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Chapter 1

Introduction

Determining the relationship between variables is a common goal when analyzing real

data. Often a collection of covariates is used in an attempt to explain the variance in

some response variable. It may be unclear which covariates have a significant effect,

so estimation methods can be used to help with this. A common type of estimation,

known as ordinary least squares (OLS) estimation, may be unsuitable depending on

the exact setting, so we explore a different estimator in this thesis.

The alternative estimator explored in this paper is based off of Kendall’s τ rank

correlation. Kendall’s τ is a rank based measure of association, so it only uses the

ordering of the data instead of the values. Hopefully, this less specific estimator is

better at detecting significance within a broad category of possible relationships. The

τ based estimator will be compared to the OLS estimator in order to empirically

measure which performs better and under which settings.

Chapter two of this thesis explains the necessary background information to un-

derstand the estimator used here. Chapter three explores the necessary statistical

links for the τ -based estimator to function. This chapter also provides the simulation

study used for measuring performance. Chapter four displays the results of testing

both the τ -based estimator and the OLS estimator. Finally, chapter five includes a

brief discussion of the results found in chapter four.
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Chapter 2

Background

In this chapter the concepts necessary to understand the τ -based estimator are ex-

plained. This includes linear models, OLS estimation, Kendall’s rank correlation, the

probability integral transform, copula regression models, and bootstrapping.

2.1 Linear Models and Ordinary Least Squares Estimation

Foundational to the methods used in this paper are linear models and ordinary least

squares regression. Linear models are a common form of covariate-response relation-

ship. They take the form Y = β0 + β1X1 + β2X2 + · · · + βpXp + ϵ. These models

are linear because the parameters of interest β0, . . . , βp are linearly applied to the

transformed data [12, pg 212].

One can estimate the βj for j = 1, . . . , p using ordinary least squares (OLS) esti-

mation. Ordinary least squares estimation seeks to find the βT =
[
β0 β1 . . . βp

]T
parameters which minimize the total sum of squared error between the fit and the

data. In other words, it seeks to minimize this quantity

ϵ2i =
n∑

i=1

{yi − (β0xi0 + β1xi1 + · · ·+ βpxip)
2}

Expressing the data in matrix form we have

Y = βX + ϵ
y1

y2
...

yn

 =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

...
...

...
. . .

...

1 xn1 xn2 . . . xnp




β0

β1

...

βp

+


ϵ1

ϵ2
...

ϵn


It can be shown that the β which minimizes the sum of squared error is (XTX)−1XTY

[5, pg 18]. Where, XT is the transpose of X and (XTX)−1 is the matrix such that
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(XTX)−1(XTX) = I where I is the p× p identity matrix. The succinct solution to

minimizing square error make it an ideal loss function for many regression scenarios,

including those in this paper.

2.2 Kendall’s Rank Correlation Coefficient

Central to the regression technique investigated in this thesis is the Kendall’s τ rank

correlation coefficient, known also as the Kendall’s τ coefficient, or simply the τ

correlation. It is a measure of ordinal association between two random variables

X and Y with paired observations (xi, yi), i = 1, . . . , n. One can interpret the τ

correlation as the probability of concordant pairs minus the probability of discordant

pairs. Concordance occurs when observations change in sync, that is, xi > xj and

yi > yj or vice versa. Otherwise the pair is said to be discordant [8].

Suppose we have a random sample of paired measurements (x1, y1) , . . . , (xn, yn).

To calculate the τ correlation we require the number of concordant pairs C and

discordant pairs D. Kendall’s τ is found via the following

τxy =
C −D(

n
2

)
where

(
n
2

)
is the total number of combinations. Recognizing that this formula is

analogous to the classical formula for probability P (A) = Number of Events such that A occurs
Total number of Events

reveals the earlier interpretation of the τ coefficient. [12, pg 355,356].

In the context of this thesis, we have the simulated data (Ỹ , X̃) where the

Kendall’s τ rank correlation coefficient is calculated for each pair of variables. This

results in a (p+ 1)× (p+ 1) matrix

K =



1 τX1,X2 τX1,X3 . . . τX1,Xp τX1,Y

τX2,X1 1 τX2,X3 . . . τX2,Xp τX2,Y

τX3,X1 τX3,X2 1 . . . τX2,Xp τX3,Y

...
...

...
. . .

...
...

τXp,X1 τXp,X2 τXp,X3 . . . 1 τXp,Y

τY,X1 τY,X2 τY,X3 . . . τY,Xp 1


Where τXj ,Xk

= τXk,Xj
is the τ correlation coefficient between variables X̃j and X̃k

which may include the response Y . Note how the diagonal elements are all 1 since
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the τ correlation between a variable and itself is always 1. This matrix can further

be split into sub matrices KXX and KXY viz.

KXX =



1 τX1,X2 τX1,X3 . . . τX1,Xp

τX2,X1 1 τX2,X3 . . . τX2,Xp

τX3,X1 τX3,X2 1 . . . τX2,Xp

...
...

...
. . .

...

τXp,X1 τXp,X2 τXp,X3 . . . 1


KXY =



τX1,Y

τX2,Y

τX3,Y

...

τXp,Y


The function corKendall from the R package copula was used for access to the much

faster τ calculation [10].

2.3 Probability Integral Transform

An important result used to transform variables for use in copulas is the probability

integral transform. Given a continuous random variable X with cumulative distri-

bution function Fx the transformed variable Y = Fx[X] has the standard uniform

distribution. [2, pg 54-55]. In addition, the inverse probability integral transform of

a distribution can be used to generate said distribution from the standard uniform,

so for U ∼ Uniform(0, 1) we have F−1
x (U) ∼ Fx. It is also relevant to note that the

probability integral transform for continuous distributions is strictly monotonic [3, pg

28].

2.4 Copulas

The modelling used here involves joint density functions between variables which may

not be independent. The copula is used to describe these dependence structures con-

veniently. Technically, the copula is a type of joint cumulative distribution whose

marginal distributions are standard uniform distributions. Standard uniform distri-

butions are special in that any other distribution can transformed to one through

the probability integral transform. This property is formalized in Sklar’s theorem,

which also states that combining a copula and arbitrary marginal distributions always

creates a valid joint distribution [14, pg 229-231].

There are other methods to describe dependence structure between random vari-

ables but all of these suffer from their own issues. One could simply assume the
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joint distribution between variables, but joint distributions uniquely determine the

marginal distributions. Given a joint density P (X1, X2) we find the marginal density

of X1 by integrating out the other variable(s)∫ b

a

P (X1 = x1, X2 = x2)dx2

where a and b are the lower and upper bounds of density along the X2 dimension.

This is a definite integral, and as such has a unique solution [6, pg 314]. If the

marginal distributions are to be varied, the joint distribution may need to change as

well. Another technique is to use conditional distributions. In the two variable case,

the conditional distribution can be combined with the marginal distribution as per

this formula P (X = x, Y = y) = P (X = x|Y = y)P (Y = y) [12, pg 375]. This

describes the resulting joint density function, and thus the dependence structure, but

the conditional P (X = x|Y = y) will be dependent on the marginal distribution of

Y . This allows for the marginal distribution of Y to be chosen freely, but not that of

X. Compare both of these to the copula, which allows complete freedom in changing

the marginal distributions while still retaining the desired dependence structure.

2.5 Bootstrapping and Confidence Intervals

In this thesis, we will use an estimator that does not have an analytically derived

confidence interval. Luckily, we can use the non-parametric bootstrap to approxi-

mate the sampling distribution of such an estimator. Bootstrapping is a resampling

technique used to artificially create pseudo samples from the population distribution.

Suppose x = (x1, x2, . . . , xn) is a random sample of size n from some unknown

distribution F . A bootstrap sample is obtained by taking a random sample of size n

with replacement from the original data x. For each of B bootstrap samples collected,

where B is often more than 2000, the statistic of interest, say τ̂ , is calculated. The

collection of the statistic values are known as bootstrap replicates. Assigning a weight

of 1
B
to each bootstrap replicate yields an approximation of the sampling distribution

of the statistic τ̂ . As the sample size n increases, it can be shown that the distribution

of τ̂1, . . . , τ̂B calculated from their corresponding bootstrap samples, will approach the

true sampling distribution of τ̂ under certain conditions [4, pg 159]. By finding the

(α/2) and (1− α/2) quantiles, a (1− α)% confidence interval is constructed for τ



Chapter 3

Methodology

Here, we explain the τ -based estimation method of particular interest in this thesis

as well as the simulation study used to test it.

3.1 Gaussian copula regression model

Copulas may be used to define models which assume a particular correlation structure

but have arbitrary marginal distributions. We use one such model here, known as

the Gaussian copula model. Suppose the we have observed data (Y,X) = (Y,X1, X2,

. . . , Xp). These variables are transformations of the true model covariates and re-

sponse (Ỹ , X̃) which have been passed through unknown monotonic transformations

f1(Ỹ ), f2(X̃1), f3(X̃2), . . . , fp+1(X̃p). The unobserved (Ỹ , X̃) have the linear relation-

ship

Ỹi = X̃
T

i β̃ + ϵi, i = 1, 2, . . . , n.

They also follow a MVN(0,Σ) where Σ is a (p + 1) × (p + 1) covariance matrix

such that diagonal elements are 1 for identifiability [1]. The error term ϵi follows an

unrelated Normal(0, σϵ) distribution.

We have the goal of estimating the β̃ for variable selection. Usually, this can

be accomplished using the ordinary least squares estimator ˆ̃β = (X̃
T
X̃)−1X̃

T
Ỹ .

This is not possible here, since we do not have access to (Ỹ , X̃). However, recall

that the marginal transformations f1, . . . , fp+1 are monotonic. This means that rank

based measures of association, such as Kendall’s τ , are identical on both (Ỹ , X̃) and

(Y,X). For this reason, a τ based estimator of β̃ calculated on the observed data

(Y,X) also applies to the unobserved data (Ỹ , X̃). We will denote such an estimator

as β̂τ .

6
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3.2 τ based estimation of β̃

Consider the ordinary least squares estimator ˆ̃β = (X̃
T
X̃)−1X̃

T
Ỹ . This estimator

is comprised of two factors (X̃
T
X̃)−1 and X̃

T
Ỹ . Direct access to these values is

impossible in our setting, but there is an alternative approach.

Note the sample covariance estimate

σ̂jk =
1

n

n∑
i=1

(xij − E[Xj])(xik − E[Xk])

[13]. The mean of (Ỹ , X̃) is known to be 0 since they follow a MVN(0, σ) distribution.

This shortens the covariance estimator to

σ̂jk =
1

n

n∑
i=1

(xij)(xik).

This sum can be expressed as the inner product of random vectors Xj and Xk

X̃j =


x1j

x2j

...

xnj

 X̃k =


x1k

x2k

...

xnk


to obtain

σ̂jk =
1

n
X̃T

j X̃k

By combining covariates into the matrix X̃ =
[
X̃1 X̃2 . . . X̃p

]
We can obtain

covariance estimates

σ̂X̃X̃ =
1

n
X̃

T
X̃

and

σ̂X̃Ỹ =
1

n
X̃

T
Ỹ .

These are very similar to the two factors (X̃
T
X̃)−1 and X̃

T
Ỹ which comprise the

OLS estimator of β̃. In other words, the OLS estimator can be viewed as a function

of the unscaled covariance matrices. By estimating the covariance of (Ỹ , X̃) using

Kendall’s τ , we can create the OLS estimator for the underlying dataset.

To estimate the covariance using the τ values we use the following [1, 9]:

σjk = sin
(π
2
τXj ,Xk

)
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There is now a link between the tau matrix K and β̂τ through the following:

sin
(π
2
KX̃X̃

)
= Σ̂X̃X̃ =

1

n
X̃

T
X̃

sin
(π
2
KX̃Ỹ

)
= Σ̂X̃Ỹ =

1

n
X̃

T
Ỹ

Where Σ̂X̃X̃ is the p × p matrix comprised of the covariances between covariates

and Σ̂X̃Ỹ is the p × 1 matrix comprised of the covariances between response and

covariates. Multiplying the estimated covariance matrices Σ̂X̃X̃ and Σ̂X̃Ỹ by n will

yield X̃
T
X̃ and X̃

T
Ỹ respectively. The ordinary least squares estimators of ˆ̃β can

then be directly calculated using (X̃
T
X̃)−1X̃

T
Ỹ for our final estimates.

3.3 Variable Selection Using Bootstrapping

To check for covariate significance, we make use of the equivalence between 2-sided

hypothesis tests and confidence intervals. Testing H0 : β̃j = 0 versus Ha : β̃j ̸= 0 is

done by checking if 0 is within the confidence interval, and if it is not, we reject H0.

A rejection of the null hypothesis would imply that β̃j is not 0 and thus has an effect

on the response [11, pg 242]. Given the sampling distribution of β̂τ is unknown, a

nonparametric bootstrap will be used with 3000 replicates to calculate the appropriate

100(1− α)% confidence intervals for β̃.



Chapter 4

Simulations

4.1 Generating Simulated Data

To compare the effectiveness of the two estimation methods for variable significance

we use simulated data. The original β̃ parameters of the simulated data are known,

so estimated β̂τ can be directly compared to determine reliability. Performance may

change depending on the generating settings, so multiple settings are tested to best

understand when the estimators perform well. Implementation in computer code

was performed using the R coding language and the Rstudio integrated development

environment [7].

We first simulate X̃ by generating n random samples from p Normal(0, 1) distri-

butions. The response variable is created by

Ỹi = X̃
T

i β̃ + ϵi, i = 1, 2, . . . , n.

This ensures that the underlying model fits the Gaussian copula model while providing

us with the true β̃ [11, pg 475]. To create the observed data (Y,X) we use the

monotonic transformations f1(Ỹ ), . . . , fp+1(X̃j). Not all Ỹ , X̃ need to be transformed,

so in some cases X̃j = Xj. This is equivalent to applying the transformation fj(Xj) =

1×Xj which is obviously monotonic.

For comparison we also fit the linear model

Yi = X iβ + ϵi i = 1, . . . , n

and compute the standard ordinary least squares estimate β̂OLS = (XTX)−1XTY

This model is ignorant to the true relationship involving the Ỹ , X̃ but it is simple.

If it is found that the β̃τ performs similarly to β̃OLS for the purposes of variable

selection, it may not be worth the additional effort to use the former.

One setting that varied between simulations is the transformations applied to both

covariates and response. These transformations include strictly monotonic functions

9
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such as exponential, logarithmic, hyperbolic, and polynomial as well as the probability

integral transform. In some cases, the range on which a function is monotonic included

only positive numbers, in which case the data was transformed using PIT to a density

with only positive values beforehand. Additionally, the sample size n, the error

variance, and the proportion of significant covariates were also varied. The true β̃

were fixed at the beginning of each trial.

For each scenario there were 10 covariates with 3 being significant (β̃i ̸= 0). Addi-

tionally, each scenario was tested using 25 different random samples. Performance of

both estimators was measured using sensitivity and specificity. For each model fit we

can compare the detected significance of β̂τ and β̂OLS against the true significance

of β̃. If a component coincides it is known as a true positive (TP) or true negative

(TN). If an insignificant β̃j is detected as significant it is known as a false positive

(FP) and if a significant β̃j is detected as insignificant it is known as a false negative

(FN). Sensitivity and specificity are functions of the total amounts of TP, TN, FP,

and FN via

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP
.

Sensitivity can be interpreted as the ratio of significant β̃js detected while specificity

can be interpreted as the ratio of insignificant β̃js properly detected as such. These

metrics are tabulated across each scenario for both estimators.

The theoretically perfect table is the following:

Table 4.1: Ideal Table
Template Ideal Score

τ Sensitivity Specificity 1 1
OLS Sensitivity Specificity 1 1

The perfect score is not obtained by any setting, instead a benchmark scenario is

chosen. The benchmark setting produces the following model:

Ỹ = β̃1X̃1 + β̃2X̃2 + β̃3X̃3 + · · ·+ β̃10X̃10 + ϵ where ϵ ∼ N(0, 0.1)

X̃T
i =

[
x1 x2 . . . x1000

]T
with xi

iid∼ N(0, 1)

β̃1 = 0.1, β̃2 = 0.3, β̃3 = 1, β̃4,...,10 = 0
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No marginal transformations are applied to covariates or response. This produces the

following table:

Table 4.2: Standard Table without transformations
Template Ideal Score

τ Sensitivity Specificity 1 0.96
OLS Sensitivity Specificity 1 0.926

Note that sensitivity is labelled in blue and specificity in green, as the template

column will no longer present in tables from here on.

4.2 Distribution of Covariates X i

Table 4.3: PIT of covariates
Normal(0,1) χ2(3) β(5, 1) Γ(2, 2) Exp(1.5) MVN(ρ = 0.9)

τ 1 0.96 1 0.96 1 0.96 1 0.96 1 0.96 1 0.954
OLS 1 0.926 1 0.96 1 0.949 1 0.96 1 0.971 1 0.949

Performance of the OLS estimator was rather stable here with only minor dips occa-

sionally. The τ -based estimator was invariant to the transformations since they are

strictly monotonic. The multivariate normal (MVN) distribution had a covariance

matrix such that all non-diagonal elements were equal to ρ = 0.9. The τ -based es-

timator performance changes under the MVN distribution due to it generating new

samples from scratch as opposed to transforming existing samples.

4.3 Observation number n

Table 4.4: Change in observation number
n = 1000 n = 100 n = 30

τ 1 0.96 0.973 0.994 0 1
OLS 1 0.926 1 0.966 1 0.971

At n = 1000 and n = 100 both estimators performed well. The τ -based estimator

had a decrease in sensitivity at n = 100 but it was made up for by an increase in

specificity. At n = 30 the τ -based estimator had 0 sensitivity. This makes it unusable,
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as it will never detect any significant covariates. The OLS estimator performed quite

well for comparison, so it may be preferred at very low observation counts.

4.4 Covariate Transformations X i

Table 4.5: Marginal Transformations
ex loge(x) 1/(−x) x2

τ 1 0.96 1 0.96 1 0.96 1 0.96
OLS 0.507 0.903 1 0.949 0.853 0.971 0.973 0.96

Performance of the OLS estimator was satisfactory under the logarithmic and quadratic

transformations but decreased moderately at the hyperbolic transformation. Most

notably, the exponential transformation greatly decreased the OLS estimator’s sensi-

tivity to 0.507. The τ -based estimator was invariant under these transformations so it

performed quite well still. Covariates were first transformed to a χ2
3 distribution using

PIT so that the range of values is non-negative since x2 and 1/(−x) are monotonic

on xi ∈ (0,∞).

4.5 Response Transformations Y

Table 4.6: Transformation applied to Response
ey loge(y) 1/(−y) y2

τ 1 0.96 1 0.96 1 0.96 1 0.96
OLS 0.4 0.937 1 0.943 0.827 0.966 0.973 0.949

This section has similar results to that of the covariate transformations. The OLS

model performs moderately poorly under a hyperbolic response transformation and

extremely poorly under an exponential response transformation. The τ -based model

was invariant once again, producing solid results. Response data was first transformed

to χ2
3 to restrict the range to only positive numbers.
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4.6 Error Variance

Table 4.7: Changes in σϵ

0.1 5 20
τ 1 0.96 0.507 0.926 0.187 0.926

OLS 1 0.926 0.493 0.926 0.2 0.926

The results here are uninteresting, as the error variance increases both estimators

cease to function well. The error is applied to the underlying model directly, so an

increase in variance will decrease the strength of the underlying fit. The estimators

here are simply detecting that decrease.

4.7 Proportion of Significant Covariates

For this section 30 covariates are used. In the “> 10%” column, 9 covariates are

significant out of 30 and in the “= 10%” column, 3 covariates are significant out of

30.

Table 4.8: Proportion of β̃j ̸= 0
> 10% = 10%

τ 1 0.964 1 0.967
OLS 1 0.962 1 0.954

Performance of both estimators varies little here. The proportion of covariates

which are significant seems to have little effect on performance.

4.8 Conditional Distribution Y |X

Table 4.9: PIT applied to Response
Normal(0,1) χ2(3) β(5, 1) Γ(2, 2) Exp(1.5)

τ 1 0.96 1 0.96 1 0.96 1 0.96 1 0.96
OLS 1 0.926 1 0.949 1 0.943 1 0.954 1 0.954

For this section the PIT was applied to only the response variable without any ad-

ditional monotonic transformations afterward. Performance overall is solid for both
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estimators, much like the when the PIT was applied to the covariates. The OLS

estimator varies slightly depending on the exact distribution of (Y |X) but sensitivity

remains at 1 and specificity never drops below 0.92, so it is certainly still usable.



Chapter 5

Discussion

There is a notable conceptual advantage the τ -based estimator has for variable selec-

tion which motivated testing. Kendall’s τ is a rank based measure of association, as

such different datasets may produce identical τ values so long as the ordering of their

observations remains the same. Many common variable transformations, such expo-

nential or polynomial are among those that do not change the ordering of observations.

The τ -based estimator can be used to test the significance of all such transformations

simultaneously, allowing for a large class of relationships to be marked for further

analysis.

Despite this supposed advantage the τ -based estimator has, we can use the re-

sults from the simulation study to empirically compare its performance against the

OLS estimator. Varying the distribution of covariates, conditional distribution of the

response, proportion of significant covariates, and error variance had uninteresting

results. The first three scenarios produced similar, steady performance in both the

τ -based estimator and the OLS estimator. Increasing the error variance decreased

the performance of both estimators to an even degree. Choosing between these two

estimators is arbitrary under these 4 scenarios.

The first of the significant differences occured when we varied the monotonic

transformations applied to the covariates. The specific transformations we tested were

ex, loge(x), 1/(−x) and x2. For each of these transformations the PIT was used first

to guarantee that the resulting data would be non-negative. For the logarithmic and

quadratic transformations both estimators performed similarly but for the hyperbolic

transformation the OLS estimator noticeably dipped in sensitivity. Ordinarily, the

sensitivity is for the OLS estimator is 1 but under the hyperbolic transformation

1/(−x) it becomes 0.853. This is second to the massive decrease in performance

the OLS estimator undergoes during the exponential transformation ex. Under this

transformation, the OLS estimator’s sensitivity drops to just 0.507. It is detecting

15
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false negatives nearly more often than true positives here. Additionally, the specificity

in this scenario is 0.903, one of the worst we have seen so far from the OLS estimator.

Figure 5.1: Scatterplot of Exponential Covariates

Figure 5.2: Scatterplot of Hyperbolic Covariates
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Figure 5.3: No Marginal Transformations

From the figures above, it would seem that the squishing of most covariate ob-

servations toward a particular value is the cause of the poor performance under the

hyperbolic and exponential transformations. This is in contrast to the data which did

not undergo any transformations that is more spread out where the OLS estimator

performed much better.

Clearly, if there is a possibility that an exponential relationship links covariate and

response this could greatly reduce confidence in the OLS estimator’s abilities. This

also extends to transformations applied to the response, where the OLS estimator

performs similarly poorly when the transformation ey has been applied. In either

case the τ -based estimator is invariant in its performance, obtaining sensitivity of 1

and specificity of 0.96.

There is another scenario where performance differed greatly, this time against

the τ -based estimator. While varying the sample size n it was found that at n = 1000

and n = 100 the τ -based estimator and OLS estimator had approximately the same

sensitivity and specificity. However, at n = 30 the τ -based estimator had an abysmal

sensitivity of 0. With a specificity of 1 it is clear the estimator indicated every single

covariate to be insignificant. For comparison, the OLS estimator had a sensitivity of

1 and a specificity of 0.971. To understand why the τ estimator performed so poorly

we can look at a histogram of the estimated ˆ̃β3 replicates. The third covariate was

chosen because it had the greatest true β̃j value at β̃3 = 1.
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Figure 5.4: Histogram of Bootstrap Replicates at n = 100

Figure 5.5: Histogram of Bootstrap Replicates at n = 30

These histograms reveal that the poor performance of the τ -based estimator is

caused by the bootstrap. At low observation counts, the bootstrap has a tendency to

classify ˆ̃βj replicates as insignificant despite not being so. If an exact formula for the

standard error of the τ -based estimator was found perhaps this could be solved.

Taking the results together, we can make criteria for deciding when the τ -based

estimator should be preferred and when the OLS estimator should be preferred. If the
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number of observations is low, at less than 100, the OLS estimator is more effective.

Due to the bootstrap, the τ -based estimator greatly struggles to detect significant

covariates at n ≤ 30. If the number of observations is adequate, we then determine

whether the response variable may have an exponential relationship with the covari-

ates. If there is a possibility this is the case, the τ estimator should be preferred.

The OLS estimator had a large number of false negatives and false positives when

response was an exponential function of covariates. If the data has both high obser-

vation count and there is no possibility of response being an exponential function of

covariates, then both estimators perform equally well.

5.1 Conclusion

Despite the supposed conceptual strengths of the τ -based estimator for determining

which covariates have a significant effect on the response, empirical evidence illus-

trated how well the naive OLS estimator kept up. The only scenario it should be

avoided was when an exponential transformation linked response and covariates. It

could be found that additional transformations cause the OLS estimator to fail, but

based on the results here it may still be preferable to continue using the OLS estima-

tor for variable selection. The OLS estimator is well understood and relatively simple

to implement, compared to the relatively recent development of copula models and

this τ based estimator. Choosing the τ -based estimator forces it to compete with the

decades of use of the OLS estimator. This familiarity may be preferable to the minor

gains in performance of a relatively undeveloped estimator.
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