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1. Introduction 

 
Whether people like it or not, hospitals are essential. In hospitals, many major or minor procedures 

are performed every day. Within the same field, a doctor can perform different surgeries. For 

example, a heart surgeon can do heart bypass surgery, and heart bypass surgery can be performed 

on a different vein or artery. Although these surgical procedures are different, they share some 

similarities. The purpose of this thesis is to cluster surgeons from two surgical datasets, determine 

the optimal number of clusters and try to analyze the relationships between the surgeries that 

doctors undertake. The processing of the data will be implemented using R. 

 

These two datasets were provided by Dr. Huaichun Wang, who works for the Nova Scotia Health 

Authority (NSHA). Each dataset contains six types of surgical procedures, which are IIa-7, IIb-21, 

III-42, IV-91, V-182 and VI-365. These types are priority classification levels and each type of 

surgery has a target time corresponding to it. 

 

Priority Classification Level Target Time for Surgery 

Priority IIa Within 1 week 

Priority IIb Within 3 weeks 

Priority III Within 6 weeks 

Priority IV Within 3 months 

Priority V Within 6 months 

Priority VI Within 12 months 

           
                        Table 1: Surgery priority classification scheme. 

 

 

 

 

 

 

 

 

 

 

 
                        

                          Table 2: A few rows of data on cataract extraction surgical priority. 

 

 

Surgeon ID IIa-7 IIb-21 III-42 IV-91 V-182 VI-365 

1 0 2 1 0 0 0 

2 0 1 0 4 0 0 

3 0 1 3 0 6 474 

4 0 2 2 1094 0 0 

5 0 1 9 124 0 0 

6 2 0 2 2204 393 0 

7 0 0 0 1899 1 0 
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                      Table 3: A few rows of data on knee, hip, shoulder replacement surgical priority. 

 

The first dataset is about cataract extraction surgery (hereafter referred to as 'cataract data') and 

there are 42 surgeon samples in it. The second dataset is about knee, hip, and shoulder replacement 

surgery (hereafter referred to as 'knee data'), it has 38 surgeon samples. Table 2 and Table 3 show 

some data extracted from them, each row represents a surgeon and the number of times he 

performed each surgery. The basic computational analysis of the data is first performed. The mean 

of the cataract data is 6276.833 with a standard deviation of 8516.237. The mean of the knee data 

was 2360.667 with a standard deviation of 2677.832. Cataract extraction surgery is being done 

more often than knee replacement surgery and cataract data is more discrete. Table 4 lists the 

overall proportion of each type of surgery performed in both datasets. Surgeons conduct the most 

IV-91 and the least IIa-7. 

 

 IIa-7 IIb-21 III-42 IV-91 V-182 VI-365 

Cataract data 0.00079658 0.01696715 0.09168636 0.60205518 0.21337723 0.07511750 

Knee data 0.00098842 0.00691895 0.09149958 0.38830839 0.42191471 0.09036995 

 
Table 4: Overall proportions of types of surgery in cataract data and knee data. 

 

Going through each doctor's data, some doctors such as ID 1 and ID 2 in the cataract data and ID 

7 in the knee data, performed only one or two surgeries and had a very low total number of 

surgeries. Some doctors such as ID 4, ID 6, and ID 7 in the cataract data, repeated a surgery up to 

thousands of times. Some doctors, such as ID 2, ID 3, and ID 5 in the knee data, performed many 

types of surgeries. Based on the above summary of the data, different physicians may have a 

propensity to perform the procedure. We became interested in the relationship between the data, 

that is, whether there is a similar frequency of doing surgery between doctors then these doctors 

can be seen as a group. That is the reason why we wanted to cluster them. 

 

Clustering is done by determining the similarity or dissimilarity between samples and then putting 

the similar samples together. Each group of objects divided in this way is called a 'cluster' and the 

samples should be sufficiently dissimilar from one cluster to another (Hastie, et al., n.d.). 

Clustering and classification are not the same. Classifying data is grouping them according to a 

Surgeon ID IIa-7 IIb-21 III-42 IV-91 V-182 VI-365 

1 0 0 0 4 54 0 

2 0 8 19 37 19 20 

3 3 1 4 526 6 0 

4 0 1 2 3 534 0 

5 0 1 2 14 461 1 

6 0 0 0 0 38 0 

7 0 0 0 1 0 0 
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division criterion, while clustering data is needed because the specific division criterion is not 

known. Clustering algorithms can be divided into three types, which are combinatorial algorithms, 

mixed modeling and mode seeking (Hastie et al., n.d.). The most widely used of these are 

hierarchical clustering and K-means clustering, which are part of the methods used in this paper. 

Also, because of the sparsity of the data caused by some doctors doing low number of surgeries, 

the mixture modeling would be a better clustering method as well. In the meantime, how to 

determine the optimal number of clusters is also a question worth exploring. Because there is no 

division criterion, it is difficult to define precisely how many clusters a set of data needs to be 

divided into. Based on K-means clustering, the curvature method is the most common one to 

estimate the optimal number of clusters. It determines the number of clusters by using the elbow 

point where the decreasing trend of the sum of square within a cluster slows down. For the mixture 

modeling, the likelihood is the main consideration. The optimal number of components is usually 

determined by information criteria or testing. 

 

2. Hierarchical Clustering 
 

Hierarchical clustering can be seen as generating clustering results by determining the measure of 

dissimilarity (distance is often used) between two clusters based on the dissimilarities of the 

objects within the two clusters, which can be represented as a dendrogram (Hastie et al., n.d.). The 

way the dendrogram is formed can classify hierarchical clustering into two types: one is 

agglomerative, where each of the n objects is treated as a cluster by merging the two clusters with 

the least dissimilarity until the n clusters finally merge into a single cluster; another one is divisive, 

where the whole sample is treated as a cluster and a cluster is split into the two clusters with the 

greatest dissimilarity step by step until it splits into n clusters. Because agglomerative hierarchical 

clustering is relatively simpler, it is more commonly used. Based on the dissimilarities of objects 

within two clusters, the method with merging minimal dissimilarity is called single linkage, and 

the method with merging maximal dissimilarity is called complete linkage. However, these two 

methods are susceptible to extreme anomalous objects. Average linkage is merging mean 

dissimilarity, so it can get relatively suitable results. 

 

 
Figure 1:Dendrograms for cataract data (left) and knee data (right) computed by average linkage. 

In R, the function hclust is used to implement hierarchical clustering and visualize it with plot(). 

This requires a subjective determination of how many clusters the data are divided into. In Figure 

1, each leaf of the tree represents a surgeon. The leaves from low to high represent the dissimilarity 
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between clusters from small to large. The dendrogram on the left-hand side is a hierarchical 

clustering of the cataract data, with the number of clusters roughly divided into four. Point 33 and 

point 36 are two clusters that are well separated from the other clusters because these two points 

are at the top of the tree. The dendrogram on the right-hand side is a hierarchical clustering of the 

knee data, which can also be divided into four clusters based on the merging of the clusters. It can 

be visualized that point 28, as a cluster, has a large dissimilarity with another large cluster. In the 

figure, the red borders divide each tree into four groups, making it is easy to observe clusters. The 

size of the clusters from left to right is getting larger. The clusters are merging upwards in sequence, 

which indicates that the dissimilarity between clusters from right to left is increasing from small 

to large. 

3. K-Means Clustering 

The K-means clustering algorithm (Hastie et al., n.d.) is not difficult. Similar to hierarchical 

clustering, K-means clustering is also based on the dissimilarity of objects within two clusters and 

uses squared Euclidean distance as a measure of dissimilarity. 

𝑑(𝑥𝑖 , 𝑥𝑖′)  =  ∑(𝑥𝑖𝑗  −  𝑥𝑖′𝑗)2  =  ‖𝑥𝑖  −  𝑥𝑖′‖2

𝑝

𝑗=1

 

The process of the K-means algorithm is a continuous iteration of the following steps: 

a) Choose a value of k as the number of clusters derived after clustering. 

b) Let the value of k be the centers (𝑚1, 𝑚2, ..., 𝑚𝑘) of the clusters, and calculate the 

distances of other objects to each center using the Euclidean distance formula. By determining 

which center the object is closer to, then let this object be in the same cluster as that center. 

This is the first clustering. 

c) Calculate the mean value of each cluster and set it as the new clustering center, again 

using the Euclidean distance formula to determine the distance and grouping to get the new 

clustering. 

d) Repeat the previous step until there is no more change in data grouping, which indicates 

that the clustering centers finally converge. 

 

Since it is difficult to determine the value of k in advance, it is necessary to try to set multiple k 

values. The kmeans() function is used to cluster k = 2:6. Since there are not many observations in 

each data set, the value of k does not need to be large. According to Figure 1, we can separate both 

datasets into four clusters. In this case, 4 might be the best number of clusters. Because the 

principles of hierarchical clustering and K-means clustering are similar, we prefer to compare the 

results from the two methods when k = 4. 

 

Table 5 shows four clusters with 3, 28, 10, and 1 observations respectively, and the clustering 

vector provides the specific surgeons included in each cluster. Knee data has clustering with sizes 

of clusters are 1, 15, 10 and 12. Both cluster 2 have the largest proportions, which means that these 

doctors perform procedures with a high degree of similarity. Define 𝑦𝑖𝑗𝑔 be the count for category 
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j for each surgeon i in cluster g with size l. Define 𝑚𝑗𝑔 be the mean of category j in cluster g. Then 

the ‘between_SS / total_SS’ item  

 
𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑆

𝑡𝑜𝑡𝑎𝑙 𝑆𝑆
  =  

(𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠)  − (𝑡𝑜𝑡𝑎𝑙 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠)

(𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠)
 

 

=  
∑ ∑ (𝑦𝑖𝑗  −  𝑚𝑗)2  −  ∑ ∑ ∑ (𝑦𝑖𝑗𝑔  −  𝑚𝑗𝑔)2𝑘

𝑔=1
6
𝑗=1

𝑙
𝑖=1

6
𝑗=1

42
𝑖=1

∑ ∑ (𝑦𝑖𝑗  −  𝑚𝑗)26
𝑗=1

42
𝑖=1

 

 

indicates the ratio of the sum of squares of the between group distances to the sum of squares of 

the overall distances. Since we want the distance within cluster to be as small as possible and the 

distance between clusters to be as large as possible, this value is better to close with 1. 

 

 

Table 5: Extraction of output of K-means on cataract data. 

Compare cluster vectors of hierarchical clustering and K-means clustering. For the left confusion 

table in Table 6, the true label that corresponds to cluster 1 is 26 and they have high correlation, 

the true label that corresponds to cluster 3 is 2. There is no same observation in cluster 2 and cluster 

4. For right confusion table, only in cluster 2 has one same observation and cluster1 of hierarchical 

clustering has high correlation with cluster 2 of K-means clustering. 

 

                                        
Table 6: Left table gives the result of hierarchical clustering (rows) versus the results of K-means clustering (columns) 

for cataract data. Right table gives the result of hierarchical clustering (rows) versus the results of K-means clustering 

(columns) for knee data.                                             

Visualizing the clusters can be an intuitive way to determine the distribution of clusters. When the 

data were generated as images using principal component analysis (PCA) to reduce the 

Clusters Sizes 3, 28,10, 1 

Cluster means IIa-7 IIb-21 III-42 IV-91 V-182 VI-365 

1 0.6666667 6.00 11.0000 15.66667 868.00000 566.6667 

2 0.6071429 20.75 118.0357 156.35714 68.14286 39.85714 

3 1.0000000 3.40 6.6000 1819.20000 48.60000 0.50000 

4 1.0000000 6.00 49.0000 57.00000 3038.00000 8.00000 

between_SS / total_SS = 80.6 % 
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dimensionality, so the horizontal axis represents the dimensionality of the first principal 

component and the vertical axis represents the dimensionality of the second principal component. 

The purpose of PCA is to project high-dimensional data into a low-dimensional space through a 

few linear combinations of variables (Johnson & Wichern, 2019). Each convex region or each line 

is a cluster, each point with number in the cluster represents a doctor and the point in the cluster 

without number is the mean of cluster.  

 

   

 
Figure 2: Scatterplots of K-means clustering on cataract data when k = 2:5. 

 

By looking at Figure 4, the largest cluster will be divided when k becomes larger, so we may 

conclude that K-means clustering tends to generate clusters that have similar size. The cluster in 

the upper left part only has one observations point 33. This cluster does not change as the number 

of clusters increases, it might be the outlier. Because there are not many observations in the dataset, 

this data may be outlying behavior for the doctor, which suggests that having more observations 

may be better for clustering. 

 

The use of K-means clustering depends on the number of clusters specified to be generated, so we 

will expect to be able to determine the optimal number of clusters. Based on the idea of K-means 

clustering, the curvature method (elbow method) uses wss (within sum of square) value to measure 

the optimal number of clusters. As the number of clusters increases, each cluster has less 

observations and the wss value decreases. When the wss value decreases slowly, it is considered 

useless to increase the number of clusters, so the "elbow point" is the optimal number of clusters. 

In Figure 5 below, the value of wss decreases slowly when k = 5 on both plots, so we use 5 as the 

optimal cluster number for both cataract da and knee data. This is completely different from the 

number of clusters we judged by hierarchical clustering before, which indicates that hierarchical 
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clustering cannot give an optimal number of clusters when the dendritic separation of the 

dendrogram is not obvious. 

 

 
Figure 5: Both knee data (left) and cataract data (right) show the optimal number of clusters is 5. 

  

 

4. Mixture Modeling 
 

4.1 Clustering 
 

For the mixing model, here we are interested in is multinomial mixtures because there is always 

one outcome that each surgeon is going to do one of these types of procedures. Suppose 𝑦𝑖  =
 [𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖6] = [0, 2, 1, 0, 0, 0] where the list of numbers is the first row of Table 2. Each 

element in vector represents the number of procedure that every surgeon undertakes. Let each 𝑘𝑖  

be the total number of procedures and the distribution with probability 𝜽 =  [𝜃1, 𝜃2, . . . , 𝜃6] where 

𝜽 being the probability of these different procedures.  

𝑓(𝑦𝑖; 𝜃)  =  
𝑘𝑖

𝑦𝑖1! 𝑦𝑖2!. . .  𝑦𝑖6!
{𝜃1

𝑦𝑖1 . . . 𝜃6
𝑦𝑖6} 

So it will be 𝑀𝑢𝑙𝑡(𝑘𝑖 , 𝜃) where 𝑘𝑖 is size parameter and 𝜃 is probability parameter. Then suppose 

surgeons in one cluster prefer to do procedure IIa-7 and surgeon in another cluster prefer to do 

procedure V-182. In this case, probability of different clusters will depend upon the probability of 

individual categories. Let 𝑥𝑖 be the indicator of cluster, so we end up with 𝑦𝑖 from cluster j that is 

𝑦𝑖|𝑥𝑖 = 𝑗 ~𝑀𝑢𝑙𝑡(𝑘𝑖 , 𝜃𝑗). But we do not know which cluster each surgeon corresponds to, so the 

probability of data that we actually observe is  

𝑓(𝑦𝑖) = ∑ 𝑓(𝑦𝑖|𝑥𝑖)𝑓(𝑥𝑖)

𝑥𝑖

  

= 𝑓(𝑦𝑖|𝑥𝑖 = 1)𝑝(𝑥𝑖 = 1) … 𝑓(𝑦𝑖|𝑥𝑖 = 6)𝑝(𝑥𝑖 = 6) 
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= 𝑓(𝑦𝑖; 𝜃1)𝜆1 + ⋯ + 𝑓(𝑦𝑖; 𝜃6)𝜆6 

                                                          =  ∑ 𝑓(𝑦𝑖; 𝜃𝑗)𝜆𝑗
𝑘
𝑗=1   

𝜆𝑗 is the frequency with which surgeon appears in the cluster. The number of components k is 

considered as the number of clusters. We would like to use the maximum likelihood method to 

estimate the probability parameter , and to facilitate the calculation, we expect to maximize the 

log-likelihood function, which is 

 

∏ 𝑙𝑜𝑔 ∑ 𝜆𝑗 𝑓(𝑦𝑖; 𝜃𝑗) 

 

To determine the cluster, derive the posterior probability of cluster j by Bayes rule. If   

 

𝑝(𝑗|𝑦𝑖) =
𝜆𝑖𝑓(𝑦𝑖; 𝜃𝑗)

𝑓(𝑦𝑖)
 

 

is maximal, then ith observation will in cluster j.  

 

To implement the mixture modeling in R, we need to use the EM algorithm (Expectation–

Maximization Algorithm) of Dempster et al. (1977). We use function multmixEM() in mixtools 

package in R (Benaglia et al., 2009). The value ‘posterior’ that multmixEM() returns gives 

posterior probabilities for observations, this is the basis we use to clustering. Take a cataract model 

with the two components as an example, ‘posterior’ is a 42× 2 matrix, each row is the posterior 

probability of component 1 and component 2. The larger probability of component in each row 

determines the surgeon is an observation in this component. Our goal is to determine the clusters, 

so let k = 2:5,  and  are NULL. Since  and  are randomly selected, in order not to be affected 

by the local maximizer, a better way is to create a loop and run the function a large number of 

times like 1000 times. This way will give the model with the largest log-likelihood for each k. 

 

How about setting the initial values of  and ? 

 

When 𝜆  and 𝜃  are NULL, then 𝜆  and each row of 𝜃  are random from uniform Dirichlet 

(McLachlan & Peel, 2000). By hierarchical clustering and K-means clustering, we have obtained 

clusters for k = 2:5. We can assign values to  and  based on these results, so that we can compare 

their log-likelihood values. Take K-means clustering with 4 clusters on cataract data as an example, 

𝜆 is a vector of length 4 and 𝜃 is a 4 × 6 matrix. As shown in Table 5, the sizes of clusters are 3, 

28, 10 and 1, then 𝜆 = [
3

42
,

28

42
,

10

42
,

1

42
]. To obtain 𝜃, consider each cluster as a new data matrix. The 

values of each row are the probabilities of total number of corresponding procedures in a 

component and sum of each row should be 1. That will be initial value we would like to set. 

 

Surprisingly, the function with no initial value setting has a larger log-likelihood value, which 

means that the initial value we set is a local maximizer. We can find in running the cataract data 

model that the best log-likelihood value of cataract data -13127.02 occurs 17 times out of 20 runs 
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when k = 2. When k = 3, the best log-likelihood value -6719.798 appears 10 times out of 20 runs, 

the best value -4152.523 appears twice when k = 4, and the best value does not occur in 20 runs 

when k becomes larger. Similar with knee data. This shows that when k is larger, it is more 

susceptible to the local maximizer. Thus, the large number of runs is necessary. 

 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

Cataract data 0.2494911 0.2714365 0.2142931 0.1457316 0.1190476 

Knee data 0.26436351 0.05267198 0.33509651 0.18857456 0.15929344 

  
Table 7: Estimated 𝜆 of cataract data model and knee data model. 

 

 
 

Table 8: Estimated 𝜃 of cataract data model. 

 

 
 
Table 9: Estimated 𝜃 of knee data model. 

Combined with K-means clustering, we can treat the division of doctors into 5 clusters as relatively 

appropriate clusters. The models give the parameter 𝜆 and 𝜃, which helps us to determine the 

frequency and propensity of doctors within a group to perform the procedure. 𝜆 of cataract data 

model shows that cluster 2 has the more frequency of arising surgeon and cluster 3 in knee data 

has the most frequent appearance of surgeons. For cataract data, doctors in cluster 1 and cluster 3 

are most likely to perform surgery V-182, both with more than 80% chance. But doctors in cluster 

1 have the next highest preference for surgery III-42, and doctors in cluster 3 have the next highest 

preference for surgery IV-91. Doctors in cluster 2 have the highest preference for surgery IV-91, 

with a 98.71% probability. In the knee data, the most interesting result is that the surgeons in both 

cluster 1 and cluster 4 do surgery V-182 the most and then both tend to do surgery IV-365. The 

reason for this clustering may be that there is this tendency within the same group but not similar 

between clusters.  

4.2 Number of Components 
 
McLachlan and Peel (2000) believed it is not easy to determine the number of components in the 

mixture distribution, and they noted that “there are two main ways: One way is based on a 
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penalized form of the log likelihood, the other main way is to carry out a hypothesis test, using a 

likelihood ratio test (LRT)” (p. 370).   

 

4.2.1 Akaike Information Criterion and Bayesian Information Criterion 

 
For the mixed model, a higher log-likelihood value means that this is a better model, so we usually 

choose the component of this model to be the optimal number of components. However, the model 

set in R will give higher log-likelihood values as the number of parameters increases. We need to 

penalize the log-likelihood value with AIC and BIC, then choose the number of components for 

the model which gives the largest log-likelihood value. In AIC and BIC, use the largest log-

likelihood value we have got. 

 

 

𝐴𝐼𝐶 = 𝑙(𝜆,̂ 𝜃̂, 𝑘) − {𝑘 − 1 + 5𝑘} 

 

𝐵𝐼𝐶 = 𝑙(𝜆̂, 𝜃̂, 𝑘) −
𝑙𝑜𝑔(𝑛){𝑘 − 1 + 5𝑘}

2
 

 

 

 
  
 

 

 

 
 

 

 

Table 10: AIC and BIC of cataract data model.                               Table 11: AIC and BIC of knee data model. 
  

After summarizing the results, it appears that we need 5 or more components.  

 

4.2.2 Likelihood Ratio Tests 

 
Take the test of null hypothesis 𝐻𝑜: k = 𝑘𝑜 versus alternative hypothesis 𝐻𝐴: 𝑘 =  𝑘𝑜 + 1. 

 

𝑇𝑒𝑠𝑡 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  2{𝑙(𝜆̂, 𝜃̂, 𝑘𝑜 + 1) −  𝑙(𝜆̂, 𝜃̂, 𝑘𝑜)} 

 

We can consider that the test statistic is going to be 𝜒2 distribution with degree of freedom (1+5), 

where 1 is additional weight parameter 𝜆, 5 is additional 𝜃. But this theory does not apply here 

since we have less data. After each resampling run with the model, the likelihood ratio statistic 

was used to calculate -2log𝜆, but “the asymptotic null distribution of −2 log λ will not necessarily 

be chi-squared, as regularity conditions still do not hold” (McLachlan GJ & Peel D, 2000).   Then 

we would like to use parametric bootstrap to achieve likelihood ratio test because we need to 

generate a large number of samples from model. For each sample, there exists a test statistic 

(likelihood ratio statistic). We would like to use the largest log-likelihood value we obtained before 

 AIC BIC 

k = 1 -9657.646 -9661.99 

k = 2 -4751.157 -4760.714 

k = 3 -3134.469 -3149.239 

k = 4 -2237.227 -2257.261 

k = 5 -1759.427 -1784.623 

 AIC BIC 

k = 1 -31341.12 -31345.46 

k = 2 -13138.02 -13147.58 

k = 3 -6736.798 -6751.569 

k = 4 -4175.523 -4195.507 

k = 5 -3383.459 -3408.655 
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to form the observed likelihood ratio statistic. The p-value can be considered as the proportion of 

likelihood ratio statistic of each sample greater than observed likelihood ratio statistic. 

 

It may be implemented in R by the function boot.comp. There is one difference from what we do 

is that this function uses the data processed by the cut-point method. Therefore, creating a new 

function to compare with boot.comp is reasonable. We set the maximum number of components 

is 5. However, there exists a difficulty with convergence as 𝑘𝑜 becomes larger when creating the 

new function. Testing the null hypothesis and alternative hypothesis of cataract data with 2 versus 

3 by two functions, they have same p-value which is 0 and similar likelihood ratio statistics. The 

observed likelihood ratio statistics from boot.comp is 12396.871, which almost twice the observed 

likelihood ratio statistic of the new function, 6407.22. We can refer to the p-value of boot.comp on 

cataract data, the first 𝑘𝑜 for which we cannot reject is the maximum number of components. All 

the p-values of boot.comp on knee data are 0, which suggests we may need more components. 

  

 

4.2.3 Mixturegram 

 
Mixturegram (Young et al., 2019) is a graphical representation of the number of components of 

the mixture model. Use the best model with k = 2:5 to create mixturegram. The first step is 

choosing a K as the maximum number of components, here K is 5. The second step is running 

these models to get the posterior probability matrices for k = 2:5. Then dimensionality reduction 

of this list of matrices is performed using principal component analysis and kernel principal 

component analysis, and the first vector from each method is transformed separately. The 

transformed data are then plotted on a coordinate plot and clustered by K-means clustering. The 

objects are grouped into clusters and assigned colors, and k-component mixture settings are 

performed. The number of colors for the profile is the value of k. Finally, the observation profiles 

that locate together are treated as a cluster to judge the value of k. 

 

 
Figure 6: Mixturegrams of cataract data (left) and knee data (right) using PCA. 

Figure 6 shows the mixturegrams of cataract data and knee data. The number of components on 

the horizontal axis and the pc scores on the vertical axis. Since we set 5 components as maximum, 

then there are 5 colors for profiles. Each red dot represents mean of each component group. The 

number of profile groups might be the number of components that we would like to choose, but 

when we look at the graph on the left, determining the number of profile groups can be very 

subjective. It can be seen as being divided into two groups: yellow, green and blue are in one, 
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orange and black are in another one. But it also seems to be able to be divided into three groups: 

yellow, green and blue are in one group, orange is a group and black is a group. So we also consider 

the location of the red dots. When k becomes larger, the red dots can be separated well and aligned 

well, k becomes better. 

The profiles in mixturegram of knee data lie together, they cannot be separated into groups. It can 

be treated as the limitation of mixturegram. This method does not accurately determine the number 

of components, it only serves as an auxiliary way. 

 

5. Conclusion 
 
In this thesis, hierarchical clustering, K-means clustering and multinomial mixture models are used 

to cluster the two datasets. The clusters generated by all three methods are somewhat different. 

But the generated clusters will always have a small number of outliers, possibly because there are 

only a few dozen samples, and there will be a large dissimilarity in the propensity to perform the 

procedures between doctors. Because hierarchical clustering and K-means clustering are based on 

distance and are more susceptible to outliers, the results of the mixture model with larger log-

likelihood values are relatively better. According to the results of the best mixture models of two 

datasets, doctors are most inclined to do the procedure among the III-42, IV-91, V-182 and VI-

365. On the contrary, surgical IIa-7 and IIb-21 are rarely conducted.  

 

At the same time, we also want to identify the optimal number of clusters. The elbow method used 

for K-means clustering shows both optimal number of clusters to be 5. The AIC and BIC used to 

penalize log-likelihood values, resampling for likelihood ratio test, and the mixturegram all show 

that more clusters are better. But if the optimal number of clusters is set to a large number, there 

will be many clusters with only one or two observations inside, which makes no sense. Overall, 

we prefer to separate these two datasets into 5 clusters. When we have more samples we can set 

the optimal number of clusters larger.So how to be able to accurately determine the best number 

of clusters still requires working. 
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