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1 Introduction
Statistical hypothesis testing stands as an essential tool for deriving meaningful insights from
data, particularly when comparing two populations. Among the array of statistical meth-
ods, the Mann-Whitney test(Lehmann & Abrera, 1975) has established itself as a valuable
instrument for testing the equality of distributions between two populations. This paper
embarks on an in-depth exploration of Mann-Whitney tests, delving into proportions, confi-
dence intervals, simulation studies, and real-life applications. It also considers the use of the
Mann-Whitney test statistics as an effect size and the construction of confidence interval in
this case.

The Mann-Whitney test aim to comparing two populations, guided by the null hypothesis
(𝐻0) positing the identical distribution of two populations. By define two population 𝑋 and
𝑌 , the Mann-Whitney test statistic is the proportion of pairs of observation for which 𝑦 > 𝑥.
The statistics provides a estimation of the probability that population 𝑌 > 𝑋 for a randomly
selected pairs of population each from 𝑋 and 𝑌 which we denote as 𝜃, 𝜃 = 𝑃 [𝑌 > 𝑋].
The Mann-Whitney statistics can also be considered as an effect size, the size of effect defined
by proportion. Consider a hypothetical example where we have two samples about testing
patients blood pressure. We define 𝑋 as the treatment group that we give treatment to pa-
tient and 𝑌 as the control group that we do nothing. Then we calculated the Mann-Whitney
statistics value as 0.73. The interpretation of this value implies that 73% of the time, the
blood pressure treatment proves more effective than the control group which is a signifi-
cant indicator of treatment efficacy. This stands in stark contrast to another hypothetical
scenarios where Mann-Whitney statistics hover around 0.5, signifying a lack of substantial
effectiveness. When presented with Mann-Whitney statistics like 0.73, it becomes crucial to
acknowledge the infeasibility of definitively asserting the treatment’s effectiveness. From a
statistical standpoint, the conclusion is confined to supporting evidence for the rejection of
the hypothesis that the treatment is not effective.

In traditional Mann-Whitney hypothesis, there is an assumption of identical distributions for
two populations under the null hypothesis. That implies that we are assuming 𝜃 ∶= 𝑃 [𝑌 >
𝑋] = 1

2 initially(Lehmann & Abrera, 1975). But generally, we compare between distributions.
Define a distribution for 𝑋 as 𝐹 and distribution for 𝑌 as 𝐺, a 𝜃 = 𝑃 [𝑌 > 𝑋] = 1

2 does
not directly implies the distribution of two population is the same in which we describe as
𝐹 = 𝐺. Then, we are not expected that 𝐹 = 𝐺 as used in derived Mann-Whitney test.
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In light of these considerations, this paper endeavors to investigate extensions of the
Mann-Whitney test methodology by take out to generate confidence intervals for the effect
size(Newcombe, 2005). This extension seeks to offer a more nuanced and informative com-
prehension of the treatment’s impact, recognizing the inherent uncertainties in statistical
inference and delivering a comprehensive assessment of observed effects.

2 Traditional Mann-Whitney test
In a research context where the comparison of two groups is central, a foundational hypoth-
esis is established, distinguishing the treatment group with a size of 𝑛 and the control group
with a size of 𝑚. The designation “Receive treatment: 𝑛” characterizes the group undergoing
a specific treatment, while “Control group: 𝑚” identifies the group not receiving the treat-
ment. The null hypothesis, denoted as 𝐻0, posits that the ranking of observations remains
uninfluenced by the treatment effect. In contrast, the alternative hypothesis, denoted as 𝐻𝐴,
asserts that the ranking is indeed affected by the treatment.

We initially consider Mann-Whitney in case that there are no ties that would arise with count
data, meaning that there are no identical values in both populations. However, when tied
observations are present, the Mann-Whitney test adjusts its approach. Ties introduce the
possibility of 𝑥𝑖 = 𝑦𝑗, which can impact the calculation of the test statistic. We will delve into
the implications of ties on the test statistic shortly. In scenarios without tied observations,
our consideration is focused solely on instances where 𝑦𝑗 > 𝑥𝑖 for the computation of the
test statistics.

2.1 Wilcoxon Statistics
It turns out that the Mann-Whitney test is equivalent to the Wilcoxon rank-sum test as
we will discuss in this section. Specifically, under the null hypothesis 𝐻0, the order statis-
tics is defined as 𝑋(1), 𝑋(2), … , 𝑋(𝑛), with 𝑋(1) < 𝑋(2) < … < 𝑋(𝑛) within the treatment
group. Similarly, for the alternative hypothesis 𝐻𝐴, the order statistics are denoted as
𝑌(1), 𝑌(2) … , 𝑌(𝑚) within the control group, maintaining a consistent order structure 𝑌(1) <
𝑌(2) < … < 𝑌(𝑚). Let the pooled values be 𝑧1 = 𝑥1, ..., 𝑧𝑛 = 𝑥𝑛, 𝑧𝑛+1 = 𝑦1, ..., 𝑧𝑛+𝑚 = 𝑦𝑚.
Thus, the order statistics for z would be 𝑧(1) < ... < 𝑧(𝑛+𝑚). The rank 𝑅𝑗 of 𝑦(𝑗) as the
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position of order value in 𝑧(1) < ... < 𝑧(𝑛+𝑚) such that 𝑅𝑗 = 𝑖 if and only if 𝑦𝑗 = 𝑧(𝑖).

In this scenario, if the treatment has no influence on the observed effect, the order statistics
for the treatment and control groups, denoted by 𝑋 and 𝑌 respectively, should exhibit
exchangeability. Consequently, under the null hypothesis, the sums of ranks over all 𝑦𝑗
should have a known expectation and variance as we will show. The Wilcoxon rank-sum
test involves computing the statistic 𝑊𝑠, defined as the sum of the ranks assigned to the
elements in set 𝑌 :

𝑊𝑠 =
𝑚

∑
𝑗=1

𝑅𝑗

(Lehmann & Abrera, 1975)

2.2 Mann-Whitney U Statistics
In the Mann-Whitney U test, the null hypothesis (𝐻0) states the distribution between two
populations, denoted as F and G, have the relationship 𝐻0 ∶ 𝐹 = 𝐺. This assertion is
implies as 𝑃 [𝑦 > 𝑥] = 1

2 . Conversely, the one-sided alternative hypothesis (𝐻𝐴) often
proposes that 𝑃 [𝑦 > 𝑥] > 1

2 . Meanwhile, the two-sided alternative hypothesis (𝐻𝐴) asserts
that 𝑃 [𝑦 > 𝑥] ≠ 1

2 .

To quantify this hypothesis testing procedure, the Mann-Whitney test statistic (𝑈) is em-
ployed, defined as the proportion when 𝑦𝑗 is greater than 𝑥𝑖 for all observations i and j. Which
the count of 𝑦𝑗 is greater than 𝑥𝑖 denote as sum of indicator that 𝑦 > 𝑥. The calculation
involves iterating over all pairs of observations (𝑛 from population 𝑥 and 𝑚 from population
𝑦), and the resulting statistic is normalized by 𝑛𝑚. Mathematically, this is expressed as:

𝑈 =
𝑛

∑
𝑖=1

𝑚
∑
𝑗=1

𝐼{𝑦𝑗 > 𝑥𝑖}
𝑛𝑚

(Lehmann & Abrera, 1975)

Under the assumption of the null hypothesis (𝐻0), the expected value of 𝑈 is equivalent to
the proportion 𝑃𝐻0

[𝑦𝑗 > 𝑥𝑖], which, as stipulated by 𝐻0, is precisely 1
2 .

2.3 Comparison of statistics
The Wilcoxon rank-sum test is essentially another name for the Mann-Whitney U test. Both
tests compare two independent groups and assess whether their distributions are equivalent
or if one group tends to have higher ranks than the other.

Defining the Mann-Whitney null hypothesis 𝐻0 ∶ 𝐹 = 𝐺, and the Wilcoxon rank-sum
test with 𝑦1, 𝑦2, … , 𝑦𝑚 and 𝑥1, 𝑥2, … , 𝑥𝑛 denoted as 𝑥𝑖, 𝑦𝑗, respectively. We define the test
statistic 𝑊𝑠 as the sum of ranks of 𝑦𝑗, in 𝑧(1) < … < 𝑧(𝑛+𝑚), which is pooled into one
distribution such that 𝑦𝑗 = 𝑧(𝑖). Thus, when the 𝑥𝑖, 𝑦𝑗 values are pooled, the rank of 𝑦𝑗 in
the pooled sample is the number of 𝑦𝑖 less than or equal to 𝑦𝑗 and plus the number of 𝑥𝑖 less
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than 𝑦𝑗. The Wilcoxon test statistics related to the indicators used in the Mann-Whitney
test statistics is:

𝑅𝑗 =
𝑛

∑
𝑖=1

𝐼{𝑦𝑗 > 𝑥𝑖} +
𝑚

∑
𝑖=1

𝐼{𝑦𝑗 ≥ 𝑦𝑖}

Thus,

𝑚
∑
𝑗=1

𝑅𝑗 =
𝑚

∑
𝑗=1

𝑛
∑
𝑖=1

𝐼{𝑦𝑗 > 𝑥𝑖} +
𝑚

∑
𝑗=1

𝑚
∑
𝑘=1

𝐼{𝑦𝑗 ≥ 𝑦𝑘}

For this equation, the rank is constructed by two parts: the counts of 𝑥𝑖 smaller than 𝑦𝑗 in the
𝑧-pooled distribution and the 𝑦𝑗 itself, and the counts of 𝑦 before 𝑦𝑗 in this pooled distribution.
For the first summation, it is just the count of 𝑦𝑗 > 𝑥𝑖 for the pooled distribution, so it is
∑𝑚

𝑗=1 ∑𝑛
𝑖=1 𝐼{𝑦𝑗 > 𝑥𝑖}.

Then, the second summation considers all pairs of (𝑗, 𝑘) in this pooled sample, we can
write it as ∑𝑚

𝑗=1 ∑𝑚
𝑘=1 𝐼{𝑦(𝑗) ≥ 𝑦(𝑘)}. Assuming definition of 𝑦(𝑗) through 𝑦(1) < … <

𝑦(𝑗), we have ∑𝑚
𝑘=1 𝐼{𝑦(𝑗) ≥ 𝑦(𝑘)} = 𝑗. Then, the second summation can be inferred as

∑𝑚
𝑗=1 ∑𝑚

𝑘=1 𝐼{𝑦(𝑗) ≥ 𝑦(𝑘)} = ∑𝑚
𝑗=1 𝑗. Based on the sum of natural sequences, the second

summation can be 𝑚(𝑚+1)
2 . Thus, the statistics for the Whicoxon rank-sum test 𝑊𝑠 can also

be written as:

𝑚
∑
𝑗=1

𝑅𝑗 =
𝑚

∑
𝑗=1

𝑛
∑
𝑖=1

𝐼{𝑦𝑗 > 𝑥𝑖} + 𝑚(𝑚 + 1)
2

.

Since the test statistics 𝑊𝑠 for the sum of ranks of 𝑥𝑖, 𝑦𝑗 is 𝑊𝑠 = ∑𝑚
𝑗=1 𝑅𝑗, then we can

define the relationship between the statistics for the Mann-Whitney test 𝑈 and the Wilcoxon
rank-sum test 𝑊𝑠:

𝑈 = 𝑊𝑠 − 𝑚(𝑚+1)
2

𝑛𝑚
Thus, we can easily infer about the normal relationship between 𝑈 and 𝑊𝑠, especially the
mean relationship between 𝑈 and 𝑊𝑠. Previously, under null hypothesis, we define that
𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}] = 𝑃𝐻0

[𝑦𝑗 > 𝑥𝑖] = 1
2 given by Mann-Whitney U test. It means that the mean

of Mann-Whitney U test is 1
2 . And we also given the relationship between statistics for the

Mann-Whitney U test and the Wilcoxon rank-sum test, then we can easily refer the mean
of Wilcoxon rank sum test under null hypothesis that 𝐹 = 𝐺 as given

𝐸(𝑊𝑠) = 𝐸(𝑈) + 𝐸 (𝑚(𝑚+1)
2 )

= 1
2 ∗ 𝑛𝑚 + 𝑚(𝑚+1)

2
= 𝑚(𝑛+𝑚+1)

2
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3 Mann-Whitney Effect Size and CI
Given the assumption of identical distributions for two populations under the null hypothesis,
our objective is to augment the Mann-Whitney test by extending it to produce confidence
intervals for the effect size. In order to consider confidence interval, we first need to figure
out the variance between Mann-Whitney and Wilcoxon test.

3.1 Variance
Within the context of the traditional Mann-Whitney test, first, we considered in cases that no
tied observation of 𝑥𝑖 = 𝑦𝑗 exist in this Mann-Whitney test. The effect size 𝜃 are determined
as 𝜃 = 𝑃 [𝑦𝑗 > 𝑥𝑖] = 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}] because the expected value of an indicator random
variable for an event is just the probability of that event. Then, the variance of traditional
Mann-Whitney test statistics is defined as

Var(𝑈) = 1
𝑛2𝑚2 Cov (∑

𝑖
∑

𝑗
𝐼{𝑦𝑗 ≥ 𝑥𝑖}, ∑

𝑖′
∑

𝑗′
𝐼{𝑦𝑗′ ≥ 𝑥𝑖′})

by the definition of covariance. Utilizing the bilinearity properties of covariance, we rearrange
the position of covariance and the summations as

Var(𝑈) = 1
𝑛2𝑚2 ∑

𝑖,𝑗
∑
𝑖′,𝑗′

Cov(𝐼{𝑦𝑗 ≥ 𝑥𝑖}, 𝐼{𝑦𝑗′ ≥ 𝑥𝑖′})

… (1)
We consider three cases for 𝑖, 𝑗, 𝑖′, and 𝑗′, excluding terms with 𝑗 ≠ 𝑗′ and 𝑖 ≠ 𝑖′ because
they give a covariance contribution equal to ∅. The three cases are:

Case 1. When 𝑖 = 𝑖′ and 𝑗 = 𝑗′,

Cov(𝐼{𝑦𝑗 ≥ 𝑥𝑖}, 𝐼{𝑦′
𝑗 ≥ 𝑥′

𝑖}) = 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}2] − 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}]2 (covariance definition)
= 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}2] − 𝜃2 (𝜃 definition)
= 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}] − 𝜃2 (natural of indicator variable)
= 𝜃(1 − 𝜃)

Since there are m and n be the summation in (𝑖′, 𝑗′), (𝑖, 𝑗), the contribution to (1) from
these terms is

𝑚 ⋅ 𝑛 ⋅ 𝜃(1 − 𝜃)

Case 2. When 𝑖 = 𝑖′ and 𝑗 ≠ 𝑗′,

Cov(𝐼{𝑦𝑗 ≥ 𝑥𝑖}, 𝐼{𝑦𝑗′ ≥ 𝑥𝑖′}) = 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗′ > 𝑥𝑖}] − 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}]𝐸[𝐼{𝑦𝑗′ > 𝑥𝑖}]
= 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗′ > 𝑥𝑖}] − 𝜃2
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Because the 𝑗 ≠ 𝑗′, we have 𝑛 − 1 i’ for case 2. Since there are 𝑛 ⋅ 𝑚(𝑚 − 1) many covariance
be the summation in (𝑖′, 𝑗′), (𝑖, 𝑗) in this case, then contribution to (1) from these terms is

𝑛 ⋅ 𝑚 ⋅ (𝑚 − 1) (𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦′
𝑗 > 𝑥𝑖}] − 𝜃2)

Case 3. When 𝑖 ≠ 𝑖′ and 𝑗 = 𝑗′, Similarly, the 𝑖 ≠ 𝑖′, so we have 𝑛 − 1 i’ for case 3.
The Cov(𝐼{𝑦𝑗 ≥ 𝑥𝑖}, 𝐼{𝑦𝑗′ ≥ 𝑥𝑖′}) is equal to𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗 > 𝑥𝑖′}] − 𝜃2 and there are
𝑚 ⋅ 𝑛(𝑛 − 1) many covariance be the summation in (𝑖′, 𝑗′), (𝑖, 𝑗). Then, the contribution to
(1) for these terms is

𝑚 ⋅ 𝑛 ⋅ (𝑛 − 1) (𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗 > 𝑥𝑖′}] − 𝜃2)

Thus, after analysis of each cases, we can have the variance of traditional Mann-Whitney
test statistics be

𝑉 𝑎𝑟(𝑈) = 𝑚⋅𝑛⋅𝜃(1−𝜃)
𝑛2𝑚2 + 𝑛⋅𝑚⋅(𝑚−1)

𝑛2𝑚2 (𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗′ > 𝑥𝑖}] − 𝜃2)
+𝑚⋅𝑛⋅(𝑛−1)

𝑛2𝑚2 (𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗 > 𝑥𝑖′}] − 𝜃2)
… (2)

3.2 Traditional Mann-Whitney Variance
We now consider variance calculations for the traditional Mann-Whitney test under the
null hypotthesis condition 𝐻0 ∶ 𝐹 = 𝐺. Under null hypothesis that 𝐹 = 𝐺 we assume
𝜃 = 𝑃 [𝑌𝑗 > 𝑋𝑖] = 1

2 for case 1 (when 𝑖 = 𝑖′ and 𝑗 = 𝑗′) for null hypothesis

𝜃(1 − 𝜃) = 1
2(1 − 1

2)
= 1

4

For case 2 (when 𝑖 = 𝑖′ and 𝑗 ≠ 𝑗′),

𝐸[𝐼{𝑌𝑗 > 𝑋𝑖}𝐼{𝑌𝑗′ > 𝑋𝑖}] = 𝑃 [𝑌𝑗 > 𝑋𝑖, 𝑌𝑗′ > 𝑋𝑖]
= 𝑃 [𝐹(𝑌𝑗) > 𝐹(𝑋𝑖), 𝐹 (𝑌𝑗′) > 𝐹(𝑋𝑖)]

Let 𝑈𝑗 = 𝐹(𝑌𝑗), 𝑈𝑗′ = 𝐹(𝑌𝑗′), and 𝑈𝑖 = 𝐹(𝑋𝑖). Given if 𝑌 ∼ 𝐹 then 𝑈 = 𝐹(𝑌 ) ∼ 𝑈(0, 1)
under 𝐻0, both 𝑋𝑖, 𝑌𝑗, 𝑌𝑗′ ∼ 𝐹 . Then 𝑈𝑖, 𝑈𝑗, 𝑈𝑗′ ∼ 𝑈(0, 1). So 𝑃 [𝑌𝑗 > 𝑋𝑖, 𝑌𝑗′ > 𝑋𝑖] =
𝑃 [𝑚𝑖𝑛(𝑌𝑗′, 𝑌𝑗) ≥ 𝑋𝑖)] where 𝑋𝑖, 𝑌𝑗, 𝑌𝑗′ independent in 𝑈(0, 1).

𝑃 [𝑌𝑗 > 𝑋𝑖, 𝑌𝑗′ > 𝑋𝑖] = 𝑃 [𝑌𝑗 > 𝑌𝑗′ > 𝑋𝑖] + 𝑃 [𝑌𝑗′ > 𝑌𝑗 > 𝑋𝑖]
we have two sub cases for case 2.

First, 𝑌𝑗 > 𝑌𝑗′ > 𝑋𝑖 for this integral. For the uniform distribution, 𝑝(𝑦𝑗′, 𝑥𝑖, 𝑦𝑗) = 1 on the
interval [0, 1]. Then,
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𝑃 [𝑌𝑗 > 𝑌𝑗′ > 𝑋𝑖] = ∫1
0 ∫𝑦𝑗

0 ∫𝑦𝑗′
0 𝑑𝑥𝑖𝑑𝑦𝑗′𝑑𝑦𝑗

= ∫1
0 ∫𝑦𝑗

0 𝑦′
𝑗𝑑𝑦𝑗′𝑑𝑦𝑗

= ∫1
0

𝑦2
𝑗

2 𝑑𝑦𝑗
= 1

6

By symmetry, 𝑃 [𝑌𝑗′ > 𝑌𝑗 > 𝑋𝑖] = 𝑃 [𝑌𝑗 > 𝑌𝑗′ > 𝑋𝑖] = 1
6 .

Thus, the covariance in case 2 𝐸[𝐼{𝑌𝑗 > 𝑋𝑖}𝐼{𝑌𝑗′ > 𝑋𝑖}] − 𝜃2 in null hypothesis with 𝜃
assume 𝜃 = 1

2 is 1
6 + 1

6 − 1
2

2 = 1
12 for case 2.

A similar argument applies in Case 3 and gives

𝐸[𝐼{𝑌𝑗 > 𝑋𝑖}𝐼{𝑌𝑗 > 𝑋𝑖′}] − 𝜃2 = 1/12

Substituting in (2), for 𝑉 𝑎𝑟(𝑈) in null hypothesis, we have

̂𝑉 𝑎𝑟(𝑈) = 𝑚⋅𝑛⋅𝜃(1−𝜃)
𝑛2𝑚2 + 𝑛⋅𝑚⋅(𝑚−1)

𝑛2𝑚2 (𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗′ > 𝑥𝑖}] − 𝜃2)
+𝑚⋅𝑛⋅(𝑛−1)

𝑛2𝑚2 (𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗 > 𝑥𝑖′}] − 𝜃2)
= 𝑚⋅𝑛⋅ 1

4
𝑛2𝑚2 + 𝑛⋅𝑚⋅(𝑚−1)

𝑛2𝑚2 ( 1
12) + 𝑚⋅𝑛⋅(𝑛−1)

𝑛2𝑚2 ( 1
12)

= 𝑚+𝑛+1
12𝑚𝑛

3.3 Hanley–McNeil Approximation
Confidence limits for the effect size 𝜃 = 𝑃 [𝑦𝑗 > 𝑥𝑖] = 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}] are determined using
the Hanley–McNeil Wald method(Hanley & McNeil, 1982). According to Hanley–McNeil
Wald method, assuming the values 𝑚∗ = 𝑚 − 1 and 𝑛∗ = 𝑛 − 1 adjust for sample size
constraints(Newcombe, 2005), we have variance

𝑉1 = { ̂𝜃(1 − ̂𝜃) + 𝑚∗( ̂𝑄1 − ̂𝜃2) + 𝑛∗( ̂𝑄2 − ̂𝜃2)}/𝑚𝑛
(Newcombe, 2005).

In the case that we are interested in 𝑈 as an effect size we can no longer assume that
𝐹 = 𝐺 and the terms in (2) need to be approximated. The Hanley-McNeli Wald method
approximate the Case 1 expression by ̂𝜃(1 − ̂𝜃) where ̂𝜃 = 𝑈 . The Case 2 expression is
approximated by 𝑄̂1 − ̂𝜃2 and the Case 3 expression by 𝑄̂2 − ̂𝜃2. The 𝑄̂1 and 𝑄̂2 are
expressed as following:

𝑄̂1 = ∑𝑖 ∑𝑗 ∑𝑗′≠𝑗 𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗′ > 𝑥𝑖}/[𝑚(𝑚 − 1)𝑛]
= ∑𝑖 ∑𝑗 𝐼{𝑦𝑗 > 𝑥𝑖}/𝑚𝑛 ∑𝑗′≠𝑗 𝐼{𝑦𝑗′ > 𝑥𝑖}/(𝑚 − 1)

and for 𝑄̂2,
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𝑄̂2 = ∑𝑗 ∑𝑖 ∑𝑖′≠𝑖 𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗 > 𝑥𝑖′}/[𝑛(𝑛 − 1)𝑚]
= ∑𝑗 ∑𝑖 𝐼{𝑦𝑗 > 𝑥𝑖}/𝑛𝑚 ∑𝑖′≠𝑖 𝐼{𝑦𝑗 > 𝑥𝑖′}/(𝑛 − 1)

Therefore, we have 𝑄̂1 ≈ 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗′ > 𝑥𝑖}] and 𝑄̂2 ≈ 𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗 > 𝑥𝑖′}]
when there is no ties. With these approximations we get

𝑉1 = { ̂𝜃(1 − ̂𝜃) + (𝑚 − 1)( ̂𝑄1 − ̂𝜃2) + (𝑛 − 1)( ̂𝑄2 − ̂𝜃2)}/𝑚𝑛
= ( ̂𝜃(1 − ̂𝜃) + (𝑚 − 1)(𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗′ > 𝑥𝑖}] − ̂𝜃2)

+(𝑛 − 1)(𝐸[𝐼{𝑦𝑗 > 𝑥𝑖}𝐼{𝑦𝑗 > 𝑥𝑖′}] − ̂𝜃2))/𝑚𝑛

Under the null hypothesis 𝐹 = 𝐺, substituting 𝜃 = 1/2 and the expressions for the covari-
ances obtained above, we get the expression

𝑉1 = (1
4 + (𝑚 − 1) ⋅ 1

12 + (𝑛 − 1) ⋅ 1
12)) /𝑚𝑛

= (𝑛+𝑚+1)
12𝑛𝑚

Thus, 𝑉1 = (𝑛+𝑚+1)
12𝑛𝑚 = 𝑉 𝑎𝑟(𝑈). And through calculating confidence interval by normal

approximation, we have interval with ̂𝜃 ± 𝑧𝛼/2√𝑉1. 𝑧𝛼/2 has (1 − 𝛼) × 100% confidence
interval from a normal 𝑁(0, 1) (e.g., 𝑧 = 1.959964 for a 95% confidence interval), ensures
the desired level of confidence in the computed limits.

3.4 Duality
We are also talking about why we can turn this extension study from test to confidence
interval. We are explore the concept of 1-1 correspondence, also known as duality, between
statistical tests and confidence intervals. The framework establishes a seamless connection
between hypothesis testing and interval estimation.

Consider a confidence interval construction procedure, denoted as [𝐿(𝑥), 𝑈(𝑥)], where (1 −
𝑎) × 100% is the confidence level. This procedure sets the stage for defining a corresponding
statistical test. Defining a hypothesis test for 𝐻0 ∶ 𝜃 = 𝜃0, we set the indicator variable 𝜙(𝑥)
indicate rejection of the null hypothesis as 𝜙(𝑥) = 1. 𝜙(𝑥) = 1 also means that if 𝜃0 is not
within the interval [𝐿(𝑥), 𝑈(𝑥)]. On the contrary, if 𝜃0 falls within the interval [𝐿(𝑥), 𝑈(𝑥)],
𝜙(𝑥) = 0, signifying a failure to reject the null hypothesis.

The probability under the null hypothesis of rejecting 𝐻0 is given by 𝑃𝐻0
[reject 𝐻0] =

1 − 𝑃𝜃[𝜃 inside interval [L(X), U(X)]]. Notably, this probability equates to the chosen signif-
icance level (1 − 𝑎), rendering the test an alpha-level test.

The defined test, with its corresponding confidence interval, embodies an alpha-level test,
providing a direct link between the critical regions of the test and the confidence interval
boundaries.
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3.5 Ties
In the presence of ties the Mann-Whitney U statistic definition replaces 𝐼{𝑦𝑗 > 𝑥𝑖} with
𝐼{𝑌𝑗 > 𝑋𝑖} + 𝐼{𝑌𝑗 = 𝑋𝑖}]/2. This alteration influences the practical computation of both
the Mann-Whitney test statistic and its associated variance.

When list the presence of 𝐼{𝑦𝑗 ≥ 𝑥𝑖} within pooled two datasets refer by 𝑦1, 𝑦2, … , 𝑦𝑚
and 𝑥1, 𝑥2, … , 𝑥𝑛 denoted as 𝑥𝑖, 𝑦𝑗, it should adapt the calculation to accommodate tied
values. This adjustment acknowledges that 𝑃{𝑌𝑗 ≥ 𝑋𝑖} = 1 ⋅ 𝑃{𝑌𝑗 > 𝑋𝑖} + 1/2 ⋅ 𝑃{𝑌𝑗 =
𝑋𝑖}(Lehmann & Abrera, 1975)., encapsulating both scenarios of 𝑦𝑗 being greater than or
equal to 𝑥𝑖. So the effect size𝜃 from 𝜃 = 𝑃 [𝑌 > 𝑋] to 𝜃 = 𝑃 [𝑌 > 𝑋] + 𝑃 [𝑌 = 𝑋]/2. Under
null hypothesis 𝐻0 ∶ 𝐹 = 𝐺, the effect size become with ties that 𝜃 = 1

2 .

This corresponding adjustment not only reflects a method refinement in the context of tied
observations but also ensures a more accurate representation of the relationships between 𝑦𝑗
and 𝑥𝑖 in the Mann-Whitney U test. Importantly, this approach proves to be more applicable
in real-world data analyses where tied values may be prevalent.

4 Real Data Analysis
In this section, we illustrate the practical application of both the traditional Mann-Whitney
test and the extended Mann-Whitney confidence interval using real-world data. Our analysis
addresses scenarios with both tied and untied observations in the samples, considering two
categorical variables that influence the distribution of the data.

4.1 Weight of Baby
The study focuses on the dependent variable, child birth weight, and its relationship with
the categorical explanatory variable of parental smoking status (smoker or non-smoker). We
formulate the hypothesis that child birth weight for non-smokers exceeds that of smokers
(marked as 1), contrasting with the null hypothesis suggesting equal child birth weights for
both groups (marked as 0).(Perktold, 2010)

Using the wilcox.test() method and calculating the Mann-Whitney confidence interval
through ̂𝜃 ± 𝑧𝛼/2

√
𝑉 1, we obtain a Wilcoxon test p-value of almost zero, along with a

Mann-Whitney confidence interval of [0.64, 0.66] at a 95% confidence level. This leads to
the rejection of the null hypothesis, suggesting a significant difference in the distribution
of child birth weight between non-smokers and smokers. This decision is corroborated by
the Wilcoxon test, where the p-value is below the 0.05 significance level, and the confidence
interval does not encompass one half.

To validate these results, a t-test was performed, yielding a p-value almost zero. The conver-
gence of results across different statistical tests fortifies the rejection of the null hypothesis,
indicating a substantial difference in child birth weight distribution between non-smokers
and smokers. Additionally, by comparing the mean child birth weights for both groups
(a smoker has a mean baby weight of 3137.66 and a non-smoker has a mean baby weight
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of 3412.91), it is apparent that non-smokers tend to have higher child birth weights than
smokers, providing valuable practical advice.

Subsequently, we explore another categorical variable: whether the child is the first for
the mother (marked as 1) or not (marked as 0).(Perktold, 2010) We assume for the null
hypothesis that first-born and non-first-born children share the same distribution of child
birth weight.

Again utilizing the 𝑤𝑖𝑙𝑐𝑜𝑥.𝑡𝑒𝑠𝑡() method and computing the Mann-Whitney confidence inter-
val, we obtain a Wilcoxon test p-value of 1.145e-05 and a Mann-Whitney confidence interval
of [0.52, 0.55] at a 95% confidence level. This leads to the rejection of the null hypothesis
that first-born and non-first-born children share the same distribution of child birth weight.
Similar to the previous case, the decision is based on both the Wilcoxon test with significant
value and the non-overlapping confidence interval with one half.

To validate these results, a t-test was conducted, resulting in a p-value of still almost zero.
Although it indicated a small difference in child birth weight distribution between first-born
and non-first-born children, further examines the mean child birth weights with mean of
first-born baby weight 3329.60 and mean of not-first-born baby weight 3386.68. It reveals a
slight advantage for non-first-born children. This insight offers practical advice, suggesting
that non-first-born children tend to have higher birth weights compared to their first-born
counterparts.

4.2 Tonsil Size
The Mann-Whitney confidence interval and Mann-Whitney test can be applied even in sce-
narios with tied data values. In this context, we examine data from Table 1 provided by
Holmes and Williams (1954), where 1398 children aged 0-15 years are categorized based on
their relative tonsil size. The table presents information on tonsil size among carriers and
non-carriers of Streptococcus pyogenes.(McCullagh, 1980)

Present but not enlarged Enlarged Greatly enlarged Total
Carriers 19 29 24 72

Non-carriers 497 560 269 1326
Total 516 589 293 1398

Table 1: Tonsil size of carriers and non-carriers of Streptococcus pyogenes

After applying the 𝑤𝑖𝑙𝑐𝑜𝑥.𝑡𝑒𝑠𝑡() method and calculating the Mann-Whitney confidence in-
terval, we obtained a Wilcoxon test p-value of 0.01 and a Mann-Whitney confidence interval
of [0.61, 0.63] at a 95% confidence level. These results lead to the rejection of the null hy-
pothesis, indicating that carriers and non-carriers have different tonsil size distributions, and
this dissimilarity may influence tonsil enlargement.

To validate these findings, a t-test was conducted, resulting in a p-value of 0.01. Although
it suggests a slight difference in the distribution of present and enlarged tonsil size between
carriers and non-carriers, a closer examination of the means reveals an advantage for carriers
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(mean for carrier tonsil size: 1.07; mean for non-carrier tonsil size: 0.83). This insight offers
practical advice, suggesting that carriers of Streptococcus pyogenes tend to have higher tonsil
size compared to non-carriers.

4.3 Vision Quality
Exploring the potential impact of vision quality on individuals, we categorize the subjects
into two groups: women (marked as 1) and men (marked as 0). Our null hypothesis assumes
that the level of vision quality effect is the same for both women and men. Vision quality
is further categorized into four levels: 1. Highest, 2. Relative high, 3. Relatively low, and 4.
Lowest. The data table(Table 2) are shown below(McCullagh, 1980):

Vision Quality
Highest 2 3 Lowest

Men Total 1053 782 893 3242
Women 1976 2256 2456 789

Total 3029 3038 3349 7477

Table 2: Quality of right eye vision in men and women

Utilizing the Wilcoxon rank-sum test to compare vision quality between women and men, we
obtain a p-value of 0.3347. The test results do not provide sufficient evidence to reject the
null hypothesis, indicating that there is no significant difference in the true location between
women and men concerning vision quality.

Subsequently, a Two Sample t-test is conducted on the same data, resulting in a t-statistic
of 0.341 and a p-value of 0.733. These results do not support the alternative hypothesis,
suggesting no true difference in means between women and men. The 95% Mann-Whitney
confidence interval is from 0.50 to 0.51, indicating that the true difference likely falls within
this range. Although the sample estimates show a slightly lower mean vision quality for men
2.27 compared to women 2.28, the Wilcoxon test, t-test, and Mann-Whitney confidence
interval collectively suggest that vision quality does not significantly differ between genders.

5 Simulation Study
The Mann-Whitney confidence interval and test are fundamental tools in non-parametric
statistics, particularly for comparing two independent samples. To bolster the credibility of
these techniques, a comprehensive simulation study is undertaken. This study is motivated
by the need to assess the performance of the Mann-Whitney methods across diverse scenarios
and under various assumptions.

5.1 Two standard Normal Population with Common Mean and
Variance
In this section, we conduct a simulation study to compare the Type I error and power of
the Mann-Whitney test, t-test and Mann-Whitney confidence interval in two same normal
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population. We are expecting to see a type I error close to significant level and a power that
is relatively small.

First compare Type I error under the null hypothesis (𝐻0 true: 𝜃 = 0). The simulation
involves two populations with the same standard normal distribution, characterized by a
mean of 0 and a standard deviation of 1 of simulated normal distribution.

The simulation is conducted under the assumption that the null hypothesis is true (𝜃 = 0).
Three statistical tests, the Mann-Whitney test, the t-test and the confidence interval, are
employed to assess the Type I error is the percentage of rejecting in null hypothesis. The
simulation is repeated 1000 times for sample sizes of 50 and 100, providing a robust evaluation
of the tests’ performance.

Sample Size
Test Type 𝑛 = 50 𝑛 = 100
Mann-Whitney 0.061 0.049
t-test 0.063 0.055
Mann-Whitney CI 0.071 0.062

Table 3: Type I error for Mann-Whitney test, t-test, and Mann-Whitney CI for Common
Mean and Variance

From the results (Table 3), it is evident that under the null hypothesis (𝜃 = 0), All of
the Mann-Whitney test, the t-test and the Mann-Whitney CI exhibit similar proportions
of rejecting the null hypothesis. And as the simulated sample size become bigger, the error
between three proportions are lower.

The simulation study provides valuable insight into the behavior of the Mann-Whitney test
and t-test under the null hypothesis that they are all close to the significant level 0.05. The
similarity in rejection proportions underscores the robustness of these tests when applied to
populations with identical distributions and supports the notion that, under these conditions,
all tests perform similarly in terms of type I error.

Then, we extend the simulation study to compare the power of the Mann-Whitney test, the
t-test and Mann-Whiney CI under the alternative hypothesis. The simulation involves two
populations with the same standard deviation (1) but different means. The null hypothesis
(𝐻0 true: 𝜃 = 0) is compared against the alternative hypothesis (𝐻𝑎: 𝜃 = 0.2) in the
simulated normal distributions.

The simulation is conducted under the assumption of different means in the alternative
hypothesis scenario. The first simulated group has a mean of 0, while the second simulated
group has a mean of 0.2. The simulation is repeated 1000 times for sample sizes of 50 and
100.

The output of the simulation, detailing the proportion of times each test rejects the null
hypothesis across the 1000 simulations, is presented below:

From Table 4, the power—indicating the proportion of instances where each test correctly
rejects the null hypothesis—shows variability, ranging from 0.16 to 0.29. All three tests
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Sample Size
Test Type 𝑛 = 50 𝑛 = 100
Mann-Whitney 0.167 0.288
t-test 0.18 0.291
Mann-Whitney CI 0.163 0.214

Table 4: 0.2 Power for Mann-Whitney test, t-test, and Mann-Whitney confidence interval
for Common Mean and Variance

perform similarly in terms of power, each surpassing the significance level of 0.05. Notably,
the traditional Mann-Whitney test exhibits a relatively higher difference in power between
sample sizes 50 and 100. In contrast, the Mann-Whitney CI demonstrates a relatively stable
and lower difference in power between sample sizes 50 and 100.

This pattern suggests that, while all tests demonstrate sufficient power to reject the null
hypothesis, the traditional Mann-Whitney test’s sensitivity to changes in sample size merits
consideration in experimental design. The consistent and stable performance of the Mann-
Whitney CI across varying sample sizes indicates its robustness and dependable ability to
detect differences. Consequently, the Mann-Whitney CI appears particularly well-suited for
this scenario.

To deepen our exploration of the power associated with the Mann-Whitney test, t-test, and
Mann-Whitney confidence interval, refer to the graph below. In this analysis, we keep the
first normal distribution with a mean of 0 and a standard deviation of 1 constant. The
mean of the second distribution varies across values of 0, 0.2, 0.3, 0.5, 0.7, and 0.9, while the
standard deviation remains constant at 1. It is noteworthy that when the mean is set to 0,
the power of the three tests aligns with the Type I error.
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As the mean of the second distribution deviates from 0, specifically at 0.2, 0.3, 0.5, 0.7,
and 0.9, both the traditional Mann-Whitney U test and the t-test exhibit nearly identical
behaviors across these mean values. Simultaneously, the Mann-Whitney confidence interval
tends to have a relatively lower value of power. This observation suggests that, under these
conditions, the Mann-Whitney U test and the t-test provide comparable outcomes, while
the Mann-Whitney confidence interval tends to be more conservative in terms of power.

In summary, all three tests maintain an expected Type I error that closely aligns with the
chosen significance level of 0.05. In terms of power, both the traditional Mann-Whitney
test and the t-test demonstrate comparable outcomes, while the Mann-Whitney confidence
interval falls slightly short of achieving the anticipated power under the alternative hypoth-
esis. Importantly, the Mann-Whitney CI exhibits a slightly higher rate of Type II errors
compared to the other two tests. This suggests that in scenarios involving an alternative
hypothesis, the traditional Mann-Whitney test and the t-test may provide more reliable and
comparable results, while the Mann-Whitney CI is somewhat more susceptible to Type II
errors.

5.2 Two standard Normal Population with Common Mean but Dif-
ferent Variance
In this section, we delve into a scenario where we have two standard normal populations with
a common mean but different variances. Our focus is on conducting a simulation study to
explore the type I error and power of the Mann-Whitney U test, t-test, and Mann-Whitney
confidence interval under such circumstances. We anticipate observing variations in the
outcomes of the three tests due to the differences in variance.

First, we start our exploration by examining the type I error rates for the Mann-Whitney
test, t-test, and Mann-Whitney confidence interval under the condition of different variances
within the normal distribution. Specifically, we generate simulated data with group 1 and
group 2 having the same mean (0) but different variances (1 for group 1 and 25 for group 2).
Our simulation involves 1000 iterated times for these data, and we calculate the proportion
of times the null hypothesis is rejected when it is type I error with mean is the same.

Sample Size
Test Type 𝑛 = 50 𝑛 = 100
Mann-Whitney 0.063 0.083
t-test 0.039 0.052
Mann-Whitney CI 0.053 0.058

Table 5: Type I error for Mann-Whitney test, t-test, and Mann-Whitney CI for Different
Variance

From the results (Table 5) we observed, this pattern continue emerges: as the sample size
increases, the proportion of a type I error tends to go up. Among the three tests we looked at,
Mann-Whitney CI consistently shows the most consistent results across different sample sizes.
On the other hand, the traditional Mann-Whitney test is noticeably affected by changes in
sample size.
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Our initial expectation was that the type I error rate would closely match our chosen signif-
icance level of 0.05, which corresponds to a 95% confidence interval. In this context, both
the t-test and Mann-Whitney CI performed well, producing results that align closely with
the expected significance level. However, the traditional Mann-Whitney test produced type
I error rates (0.063 and 0.083) that surpassed the anticipated 0.05 level.

This deviation from the expected significance level supports our hypothesis that the tra-
ditional Mann-Whitney test is significantly influenced by variations in the distribution’s
variance. This influence hinders its ability to reliably show that 𝐹 = 𝐺 when the means are
equal but the variances different. In contrast, the consistent performance of Mann-Whitney
CI suggests its resilience to such variations, making it a more dependable choice in situations
involving differing variances.

Next, we turn our attention to power analysis. We explore the ability of the Mann-Whitney
test, t-test, and Mann-Whitney confidence interval to accurately reject the null hypothesis in
the presence of standard normal data exhibiting distinct means and variances (group 1 mean
= 0, variance = 1; group 2 mean = 0.5, variance = 25). This analysis involves conducting
1000 simulations, same as the approach employed previously.

Sample Size
Test Type 𝑛 = 50 𝑛 = 100
Mann-Whitney 0.121 0.192
t-test 0.082 0.179
Mann-Whitney CI 0.082 0.144

Table 6: 0.5 Power for Mann-Whitney test, t-test, and Mann-Whitney CI for Different
Variance

From the observed data (Table 6), the trend of an increasing proportion of power with
larger sample sizes persists. Among the three tests examined, Mann-Whitney CI continues
to demonstrate the most consistent results across different sample sizes, albeit with a more
pronounced increase of around 0.06. In contrast, the t-test is notably influenced by sample
size, with a difference of close to 0.1 affected by the changing size.

We expected that the power rate might deviate from our chosen significance level of 0.05,
corresponding to a 95% confidence interval. In this context, all three tests produce results
that deviate from the expected significance level, aligning with our hypothesis. This depar-
ture supports our hypothesis that the proportion of rejecting the null hypothesis for all three
tests is significantly influenced by variations in the distribution’s variance.

To explore deeper into the power of the Mann-Whitney test, t-test, and Mann-Whitney
confidence interval, we aim to visualize these relationships through a graph. In this analysis,
we keep the first normal distribution with a mean of 0 and a standard deviation of 1 constant.
However, we vary the mean of the second distribution, exploring values of 0, 0.2, 0.3, 0.5,
0.7, and 0.9, while maintaining a standard deviation of 5. Notably, when the mean is 0, the
power of the three tests aligns with the Type I error.
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We maintain the characteristics of the first normal distribution with a mean of 0 and a
standard deviation of 1. The second distribution’s mean varies from 0 to 0.2, 0.3, 0.5, 0.7,
and 0.9, while the standard deviation changes to 5. Specifically, when the mean is 0, the
Type I error rates for the t-test and Mann-Whitney confidence interval are comparable,
both close to 0.05. In contrast, the traditional Mann-Whitney U test exhibits a Type I error
rate closer to 0.09 under these conditions. This discrepancy suggests that, in these specific
conditions, the traditional Mann-Whitney U test may be more likely to falsely rejecting the
null hypothesis.

As the mean of the second distribution deviates from 0, distinct shifts in power dynamics
among the Mann-Whitney U test, t-test, and Mann-Whitney confidence interval become
evident. Specifically, at mean values of 0.2 and 0.3, both the Mann-Whitney confidence
interval and the t-test demonstrate nearly identical power. As the mean of the second
distribution increases to 0.7 or 0.9, the traditional Mann-Whitney test and the t-test start
to exhibit identical power.

For a mean of 0.5 in the second distribution, the power hierarchy among the three distribu-
tions, from largest to lowest, is Mann-Whitney test, t-test, and Mann-Whitney confidence
interval. This observation suggests that the Mann-Whitney test is more sensitive to shifts in
the mean, especially when it increases. The t-test also responds to mean shifts and appears
to have more reliable power as the mean increases. Conversely, the Mann-Whitney confi-
dence interval exhibits less sensitivity to changes in the mean, particularly in the context of
varying standard deviations.

In summary, both the Mann-Whitney confidence interval and t-test maintain an expected
Type I error that closely aligns with the chosen significance level of 0.05. However, the
traditional Mann-Whitney confidence interval deviates from the expected Type I error rate
due to differences in variance, implying that the t-test and Mann-Whitney CI are more re-
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liable for rejecting the null hypothesis. Concerning power, all three tests are influenced by
changes in variance, resulting in a higher rate of Type II errors compared to the previous
graph. Specifically, both the traditional Mann-Whitney test and the t-test demonstrate rel-
atively comparable outcomes, while the Mann-Whitney confidence interval exhibits slightly
lower power under the alternative hypothesis. This suggests that in scenarios involving an
alternative hypothesis, the traditional Mann-Whitney and the t-test continue to provide
more reliable and comparable results than the Mann-Whitney confidence interval. However,
compared to the previous graph, it is evident that all three tests are less reliable in reject an
false null hypothesis when there are variations in variance.

5.3 Double Exponential Distribution
In this section, we simulate the double exponential distribution (Laplace distribution), which
is defined by location and scale parameters. The scale parameter is set to a default value of
1 to avoid heavy tails, while the location parameter (𝜃) is systematically varied to examine
its effects on both Type I error and power during simulation. The double exponential
distribution are form as the following probability density function 𝑝(𝑥; 𝜃) = 1

2𝑒−|𝑥−𝜃|. Despite
its symmetry resembling the normal distribution, this section delves into the deviations
observed in the location parameter, particularly concerning the t-test. The null hypothesis
is defined as 𝐹 = 𝐺, indicating equality between two populations, while the alternative
hypothesis posits the presence of two distinct double exponential distributions, 𝐹 ≠ 𝐺.

First, the provided Table 7 presents Type I error rates same null hypothesis tests applied
to two similar populations with a double exponential distribution. The simulations are
conducted for sample sizes of 50 and 100, both with a location parameter of 0 and a scale
parameter of 1. The simulations are repeated 1000 times to detect the proportion of Type I
error in this double exponential scenario.

Sample Size
Test Type 𝑛 = 50 𝑛 = 100
Mann-Whitney 0.052 0.035
t-test 0.044 0.033
Mann-Whitney CI 0.076 0.043

Table 7: Type I error for Mann-Whitney test, t-test, and Mann-Whitney CI double expo-
nential

In the obtained results, the Type I error rates for the Mann-Whitney test, t-test, and Mann-
Whitney confidence interval (CI) all hover around the anticipated significance level of 0.05.
Unexpectedly, the t-test demonstrates effectiveness despite the simulation’s initial assump-
tions. Both the t-test and Mann-Whitney U test exhibit comparable Type I error rates,
contradicting the predicted behavior.

The unexpected efficacy of the t-test prompts a more in-depth examination of the simulation
assumptions and their interaction with the location parameter of the double exponential dis-
tribution. This unanticipated outcome underscores the need for further exploration into the
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location parameter influencing the t-test’s performance in the context of double exponential
distribution.

Additionally, the Mann-Whitney CI, particularly for smaller sample sizes, exhibits a slightly
elevated Type I error rate of 0.076. This finding suggests a sensitivity of the Mann-Whitney
CI to sample size variations. Conversely, the Mann-Whitney CI appears to be more reliable
for larger sample sizes. This observation underscores the importance of considering sample
size implications when utilizing Mann-Whitney confidence intervals in the context of a double
exponential distribution.

We investigate the power of different statistical tests using the data presented in Table 8,
which focuses on two populations with a double exponential distribution. The simulations
involve sample sizes of 50 and 100, with a location parameter of 0 for the first population
and a location parameter of 0.3 for the second population. Both populations have a scale
parameter set to 1. The simulations are iterated 1000 times to assess the power of these
tests in the context of a double exponential scenario as the proportion of the test reject the
null hypothesis.

Sample Size
Test Type 𝑛 = 50 𝑛 = 100
Mann-Whitney 0.229 0.464
t-test 0.16 0.345
Mann-Whitney CI 0.196 0.373

Table 8: 0.3 Power for Mann-Whitney test, t-test, and Mann-Whitney CI double exponential

The table data is quite clear: when we compare it to a similar table simulating two normal
distributions, the Mann-Whitney test, t-test, and Mann-Whitney CI show a stronger ability
to detect differences. Notably, the Mann-Whitney test perform with a maximum power
of 0.46 among three test, indicating its effectiveness in identifying true effects when the
distribution has a location parameter of 0.3.

However, the t-test behaves unexpectedly in this scenario, displaying a power of 0.16 for a
sample size of 50 and 0.35 for a sample size of 100—numbers lower than anticipated, especially
when contrasted with the other two tests. To delve deeper into understanding why the t-
test is less effective with a double exponential distribution, we will conduct alternative test
simulations and visualize the results through graphical representations.

In our continued exploration, we delve deeper into the power of the Mann-Whitney test,
t-test, and Mann-Whitney confidence interval using graphical analysis. We maintain the
setting of two double exponential distributions, where the first distribution has a constant
scale parameter of 1 and a fixed location parameter of 0. However, for the second distribution,
we systematically vary the location parameter, examining values of 0, 0.2, 0.3, 0.5, 0.7, and
0.9, while keeping the scale parameter constant at 1 and repeated simulate 1000 times as
usual. When the location parameter is set to 0, the power of the three tests aligns with the
Type I error for the null hypothesis.
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From the graph listed above, we can clearly seen that the type I error for Mann-Whitney
test, t-test, Mann-Whitney confidence interval is close to 0 or at least around 0.05 significant
level.

Contrary to expectations, yet aligning with our earlier table analysis, it is evident that the
Mann-Whitney test, t-test, and Mann-Whitney CI demonstrate higher power values when
compared to their counterparts in the simulation of two normal distributions. Specifically,
the Mann-Whitney test consistently exhibits greater power across various alternative tests
with location parameters set at 0.2, 0.3, 0.5, 0.7, and 0.9. The enhanced power levels,
especially in the Mann-Whitney test, suggest its robust ability to detect true effects and its
overall effectiveness when compared to the other two tests in the context of these two double
exponential distributions.

While the t-test’s power is challenging to distinguish from that of the Mann-Whitney confi-
dence interval, it appears to be less efficient among the three tests. However, this doesn’t
imply that the t-test is ineffective in this scenario. In fact, the graphical representation
proves to be more efficient compared to scenarios involving normal distributions with vary-
ing variances (population 1 variance is 1, and population 2 variance is 25). In summary, both
the Mann-Whitney confidence interval and t-test demonstrate relatively effective power in
the context of double exponential distributions. However, when considering different vari-
ances for normal populations, these two tests exhibit reduced efficiency, suggesting that the
t-test may struggle when the scale parameter of the double exponential distribution varies.
Consequently, in this scenario, the Mann-Whitney test emerges as the most efficient option.

21



References
(1): Hanley, J. A. & McNeil, B. J. (1982). The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1), 29–36. https://doi.org/10.1148/
radiology.143.1.7063747

(2): Lehmann, E. L. & Abrera, H. J. M. (1975). Nonparametrics: Statistical Methods Based
On Ranks. Holden-Day, Inc.

(3): McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statis-
tical Society: Series B (Methodological), 42(2), 109–127. https://doi.org/10.1111/j.2517-
6161.1980.tb01109.x

(4): Newcombe, R. G. (2005). Confidence intervals for an effect size measure based on the
Mann–whitney statistic. part 2: Asymptotic methods and evaluation. Statistics in Medicine,
25(4), 559–573. https://doi.org/10.1002/sim.2324

(5): Perktold, J. (2010). Treatment effects under conditional independence. Treatment
effects under conditional independence - statsmodels 0.15.0 (+132). https://www.statsmodel
s.org/dev/examples/notebooks/generated/treatment_effect.html#Create-TreatmentEffect-
instance-and-compute-ipw

22

https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
https://doi.org/10.1002/sim.2324
https://www.statsmodels.org/dev/examples/notebooks/generated/treatment_effect.html#Create-TreatmentEffect-instance-and-compute-ipw
https://www.statsmodels.org/dev/examples/notebooks/generated/treatment_effect.html#Create-TreatmentEffect-instance-and-compute-ipw
https://www.statsmodels.org/dev/examples/notebooks/generated/treatment_effect.html#Create-TreatmentEffect-instance-and-compute-ipw

	1 Introduction
	2 Traditional Mann-Whitney test
	2.1 Wilcoxon Statistics
	2.2 Mann-Whitney U Statistics
	2.3 Comparison of statistics

	3 Mann-Whitney Effect Size and CI
	3.1 Variance
	3.2 Traditional Mann-Whitney Variance
	3.3 Hanley–McNeil Approximation
	3.4 Duality
	3.5 Ties

	4 Real Data Analysis
	4.1 Weight of Baby
	4.2 Tonsil Size
	4.3 Vision Quality

	5 Simulation Study
	5.1 Two standard Normal Population with Common Mean and Variance
	5.2 Two standard Normal Population with Common Mean but Different Variance
	5.3 Double Exponential Distribution

	References

