to be adjusted during the model selection process and is

critical to the final depth of the control tree [8]. M has a significant impact on the random

forest results, but the OOB error rate can adjust M to enhance the accuracy of the random

forest by adjusting the appropriate M range value. If M is too small, it will reduce the

correlation between variables and the strength of the random forest and vice versa. The

large M number will overestimate the results from the random forest algorithm, so it is

crucial to find the optimal range of M values through OOB error.

2.6 Survival regression

The common modelling techniques used in the survival analysis are semi-parametric and

parametric survival regression. These two methods help deal with right-censored data, and

handling censored observations is not feasible with linear regression and ordinary random

forests.

2.6.1 Cox proportional hazards model (cox model)

The Cox Proportional Hazards model, the most well-known semi-parametric survival

regression proposed by Cox, does not have assumptions on the shape of the hazard function,
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written as:

h(t|X) = h0(t)exp(β1x1 + β2x2 + . . .+ βpxp) = h0(t)exp(β
TX)

where h0(t) is the baseline hazard function, X = (x1, x2, . . . , xp)
′ is the vector of covariates

for the individual p, and βT = (β1, β2, . . . , βp) is the vector of regression coefficients. The

time t indicates the hazard is dependent with time, the values of βi negative correlates to

the survival time (the positive βi means the increases in hazard and then the declines in

the survival length), and the hazard ratio of two individuals is estimated by:

ĤR =
h0(t)exp(β̂

′X)

h0(t)exp(β̂′X∗)

indicating that it works well when evaluating the effects of factors on the rate of events: 1

means no effect, less than 1 means the decreases, and large than 1 means the increases. The

primary assumption of the Cox, proportional hazards model, is the hazard ratio is constant

over time [6]. Three tests need to be done to satisfy the assumption, and all of them can be

tested in R: (1) testing the proportional hazards assumption function by commend cox.zph()

(2) examining influential observations (3) detecting nonlinearity (checked by martingale

residuals against continuous variables).The main assumption is violated if the true βt is not

a horizontal line, if the pattern of outliers looks non-symmetric around 0, and if there is no

linear relationship for the continuous explanatory variable against the martingale residuals

of the null cox model. Since the cox model does not have the assumption on their survival

distribution, it is useful when analyzing the factors in clinical data. However, the violation

of assumptions for the cox model will cause inaccurate conclusions on the factor influences.

2.6.2 Accelerated failure time model (AFT model)

The other way to analyze the right-censored data is Accelerated failure time model

(AFT model) when the proportional hazards assumption of Cox model fails. Unlike the

cox model, the AFT model allows the evaluation of the statistically significant covariates

on the survival time of patients. This characteristic allows for an easier interpretation of

the results because the parameters measure the effect of the correspondent covariates on

the mean survival time [6]. In general, the AFT model can be specified as:

h(t|X) = exp(−[β1x1 + . . .+ βpxp])h0 (exp(−[β1x1 + . . .+ βpxp])× t) =
1

η(x)
h0

(
t

η(x)

)
with the acceleration factor η(x) = exp([β1x1 + . . . + βpxp]), and the corresponding log-

transformed response variable Yi written in linear form as [6]:

Yi = log(Ti) = a+ β1x1i + . . .+ βpxpi + σϵi
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where Ti is a random variable denoting the survival time, a is the intercept, σ is the scale

parameter, and ϵi is a random variable with a particular distribution. We can assume dif-

ferent distributions for the disturbance term ϵiin linear form model. For example, if the

assumption of ϵ1is that it is I.I.d and follows normal distribution with µ = 0 and σ = 1,

then the Ti has log-normal distribution conditioning on the covariates X [11]. The distribu-

tions used in this paper include Weibull and log-logistic distributions, and the relationship

between ϵi and Ti shown as Table 2.1

Distribution of ϵ Distribution of T R in survreg function

extreme values (2 parameters) Weibull dist = weibull
logistic log-logistic dist = loglogistic

Table 2.1: Distribution of AFT models

Because the assumptions on survival time distribution for Ti, AFT model can obtain ex-

pected survival time estimates for a specific time point, E(T |X). For Weibull distribution,

ϵ ∼ SEV with FSEV (ϵ) = 1− exp(−exp(ϵ)) and T is Weibull distribution with scale param-

eter σ and location parameter exp(xβ) so the expected survival time is [3]:

E(T |X) = exp(Xβ)Γ(1 + σ)

and the survival function equals to[13]:

S(T |X) = exp(−exp(
log(T )−Xβ

σ
))

For log-logistic distribution, ϵ ∼ Logistic with standard logistic distribution F (ϵ) = exp(ϵ)
1+exp(ϵ) ,

and the T is log-logistic distribution with scale parameter σ and location parameter Xβ

according to the equation log(T ) = Xβ + σϵ. The corresponding expected survival time

is [3]:

E(T |X) = exp(Xβ)Γ(1 + σ)Γ(1− σ)

where the survival function equals to [3]:

S(T |X) = 1− FLogistic(
log(T )−Xβ

σ
)

2.7 Akaike information criterion (AIC)

Linear regression, semi-parametric, and parametric survival regression all use backward

elimination to select statistically significant covariates via AIC developed by Akaike in 1973.
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AIC is a statistical methods that can estimate the quality of models by comparing different

possible parameters of models. Let k be the number of estimated parameters in the model.

Let l̂ be the estimates of the log-likelihood function for the model. Then the AIC value of

the model is the following:

AIC = 2k − 2ln(l̂)

The second term in AIC is twice the negative log likelihood, which turns out to be the

residual sum of squares corresponding to the model for the linear regression model with a

Gaussian likelihood [5]. That is,

−2ln(L̂) =
n∑

i = 1

(yi − xTi β̂)
2

where β̂ is the least squares estimator for model. The first term acts as a penalty term to

penalize models if more non-predictive parameters are added to the model [6], so a lower

AIC score means that the model with fewer parameters can also explain the same amount of

variation as the model with more parameters, the one with fewer parameters corresponding

to the best fit of the model.

2.8 Concordance index (c-index)

The C-index, or concordance index introduced in Harrell et al. 1982, is used to evaluate

the predictive performance of the survival model. Generally, c-index calculates the pro-

portion of of all patient pairs in which the predicted results agrees with the actual results.

Harrell’s C-index can be seen as:

c =
# concordant pairs

# concordant pairs+# discordant pairs

or it can be expressed in the formula:

c =

∑
i,j I(T̃i > T̃j) · I(ηj > ηi) ·∆j∑

i,j I(T̃i > T̃j)

In this equation, the Ti,Tj , time to deceased event for ith, jth patient, is either the deceased

time or the last time of recording. The ηi, ηj are the risk score, and ∆j is the factor

representing the censored data such that ∆j = 0 if the data are censored, ∆j = 1 if the

data are not censored.

The steps of C-index calculation are: (1) randomly draw pairs with two patients from

the data, (2) delete the pairs that both patients have censored data for the death event, (3)

compare the ηi, ηj of uncensored data with the condition that if ηi > ηj then Ti < Tj . The
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pair(i, j) is concordant pair when fulfilling the previous conditions concordant pairs, and

conversely pair(i, j) is discordant pair if they do not. (4) compare the ηi, ηj if one of them

is censored data, because it is certain that the uncensored data patient i reached the death

event first relative to the censored data patient j. For example, the ηj is censored, and ηj

is not. The pair(i, j) is concordant pair if ηi > ηj then Ti < Tjand conversely pair(i, j) is

discordant pair if they do not.

2.9 Mean squared error criterion (MSE)

Mean square error is the common methods used for testing the predictive performance of

models of uncensored data. The MSE measures the performances of each fitted predictive

training model, through calculating the mean squared differences between predictions of

each model and observed survival time:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

In the linear regression and random forest performance tests, the estimates are predicted

by the model fitted from the training set by the uncensored data. The actual values used

for each prediction are selected data in the validation set based on the fact that the death

event happened at the end of the observation.



Chapter 3

Results

3.1 Linear regression and random forest

After regression of all variables, the Variance Inflation Factor (VIF) is used to test

whether there is multicollinearity between covariates, and the VIF is calculated by 1
1−R2

k
,

where R2
k is the proportion of the variance for a kth dependent variable explained by model

inputs and estimated on rest of the predictors in the model. If VIFs exceed 10, the result

indicates collinearity problems between them that need to be adjusted. Fig 3.1 shows the

VIF of variables exceeding 10. For simplicity, those variables are removed from the multiple

linear models before the variables selection step. The variables chosen for linear model by

Figure 3.1: Part of VIF table

the backward and forward step-wise selection are NPI , ER IHC, AGE AT DIAGNOSIS,

RFS STATUS, RFS MONTHS, PR STATUS, and TMB NONSYNONYMOUS. Then, the

plot() function in R is used to test the Gauss-Markov assumptions.

Figure 3.2: Gauss-Markov assumption test

11
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From Fig 3.2, the plot of residuals against fitted values shows that residuals are evenly

distributed, representing that the error is randomly generated. The output of normal q-q

plot shows the residuals do not essentially follow a normal distribution, as they leave the

straight line at the tail of the figure. Most residuals gather round 0 in the plot of externally

studentized residuals against fitted values. Also, there are only a few influential points in

the leverage plot against residuals.

The M is decided by the R function tuneRF() for the random forest model, which

returns the optimal value, 15, for M based on OBB error. The random forest model is then

built by M = 15 with all variables in the training data set of uncensored data. MSEs of

predicted survival time and actual survival time were obtained from a validation dataset

that included only previously occurred death events to compare the linear and random

forest models’ performance. The results with respect to different models are shown in Table

3.1, indicating that the linear regression model has a smaller MSE compared to the random

forest model.

Models for uncensored data MSE

Linear regression 1062.165
Random forest 1103.366

Table 3.1: MSE of Linear regression and random forest

3.2 Parametric survival regression

Both AFT models apply backward and forward step-wise selection of covariates in terms

of AIC, and the final covariates selected for the model in R are shown by Fig 3.3: Then,

Figure 3.3: Variables selected for the final AFT model

the final AFT model is computed using distribution formulas of Weibull and log-logistic

to predict the expected survival time of the validation dataset for the death events that

have occurred. The confidence interval for expected survival time is also calculated in the
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R function add ci from the package ciTools. Fig 3.4 shows the results and indicates the

interval of mean survival time for AFT with log-logistic distribution is higher than that for

AFT with Weibull distribution within α = 0.005. The specific values of MSE are shown by

Figure 3.4: Confidence interval for mean survival time

Models for censored data MSE

AFT with Weibull 11632.06
AFT with log-logistic 16932.09

Table 3.2: MSE of AFT models

Table 3.2, which indicates AFT with Weibull distribution has the smaller MSE, 11632.09.

However, the results of the MSE do not fully explain the performance precision of the AFT

model. For example, compared to Table 3.1, Table 3.2 shows the MSEs of AFT models

are ten times bigger than linear regression and the random forest model, indicating the

inaccuracy of the models, contradictory to the C-index performance. One reason is that the

MSE for AFT models calculates the differences between the conditional expected values of

different distributions with respect to T |X and actual response variables. The other reason

is that the MSE only predicts the events that can be observed, and an alternative method

of testing model performance is explained later for the survival model.

Unlike the measurement of MSE values for each fitted training model, the C-index can

measure the goodness of fit for binary outcomes: the C-index can assess fitted models

with all testing data, including both living and deceased events. As previously explained in

the methods section, the C-index counts concordant pairs, evaluating predicted and actual

survival times. The C-index is more effective in predicting censored data than MSE, which

only predicts observable events.
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The results of C-index for different AFT models are shown in the Table 3.3. From

Distribution of Ti C-index

log-logistic 0.91169
Weibull 0.89355

Table 3.3: C-index of AFT models

the calculation of C-index, it can be seen that the result of C-index will be between 0.5

and 1. If the result of C-index is 0.5, it indicates that there are as many concordant pairs

as discordant pairs, which indicates that the predicted results of the model fit the actual

results completely randomly. If the result of C-index is 1, the model’s prediction is exactly

the same as the actual result. C-index is measured in practice as moderately accurate if

the value is between 0.71 and 0.90, and highly accurate if it is higher than 0.90. AFT with

log-logistic distribution model has the higher values of C-index 0.91169 than that of the

AFT with Weibull distribution model, which indicates that AFT with log-logistic model is

more accurate than AFT with Weibull model. The result of the C-index is different from the

Figure 3.5: Distribution tests for ϵi

conclusion of MSE values; It is possible that the difference between these two results is since

the AFT model uses right-censored data under the C-index assessment, which incorporates

more data compared to the model that calculates MSE. However, the AFT with a log-

logistic distribution model is more accurate, as indicated by the C-index is the same as a

result obtained from the assumption tests for residuals ϵi of AFT.
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In the assumption test for each AFT model, the residuals are estimated with censored

data. Because the Kaplan-Meier estimator can take into account the censored data, the

residuals of each AFT model can be implemented with the Kaplan-Meier estimator for the

graphical procedure of survival probability. Moreover, this graphical procedure can then be

used to verify an appropriate distribution of survival time in the AFT model, the Weibull

distribution or the logistic distribution. The residuals of each AFT model are calculated by

the difference between the log of true survival time and linear predictors of the fitted model

divided by the scale parameter σ, and then are implemented with the survival function

of each distribution, Weibull or logistic. Fig 3.5 shows the results of assumption tests.

The figure clearly shows that the survival function of log-logistic distribution is nearer to

the Kaplan-Meier estimator of the residuals in comparison to the survival function of the

Weibull distribution. Nevertheless, both the survival functions of log-logistic and Weibull

distributions deviate from the true survival probability of the residuals at the tail of the

Kaplan-Meier estimator of the residuals.



Chapter 4

Conclusion

In this study, we predict the survival time using a predictive linear model and random

forest, and we estimate the expected survival time through the AFT model with log-logistic

and Weibull distribution. For data that only include occurred death events, we can conclude

that the linear model performs more accurately than the random forest since it has smaller

MSE results. According to the final linear model, variables including NPI, ER IHC, AGE

AT DIAGNOSIS, RFS STATUS, RFS MONTHS, PR STATUS, and TMB NONSYNONY-

MOUS affect the survival time. However, we encountered the problem that residuals do

not fully follow the normal distribution, and the violation of normal assumptions affects the

accuracy of the linear model.

For right-censored data, both the C-index and distribution assumptions suggest better

performance of the AFT model with the log-logistic distribution. However, one shortcom-

ing of the residual distribution assumption is that in the plot of the survival function of

logistic distribution, the residuals deviate at the end of the survival probability curve. This

phenomenon also demonstrates that one of the disadvantages of the AFT model is that we

must know the distribution of the residuals in order to develop a better AFT prediction

model. The reality is that in many cases, the concrete distribution of survival times is

unknown. However, if we need to predict the expected survival time, we have to know the

specific distribution of the residuals. So if other studies could describe the specific distribu-

tion of survival times more precisely, the prediction of mean survival times would be more

accurate.
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Appendix

Selected potential variables for models: Lymph nodes examined positive, NPI, cellularity,

chemotherapy, ER IHC, HER2 SNP6, hormone therapy, inferred menopausal state, Int-

Clust, age at diagnosis, survival months, survival status, claudin subtype, laterality, radio

therapy, breast surgery, RFS status, RFS months, ER status, HER2 status, grade, PR

status, tumor size, tumor stage, and TMB nonsynonymous.
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