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1 Introduction

In the field of statistical inference, especially when constructing confidence in-
tervals (CI), analysts frequently deal with complex datasets that traditional
methods can not deal with. Frequently likelihood methods test hypotheses and
contrast confidence sets using that likelihood ratio statistics have approximate
χ2 distributions with large samples or that estimators have approximately nor-
mal distributions. However, the regularity conditions for these results do not
hold for complex datasets. A prime example that regularity conditions do not
hold is found in mixture models. These models are instrumental in analyzing
heterogeneous data, which is often the case when data originates from mul-
tiple underlying sources or populations. For instance, consider analyzing fish
lengths from two different age groups, Age 1 and Age 2. Without direct age
information, each fish’s length is potentially drawn from one of two distinct
distributions, each representing a different age group. Universal inference deals
with regularity condition violations like those of mixture models.

This thesis explores advanced methodologies in statistical inference, focus-
ing on universal confidence sets, hypothesis testing methods, derandomization,
and their applications in regression analysis. The universal inference was re-
cently developed in Wasserman et al (2020). A conservative confidence interval
(CI) is constructed such that the probability, denoted as Pθ[θ ∈ CI] , is at least
1−α, but it might be much larger. The consequence of this conservatism is that
the confidence interval might be wider than necessary. Conservative universal
confidence sets and tests apply without asymptotic calculus and for irregular
models, making them a crucial tool in statistical analysis. Universal inferences
have some advantages like they do not require large samples and do not depend
on regular conditions. However, they also have potential disadvantages, such as
loss of power. The thesis describes the main way in which universal inference is
implemented and reviews the main results. In addition, it illustrates the use of
universal inference in a regression setting, contrasting with traditional analyses.
The thesis also proves that the result extends to cases involving nuisance param-
eters and to independent but not identical cases, like regression. It concludes
with a simulation study examining CI proportions in a Poisson setting.

Through a combination of theoretical exploration and empirical analysis,
this thesis aims to provide a deeper understanding of these advanced statistical
methodologies and their significance in data analysis and inference.

2 Universal and Cross-Fit Confidence Set

This section describes how universal confidence sets are constructed. Some ran-
domization is introduced in the sets. The cross-fit and derandomized approaches
are discussed that reduce the variance due to randomization but require addi-
tional computation.

The universal confidence set for a parameter θ is constructed based on data
divided into two groups, D0 and D1. The steps involved in this process are:
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1. The data is divided into two groups, D0 and D1.

2. An estimator θ̂1 is derived from D1. This estimator can be any function
estimator, like the maximum likelihood estimator, method of moments
estimator, Bayes estimator, etc.

3. The likelihood ratio between L0(θ̂1) and L0(θ) is compared, where L0(θ)
is the likelihood function based on dataset D0 for parameter true value
θ, and L0(θ̂1) is the likelihood of dataset D0 evaluated at θ̂1. The split
likelihood-ratio statistic is calculated as:

Tn(θ) =
L0(θ̂1)

L0(θ)

4. The universal confidence set is defined as:

Cn = {θ ∈ Θ : Tn(θ) ≤
1

α
}

The main result of the fundamental theorem of the universal confidence
set of Wasserman et al. (2020) is that generally

Pθ[θ ∈ Cn] ≥ 1− α

Traditional Likelihood Ratio Method: Unlike the universal method,
people usually use chi-squared distribution to obtain a confidence interval based
on a likelihood ratio. In the regular model, this confidence interval can be
expressed as:

{θ0 : 2 log
L(θ̂)

L(θ0)
≤ χ2

α,n−1}

Note:

• θ̂: This denotes the maximum likelihood estimate of the parameter θ.

• n− 1: This is used to represent the degrees of freedom in the chi-squared
distribution, where n is the sample size.

• α: The significance level of the test.

• L(θ): This is the likelihood based on all of the data.

Cross-Fit Likelihood-Ratio Statistic and Confidence Inter-
val

There is some arbitrariness in the choice of test and training data. The cross-fit
likelihood-ratio statistic (cross-fit LRS) adjusts for this to some extent. There-
fore, cross-fit LRS is a significant statistical tool. It is formulated by averaging
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Tn(θ) and T swap
n (θ), with T swap

n (θ) being the statistic computed after inter-
changing the datasets D0 and D1. The cross-fit LRS is denoted as Sn(θ) and is
defined by:

Sn(θ) =
Tn(θ) + T swap

n (θ)

2

The cross-fit confidence set, distinct from the universal confidence set, is
then defined as:

Cn = {θ ∈ Θ : Sn(θ) ≤
1

α
}

Derandomization

The random choice of D0 and D1 introduces randomness to the universal sets.
This variability can be reduced by using the cross-fit confidence set and reduced
even more by iterating the process. To get precise confidence intervals, we can
use derandomization techniques developed in Wasserman et al. (2020), which
can help in creating samples or procedures that are less variable. Suppose we
repeatedly randomly split the data into D0 and D1. Let Tn,1, . . . , Tn,B denote
the split likelihood ratio states for each of these B choices of D0 and D1.

Let

Tn(θ) =
1

B

B∑
j=1

Tn,j(θ)

• Tn(θ): This represents the split likelihood-ratio statistic used in statistical
inference.

• Tn(θ): This is the average or mean of the figures Tn,j(θ) obtained from B
samples.

In conclusion, by employing derandomization techniques in the process of
generating split likelihood-ratio statistics, we can effectively reduce the variabil-
ity inherent in random sampling, leading to more precise and reliable confidence
intervals in statistical analysis.

3 Universal Hypothesis Testing Methods

Universal hypothesis testing is a fundamental aspect of statistical inference,
providing methods to assess the validity of hypotheses using observed data.
This section delves into various methodologies within this domain, particularly
focusing on testing the null hypothesis in diverse statistical scenarios.

Let H
0
⊂ H be a possible composite null set and consider testing

H0 : θ ∈ H
0

versus θ /∈ H
0
.

H0 : θ = θ0 versus θ ̸= θ0.
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Duality in Universal Hypothesis Testing

The duality between confidence set construction and hypothesis testing is dis-
cussed here. It allows us to construct hypothesis tests using the confidence
set procedures discussed in the previous section. The dual test of a confidence
set procedure rejects H0 : θ = θ0 if θ0 is not in the confidence set. It rejects

H0 : θ ∈ H
0

if there is no θ ∈ H
0

that is in the confidence set.
The origin of this duality is a special kind of symmetry: if an event occurs,

its opposite event does not occur, and vice versa. The duality test is that if
a parameter value θ0 lies outside a (1 − α) × 100% confidence interval for a
parameter θ, then a hypothesis test at level α will reject the null hypothesis
H0 : θ = θ0. Conversely, if θ0 lies within this confidence interval, the hypothesis
test will not reject H0.

Consider a universal hypothesis testing framework where we test

H0 : θ ∈ H
0

versus θ /∈ H
0
.

H0 : θ = θ0 versus θ ̸= θ0.

using a confidence region approach.

Duality Proof

We now show that a (1 − α) × 100% confidence set procedure gives an α-level
dual test. Suppose c(x) is a (1− α)× 100% confidence region. In other words,
Pθ(θ ∈ c(x)) ≥ 1− α. Define the test function ϕ

H
0

(x) as:

ϕ
H

0

(x) =

{
1 if H

0
∩ c(x) = ∅ (reject H0),

0 otherwise (do not reject H0).

The probability of rejecting H0 under θ0 ( θ0 in H
0
)is given by:

Pθ0 [reject H0] = Pθ0 [ H 0
∩ c(x) = ∅]

= Pθ0 [θ0 /∈ c(x)]

= 1− Pθ0 [θ0 ∈ c(x)]

≤ 1− (1− α)

= α

Thus, ϕθ0(x) is an α level test of H0 : θ = θ0.

Given an α level test ϕθ0(x) of H0 : θ = θ0, let

c(x) = {θ0 : ϕθ0(x) = 0}
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Then the probability that θ lies in c(x) is:

Pθ[θ ∈ c(x)] = Pθ[ϕθ(x) = 0]

= 1− Pθ[ϕθ(x) = 1]

≥ 1− α

Therefore, c(x) is a (1− α)× 100% confidence region (CR).

3.1 Testing H0 Using Confidence Interval Approach

One can determine the result of the dual test of the universal confidence set
without actually determining the confidence set as we now show. This approach
involves comparing the intersection of the CI with the null hypothesis set H0.

The dual test rejects H0 : θ ∈ H
0
if The CI approach: rejects H0 if

CI ∩ H
0
= ∅

We now simplify this condition:
↔:

θ /∈ CI (∀θ ∈ H
0
)

↔:
Let θ̂1 be any estimator constructed from D1,

L0(θ̂1)

L0(θ)
>

1

α
(∀θ ∈ H

0
)

↔:

min
θ∈ H

0

{
L0(θ̂1)

L0(θ)

}
>

1

α

↔:
Let θ̂0 := argmax

θ∈ H
0

L0(θ) be the maximum likelihood estimator under H0

constructed from D0. Then the dual test rejects if and only if

L0(θ̂1)

L0(θ̂0)
= min

θ∈ H
0

{
L0(θ̂1)

L0(θ)

}
>

1

α

3.1.1 Note

This approach indicates that if the null set H
0
does not contain any values

that make the likelihood ratio exceed the threshold 1
α , it suggests insufficient

evidence to support H0, leading to its rejection.
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4 Validity of universal inference confidence in-
tervals

Theorem 1 of Universal inference by Wasserman et et al. (2020) gives the main
result for the universal confidence set.
Let

• D0: y1, . . . , yn

• D1: yn+1, . . . , ym

Then, assuming y1, . . . , ym are independent and identically distributed(iid).
Theorem 1 delves into the properties of a specific type of confidence set, denoted
as Cn, in the realm of both regular and irregular statistical models.

Theorem 1: Cn is a finite-sample valid (1−α) confidence set for θ, meaning
that Pθ(θ ∈ Cn) ≥ 1− α.

The statement says that if Cn is a confidence set constructed in such a way
that, under y1, . . . , ym are independent and identically, it has a finite-sample
property of correctly containing the true parameter θ∗ with a probability of at
least 1− α.

Note that the result of Theorem 1 applies without additional regularity con-
ditions. In other words, it applies to both regular and irregular models. In
regular models, the traditional likelihood ratio method can help us get the con-
fidence interval, but for the irregular models, it fails. . In addition, it is difficult
for us to approximate the distribution. The traditional likelihood ratio test also
assumes sample sizes were large. The universal inference is applied with finite
samples.

4.1 The Case for Independent but Not Identically Dis-
tributed Data

While Theorem 1 effectively addresses the construction and validity of confi-
dence sets in regular models under the assumption of identically and indepen-
dently distributed data, extending these concepts to scenarios involving inde-
pendent but not identically distributed data poses additional challenges. We
now consider an extension of Theorem 1 to accommodate such scenarios, par-
ticularly focusing on cases where the traditional likelihood ratio method may
also be applicable.

For this model, we define the density of Yi as pi,θ(y), where the parameter
vector θ and its components are defined as follows:

θ = (ζ, λ),

where θ is the parameter vector,

λ represents nuisance parameters,

ζ represents the parameter of interest.
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We use λ̂(ζ) to denote the maximum likelihood estimator of the nuisance
parameter λ, holding the parameter of interest, ζ, fixed.

Now we explain how the method has coverage of at least 1 − α, as claimed
by Theorem 1 :

Because the distribution is independent,

L0(θ̂1) =
∏
i∈D0

pi,θ̂1(Yi)

L0(ζ, λ̂(ζ))) =
∏
i∈D0

pi,ζ,λ̂(ζ)(Yi)

Let θ̂1 be some estimate based on D1 alone, The

Eθ

[
L0(θ̂1)

L0(ζ, λ̂(ζ))

∣∣∣∣D1

]
= Eθ

[ ∏
i∈D0

pi,θ̂1(Yi)∏
i∈D0

pi,ζ,λ̂(ζ)(Yi)

∣∣∣∣D1

]
(1)

=

∫
A

∏
i∈D0

pi,θ̂1(yi)∏
i∈D0

pi,ζ,λ̂(ζ)(yi)
·
∏
i∈D0

pi,ζ,λ(yi) dy1 . . . dyn

=

∫
A

∏
i∈D0

pi,ζ,λ(yi)∏
i∈D0

pi,ζ,λ̂(ζ)(yi)
·
∏
i∈D0

pi,θ̂1(yi) dy1 . . . dyn

where A is the support of Pθ.

• D0: y1, . . . , yn

• D1: yn+1, . . . , ym

Since λ̂(ζ) is the maximum likelihood estimator of λ holding ζ fixed, by
definition for all y ∈ D0, ∏

i∈D0
pi,ζ,λ(yi)∏

i∈D0
pi,ζ,λ̂(ζ)(yi)

≤ 1 (2)

∏
i∈D0

∫
pi,θ̂1(yi) dyi =

∫
p1,θ̂1(y1) dy1 . . .

∫
pn,θ̂1(yn) dyn (pi,θ̂1 ≥ 0)

=

∫
. . .

∫
p1,θ̂1(y1) . . . pn,θ̂1(yn) dy1 . . . dyn = 1

Now, we substitute (2) in (1)

Eθ

[
L0(θ̂1)

L0(ζ, λ̂(ζ))

∣∣∣∣y(D1)

]
≤

∫ ∏
i∈D0

pi,θ̂1(yi) dy1 . . . dyn = 1
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Let Cn = {ζ : L0(θ̂1)

L0(ζ,λ̂(ζ))
≤ 1

α}. Applying Markov’s inequality, we find an

upper bound for the probability that ζ is not in the confidence set Cn:

Pθ(θ ̸∈ Cn) = Pθ(Tn(θ) >
1

α
)

≤ αEθ[Tn(θ)]

= αEθ

[
L0(θ̂1)

L0(ζ, λ̂(ζ))

]
≤ α.

This establishes that Pθ(θ ∈ Cn) ≥ 1 − α, validating that Cn is a finite-
sample valid (1− α) confidence set for θ, as claimed in Theorem 1.

5 Real data illustration and simulation

5.1 Statistical Analysis and Illustration

In the extended phase of our statistical exploration, we conducted a compara-
tive analysis of two methodologies for estimating confidence intervals of Poisson-
distributed data sets. The traditional approach capitalizes on the Central Limit
Theorem, approximating the distribution of the sample mean for a Poisson
random sample with a normal distribution to calculate the confidence inter-
vals, provided the sample mean is sufficiently large. This conventional method
is computationally efficient and is widely accepted when the sample size jus-
tifies the normal approximation. Conversely, the universal method, a robust
alternative, does not presuppose a normal distribution and instead employs a
likelihood ratio test to construct the intervals, an approach that is advantageous
with smaller sample sizes or when the distribution deviates significantly from
normality.

Our simulation investigation encompassed the generation of fifty datasets
of Poisson-distributed random variables, each with a lambda parameter set at
ten and comprising one hundred observations. We observed that the universal
method typically produced broader intervals, with an average width of 2.31,
compared to the traditional method’s narrower mean interval width of 1.24.
Such an observation suggests that the universal method may provide a more con-
servative estimation, potentially reducing the risk of type I errors. Additionally,
while the traditional method’s intervals contained the true mean parameter in
98% of cases, underscoring its practical reliability under classical conditions, the
universal method demonstrated even more remarkable performance, containing
the true mean parameter in 100% of the cases.
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Figure 1: Confidence Interval Widths: Traditional vs. Universal Methods.

Figure 2: Comparison of Lower Bounds: Traditional vs Universal Confidence
Interval.
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Figure 3: Comparison of Upper Bounds: Traditional vs Universal Confidence
Interval.

In Figures 1, 2, and 3, we present a visual comparison between the lower and
upper bounds of confidence intervals obtained through traditional and univer-
sal methods. The scatter plots illustrate individual instances of the estimated
bounds for fifty groups of Poisson-distributed data.

For the lower bounds, as depicted in Figure 2, the universal method tends
to yield smaller values than the traditional approach, which is consistent with
a more conservative interval estimation. This is visually represented by the
concentration of points above the line of equality, where traditional bounds are
lower than the universal ones.

Conversely, Figure 3 showcases the upper bounds, where a similar trend is
observable. The universal method frequently results in a larger upper bound
compared to the traditional method, which can be inferred from the majority
of points being located above the dashed line that signifies equivalence between
the two methods.

The divergence from the line of equality in both figures highlights the uni-
versal method’s tendency to provide broader confidence intervals. This is in
alignment with the quantitative findings discussed earlier, where the universal
method’s average interval width was notably greater than that of the traditional
method. Such broader intervals from the universal method could be advanta-
geous in maintaining the actual parameter within the bounds, thus potentially
reducing the likelihood of Type I errors.

The detailed analysis of these plots reinforces the conclusion that while the
traditional method is efficient and reliable under certain conditions, the universal
method offers a more cautious approach, which may be preferable in situations
where the assumption of normality is questionable or when dealing with small
sample sizes.

5.2 Regression Analysis

In regression models, managing nuisance parameters is crucial for making accu-
rate inferences about the parameters of interest. This section outlines practical
approaches for dealing with these parameters.
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5.2.1 Model Framework

In cases that an interval for one of βj is of interest, β1, . . . , βj−1, βj+1...βp and σ2

are all nuisance parameters. We now consider confidence interval construction
for one of the coefficients β. The standard linear regression model is formulated
as:

yi = β0 + βTxi + ϵi, ϵi ∼ iid N (0, σ2),

5.3 Independent but not Identically Distributed Observa-
tions in Nested Regression Models

5.3.1 Context and Objective

In this part of the extension, we explore Universal Confidence Intervals within
nested regression models (Using “Real-Estate Data”, featuring 20 rows of nu-
merical data entries for residential properties, categorized into ‘Total dwelling
size’ in hundreds of square feet, ‘Assessed value’ in thousands of dollars, and
‘Selling price’ also in thousands of dollars, with each row representing a different
property. The data set is described in Section Multivariate Linear Regression
Models of Johnson and Wichern (2007), particularly focusing on models that
deviate from the assumption of independent but not identically distributed ob-
servations. Our primary objective is to test hypotheses comparing two nested
linear regression models: Model 0 (a simpler model) and Model 1 (a full model).

5.3.2 Hypothesis Testing Approach

The hypothesis testing is designed to evaluate the significance of the additional
parameter β2 in Model 1. The testing procedure includes:

• Hypotheses:

– Null Hypothesis (H0): β2 = 0

– Alternative Hypothesis (Ha): β2 ̸= 0

• Testing Methodology:

– A split universal inference approach is used for the hypothesis test.

– The likelihood ratio statistic is employed to compare Model 1 and
Model 0.

5.3.3 Nested Regression Models

Model 1 (Full Model) Model 1 is formulated with the assumption that the
errors ϵi are normally distributed with a mean of zero and a constant variance
σ2. The model is expressed as follows:

yi = β0 + β1xi1 + β2xi2 + ϵi

12



where yi represents the selling price (y1, . . . , yn, yn+1, . . . , ym), xi1 represents the
total dwelling size, and xi2 represents the assessed value for the i-th observation.
The coefficients β1 and β2 correspond to the total dwelling size and assessed
value, respectively.

Model 0 (Simpler, Nested Model) Model 0, nested within Model 1, also
assumes normally distributed errors with mean zero and constant variance σ2.
This model is simpler, as it excludes the parameter β2 (effectively setting β2 =
0):

yi = β0 + β1xi1 + ϵi

Computing the confidence interval requires the calculation of Tn(β2) for multiple
choices of β2. If the primary interest is in H0 : β2 = β2o, one can simply
calculate Tn(β2o) and reject if Tn(β2o) ≥ 1

α . A particular hypothesis of interest
is H0 : β2 = 0 which corresponds to a test of the simpler model

yi = β0 + β1xi1 + ϵi

against the full model

yi = β0 + β1xi1 + β2xi2 + ϵi

Tn(β2) =
L0(β̂0, β̂1, β̂2, σ̂, µ̂)

L0(β2, σ̂(β2), µ̂(β2), β̂0(β2), β̂1(β2))

where:

• Suppose that the number of observations in D0 is equal to the number of
observations in D1.

• L0(·) represents the likelihood function based on dataset D0.

• β̂, σ̂, µ̂ can be any function estimators (we select maximum likelihood es-
timator)obtained from dataset D1.

• β2 is the true value(according to the condition, it is 0) under HA, and

σ̂(β2), µ̂(β2), β̂0(β2), β̂1(β2) are the maximum likelihood estimates pre-
sented by β2 based on D0.

The universal confidence set includes β2 in the set if:

Tn(β2) =
L0(β̂0, β̂1, β̂2, σ̂, µ̂)

L0(β2, σ̂(β2), µ̂(β2), β̂0(β2), β̂1(β2))
≤ 1

α

Note: The figure4 features Tn(β2) as a black curve against β2, with a red
horizontal line indicating the significance threshold 1

α . Vertical blue lines mark
the confidence interval bounds for β2. The β2 values with Tn(β2) under the red
line are included in the confidence sets.
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Figure 4: Test Statistic Tn(β2) for a range of β2 values.

In the context of nested regression models with independent but not iden-
tically distributed (non-i.i.d.) observations, the traditional chi-square method,
and the universal confidence interval approach offer distinct yet complementary
insights. The traditional method, grounded in the assumptions of normality and
homoscedasticity, calculates confidence intervals for coefficients by fitting two
models: a null model and a full model. This approach yields specific interval
estimates, evidenced in our study by the confidence interval for the coefficient
of ‘Assessed Value’ being [0.13, 0.31].

Applying the split universal inference approach for hypothesis testing be-
tween Model 0 and Model 1 in our study, the likelihood ratio test statistic Tn(θ)
highlighted the significance of the additional parameter β2 in the complex model.
From the Figure 4, the derived confidence interval for the β of ‘Assessed Value’(
β2)was [−0.65, 1.27], which includes zero, indicating that the null hypothesis
H0 : β2 = 0 cannot be confidently rejected based on this interval alone.

The Figure 4 representation of the test statistic for the null hypothesis (β2 =
0) within the universal confidence interval, which encompasses zero, suggests
that the potential effect of ‘Assessed Value’ on ‘Selling Price’ is not statistically
significant at the chosen confidence level. This observation contrasts with the
confidence interval obtained from the traditional chi-square method, which does
not include zero, implying a significant effect of ‘Assessed Value’ on ‘Selling
Price’.

In conclusion, although Model 1, which includes ‘Total Dwelling Size’, may
offer a perspective on factors affecting ‘Selling Price’, our analysis suggests that
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the statistical evidence does not robustly support the significance of β2. Fur-
ther investigation, possibly with a larger sample size or additional data, might
be necessary to make a more definitive statement regarding the role of ‘Total
Dwelling Size’ in predicting ‘Selling Price’.

6 Conclusion

This thesis investigated the new and broadly applicable universal inference pro-
cedures. We delved deep into universal inference, a methodological framework
designed to transcend the limitations of traditional statistical techniques, es-
pecially in scenarios characterized by complex data structures and stringent
assumptions.

The exploration began by highlighting the strengths of universal inference.
Its principal merit lies in its adaptability to various data scenarios, including
those where conventional methods struggle due to the absence of large sam-
ples or regularity conditions. In addition, it does not depend on regularity
conditions. This quality of universal inference makes it a formidable tool in sta-
tistical analysis, allowing for robust interpretations even in the most intricate
data landscapes.

Further, we provided proof of the main universal inference results when data
are independent but not identically distributed and when there are nuisance
parameters. An area where this is important is regression analysis because
dependence on xi and the fact that xi is treated as fixed makes the observations
independent.

However, the journey also revealed a critical aspect of universal inference –
its conservative nature in constructing confidence intervals. While this conser-
vatism enhances the reliability of statistical conclusions, guarding against Type
I errors, it also introduces a trade-off by widening the confidence intervals. Such
a feature, though beneficial in certain contexts, may limit the precision of the
estimates, a fact that was evident in our empirical investigations.

Our foray into the realm of Poisson distribution further illuminated this
trade-off. We get the traditional method’s intervals containing the true mean
parameter in 98% of cases and 100% by the universal inference method. While
the traditional methods showed a near-perfect success rate in containing the true
mean parameter, the universal method, with a slightly lower success rate, offered
a more conservative and, thus, potentially more reliable approach. We observed
that the universal method typically produced broader intervals, with an average
width of 2.31, compared to the traditional method’s narrower mean interval
width of 1.24. The broader intervals, though at a cost to precision, remained
informative and valuable, especially in contexts where traditional assumptions
were unmet.

As we conclude, it’s evident that the journey of universal inference is still un-
folding, with numerous opportunities for exploration and refinement in domains
such as time-series analysis and spatial data. There’s a vital need to balance the
conservatism of universal inference with the pursuit of precision in estimates.

15



Addressing computational challenges, especially in big data, is crucial. This in-
cludes tackling computational issues for efficiency, exploring derandomization,
and investigating optimal strategies for data splitting. Questions like ’How best
to split the data?’ and the effectiveness of different proportion splits, such as
50-50 or 90-10, are fundamental. Such investigations will improve practicality
and enhance the accuracy and reliability of universal inference across various
applications.

In essence, this thesis does not mark an end, but rather a beginning – a
prologue to what could be a transformative chapter in the field of statistical
inference. The universal inference approach, with its unique blend of flexibil-
ity and robustness, stands poised to redefine the boundaries of data analysis
and open up new frontiers in the understanding of broadly applicable universal
inference procedures.
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