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Abstract

In this paper, we provide a brief explanation of what hidden Markov models are, and

their application to animal movement. Then, we present some hidden Markov models

that were fitted using the R package moveHMM, based on location and time data

of wild boars from the south of France. This data set was provided to us by Simon

Chamaillé-Jammes. We explore how to select the best number of states for an animal

movement hidden Markov model using a combination of information criteria, state

probability metrics, and pseudo-residual plots. Next, we identify which temporal and

environmental covariates to include in our hidden Markov model. The model we

identified as best for our data set was a two-state hidden Markov model with two

temporal covariates and three environmental covariates. An analysis of this model

indicates that wild boar movement can be described sufficiently using two states: a

less active (or “resting” state) and a more active state. An analysis of the model’s

covariates gives clear indication that the boars that were sampled are nocturnal. The

model also indicates that the boars prefer to rest in forested areas and tend to be

more active in non-forested areas.
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Chapter 1

Introduction

1.1 Hidden Markov models

Hidden Markov Models are a type of statistical model used for time series data i.e.

data that is recorded sequentially in time. They are a good tool to use when we

believe that the variables we’re interested in behave differently at different times.

In particular, a hidden Markov model is apt when we believe the these underlying

differences in behaviour can be sorted into a discrete number of “states”. By thinking

about it in that way, we can say that the variable of interest behaves in such-and-such

a way when its “state 1”, and it behaves in a different way when its in “state 2”,

and it behaves in yet another way in “state 3”, and so on. We can also estimate

the probability that the underlying process will remain in the state its already in,

or change states, at the next observation time. A hidden Markov model consists

of two main parts: an “observed” process, and, as the name implies, a “hidden”

process. The theory of hidden Markov models (HMMs), is that the observed process

(the observation at a given time), is determined by what’s going on in the “hidden”

process, which is the underlying state that changes over time [9]. In HMMs, The

number of different hidden states that are included in the model is something that

must be decided on before fitting the model. For example, you could decide to have

a 2-state model, a 5-state model, or a 20-state model. In theory, you can fit a 1-

state model, but that would mean that each observation would come from the same

distribution, so in that case it would not really make sense to think of it as fitting

a hidden Markov model, because that would mean there is no heterogeneity in the

model and no dependence in time, which are two of the main reasons for using the

hidden Markov model in the first place.

The “Markov” part of a hidden Markov model comes from the fact that the hidden

process is a Markov Chain, meaning that if Ct is the state at time t (we often use

a whole number to refer to a state, i.e. Ct could be 1,2, or 3 at a given time for a

1



2

3-state HMM), then Pr(Ct|Ct−1, Ct−2, Ct−3, .....) = Pr(Ct|Ct−1) . This means that

which state the model is in at time t only depends on what the state was at time

t-1 [9].

The probabilities that the process will stay in the same state or change to another

state can be summed up succinctly by a transition probability matrix, which is often

denoted as Γ. The matrix below is an example of a transition probability matrix for

a two-state hidden Markov model.

Γ =

[
0.8 0.2

0.3 0.7

]

This matrix indicates that if the process is in state 1, then it has a probability

of 0.8 of being in state 1 at the next observation and a probability of 0.2 of being in

state 2 at the next observation. If the process is in state 2 at a given time, then it

has a probability of 0.7 of staying in state 2 at the next observation and a probability

of 0.3 of switching to state 1 at the next observation. For a transition probability

matrix of a hidden Markov model with m states, the transition probability matrix

will normally be of dimensions m × m , with entry (i, j) indicating the probability

that the process will switch into state j, given that it is currently in state i. Below is

a table to help illustrate how transition probability matrices work.

Future State (time t+1)

Current State(time t) 1 2

1 0.8 0.2

2 0.3 0.7

The stationary probabilities for a hidden Markov model, at least for our purposes,

can be thought of as the proportion of time that the hidden process spends in each

state over the long run. The formula for the stationary probabilities of a m-state

hidden Markov model is derived from the transition probability matrix [6]:

δ = 1(I− Γ +U)−1

where δ is the vector of stationary probabilities, “1 is a row vector of ones, I is an

m×m identity matrix, and U is the m×m vector of ones” [9].
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1.2 Animal movement ecology

Humans have been interested in understanding the movement patterns of animals

for thousands of years, dating back at least to Aristotle [7]. Technological advances,

both in personal computing and GPS sensors have enabled the collection and analysis

of animal location data in ways that were not possible until fairly recently. These

developments allow researchers to gain new insight into the when, where, and why of

animal movement [7].

Nathan et al. posit four components for animal movement: “the internal state

(why move?), motion (how to move?), and navigation (when and where to move?)” [7].

The internal state of an animal will correspond to the goal (or goals) the animal is pur-

suing at a given time. Sometimes, an animal’s movement behaviour will accomplish

multiple goals at once. Other times, the motivation behind an animal’s movement

behaviour will change very rapidly, like for example, when an animal is foraging and

then suddenly has to evade a predator [7]. Since we usually only have limited insight

into the internal state of an animal whose movement we are tracking, it is natural to

think of the internal or behavioural process as corresponding to the“hidden process”

in a hidden Markov model.

1.3 Hidden Markov models for animal movement

Much can be learned about the movement behaviour of a species from fitting a hidden

Markov model. The most common type of hidden Markov model for animal move-

ment is called a “step-and-turn model”. This type of model features two response

variables: step length, which is the distance traveled by the animal in between two

successive observations, and turning angle, which is the angle at which the animal

turned between two steps [5]. Often, when the animal is in a given state, step length

is treated as having a gamma distribution and turning angle is treated as having a

von Mises distribution. What changes from state to state are the specific observation

parameters for the gamma and von Mises distributions. The gamma distribution has

a range from (0,∞), as step lengths are non-directional and thus cannot be negative.

The turning angle is typically measured in radians, thus the von Mises distribution,

which is bounded from (−π, π], is a natural fit. The step distribution and the turning
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angle distribution in a given state are considered to be independent of one another [8].

The transition probabilities and the observation parameters for each state are

estimated via maximum likelihood. The maximum likelihood for a step-and-turn

hidden Markov model based on T observations is:

LT = δP(x1)ΓP(x2)ΓP(x3)...ΓP(xT )1’

Here, δ is the initial distribution of the Markov chain, which is a vector containing

the probabilities that the process starts in a given state. P(xt) is a diagonal matrix,

where the i’th diagonal is the multivariate density function of the i’th state at time

t [9]. Since the step and turning angle distributions are independent of one another,

the multivariate probability density function is simply the product of the density

function for the step, p(X1t), and the density function for the turning angle, p(X1t) [8].

The probability density function for the von Mises distribution is:

p(x) = c(κcos(x− µ)) , xϵ(−π, π]

where c is a constant, µ is the value where the density is highest and κ is a measure

of concentration, which indicates the degree to which the density is centred around

µ. Note that values close to π and −π both essentially correspond to a reverse in

direction in between steps.

The probability density function for the gamma distribution is:

p(x) =
βαxα−1e−βx

Γα
, xϵ(0,∞)

where α is the shape parameter and β is the rate parameter. The mean for the

gamma distribution is α
β

and the standard deviation is
√

α
β2 . Usually when we

describe the features of a gamma distribution in this paper we will refer to the mean

and standard deviation, rather than referring to α and β.

There are two ways to include covariates in a hidden Markov model. The first way

is to have the observation parameters be dependent on the covariates, while keeping

the transition probabilities fixed. The second way is to keep the observation param-

eters fixed and have the transition probabilities be dependent on the covariates [9].

For this paper, we will focus on the second method. This method can be challenging
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with more than two states, but is relatively straightforward when there are only two

states. When there are two states, we can model the off-diagonal entries as following

something like a logistic regression model:

logittγi,3−i = βiy
′
t

where logitt is the logit function, γi,3−i is one of the state-switching probabilities

in our transition matrix for current state i, βi is the set of regression coefficients, and

y′t is a list ofcovariates stored in a vector [9].

Because animal location data sets of interest often contain many observations

(the data set we use in this paper contains 42197 rows), and because each additional

state has its own parameters and requires a bigger transition matrix, fitting a hidden

Markov model with a high number of states (> 4) can be very computationally

expensive and time consuming. Furthermore, a high number of states increases the

risk that the software will incorrectly identify the optimal solution. Fortunately, it

will not be necessary to fit models with more than four states because when fitting

animal movement HMMs, “biologists (...) typically expect 2-4 initial states to be

present” [8]. This is intuitive because ideally we would like to think of each state

as corresponding to a specific behavioural pattern in the animal [8]. While it is

easy to imagine two distinct types of movement behaviour (i.e. active behaviour vs.

resting behaviour), it becomes much harder to imagine that we can capture five or

more distinct behavioural patterns in a particular animal simply by observing its

movement.

When deciding on which statistical model to use, it is always helpful to have

criteria that allow you to compare models. Two of the most common criteria for model

selection are the Akaike information criterion (AIC) and the Bayesian information

criterion (BIC). The formula for the Akaike information criterion is:

−2log(LT ) + 2p

where log(LT ) is the natural logarithm of the likelihood, and p is the total number

of parameters in the model [9].

The formula for the Bayesian information criterion is:
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−2log(LT ) + plog(T )

where T is the number of observations [9]. For both the AIC and BIC, a lower value

indicates a better model. For AIC and BIC, a higher likelihood results in a lower, and

thus better, value. On the other hand, increasing p, the number of parameters results

in a higher, and therefore worse, value. Thus, AIC and BIC are both functions of

likelihood which are “penalized” by the number of parameters. The difference between

the AIC and BIC lies in exactly how much of a penalty each parameter carries [9].

For the AIC the “penalty term” is always 2, whereas for the BIC the penalty term is

the natural logarithm of the number of observations. If you have many observations

(T > 8), the BIC carries a higher penalty for each added parameter [9]. The general

idea is that AIC and BIC will favour a model that is neither underfitted nor overfitted.

Ideally, the preferred model will capture the underlying pattern of the data without

being unnecessarily complex. However, when choosing the number of states for animal

movement hidden Markov models, Pohle et al. suggest that the AIC and BIC tend to

favor models with more than four states, which, as stated earlier, is undesirable [8].

Unfortunately, it seems that “no one-size fits all objective and universally applicable

criterion can be developed for order selection in HMMs” [8].

In this paper we will be looking at a few different things in addition to AIC and

BIC that will help us determine the best number of states for our data. One thing

we will be looking at are some functions of the state probabilities for each number of

states. The state probabilities at time t are the probabilities that the hidden process is

in each state at time t, given the observation process. The formula for the probability

of the hidden process, C, being in state i at time t is given by:

Pr(Ct = i|X(T ) = x(T )) =
Pr(Ct = i,X(T ) = x(T ))

Pr(X(T ) = x(T ))

where x(T ) is a matrix of the observations at all times [9]. These will help indicate

which model is best because it is preferable that all states are clearly distinguishable

from one another. States that are significantly different from one another enable

us to infer something about the animal’s behaviour in each state [8]. When each

state has unique features, most of the time we should have a pretty good idea which

state the hidden process is in at a given time, so the state probability for one state
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will be close to 1 while the other states will have a state probability close to zero.

When we looked at our fitted models in chapter 2, one set of metrics we used was

the proportion of observations that had a state probability of at least .5, .7, or .95.

The other state probability metric we looked at was mean information entropy per

observation. The formula for information entropy is E = −
∑

pilog(pi) , where pi is

the state probability for state i at a given observation [2]. The entropy will equal zero

when we are absolutely sure which state the hidden process is in, and the entropy will

peak when all the state probabilities are equal [2]. Thus, for our purposes, a lower

mean entropy for a given model is desirable.

Another way we can compare models with different numbers of states is through

the use of pseudo-residual plots [9]. Technically, hidden Markov models do not have

residuals, but we can essentially look at the same sorts of plots for pseudo-residuals

as we would for regular residuals for other kinds of statistical models. I will not get

into detail on the technical difference between residuals and pseudo-residuals here.

If the pseudo-residual plots look good, they suggest that there are enough states to

adequately capture the pattern in the data. If the pseudo-residual plots look much

better with a higher number of states, that is potentially an indication that we should

use the higher number of states [9].

1.4 About the wild boar data set and using moveHMM

The data set we will be using to explore model selection in animal movement hidden

Markov models consists of wild boar location data that was collected in the south of

France by Gustav Fradin and Simon Chamaillé-Jammes [1]. The subsection of their

data that we used consisted of six wild boars, with their location recorded via a GPS

collar once every half-hour, using Easting and Northing coordinates [1]. Across the

six wild boars we had 42197 location observations. The observations also had four

environmental covariates. The first covariate is distance to the nearest forest, the

second and third covariates are the distance to the nearest large road and small road,

respectively, and the fourth covariate is distance to the nearest village. Distance to

forest took negative values when the animal was inside a forest and distance to village

took negative values when the animal was inside a village. All of the covariates are

in metres. The first piece of data preparation we did was breaking up the animal IDs
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Figure 1.1: The first 15 observations of the data set, before additional data prep

into subsections when there was large time gaps using Michelot’s function “split at

gaps” [3]. HMMs treat time as discrete, which means that inconsistent time intervals

can be problematic. Breaking up the data into subsections when there are time gaps

ensures that time can in fact be treated as discrete.

The tool we used to fit our HMMs was the R package “moveHMM”, which was

developed by Théo Michelot, Roland Langrock, and Toby A. Patterson in 2016 specif-

ically for the purpose of fitting animal movement hidden Markov models [5]. The first

thing we did using moveHMM was derive the step lengths (in metres) and turning

angles (in radians) from the Easting and Northing coordinates (listed as x and y in

the data set) using the “prepData” function. Next, we identified the step lengths

that were exactly zero, and replaced them with small non-zero values. Only 7 of the

42197 observations had a step length of exactly zero. We replace these values because

the gamma distribution is undefined at zero, so fitting a gamma distribution would

require an additional “zero-inflation” parameter for each state, which would make

the models unnecessarily complex and less numerically stable. We then fitted our

two-state, three-state and four-state models using the “fitHMM” function. To use

fitHMM, you need to select initial values for each of the observation parameters in

order for the function to work. Sometimes, the model can converge to a non-optimal

solution which does not maximize the likelihood as intended [4]. Because of this, it is
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good to fit the same model with many initial values and check if the likelihoods are the

same for each one [4]. Fortunately, the likelihoods for our two-state, three-state, and

four-state models seemed to be consistent regardless of the initial parameter values.

Once we fitted our models, we used the “plot” function to generate histograms

of the step length and turning angles for each model, with coloured lines indicating

the density functions for each state and a dotted line indicating the overall density

function for the overall fitted model [6].

We used the “plotPR” function to print off plots of the pseudo-residuals. These

graphs include a time-series plot of the pseudo-residuals, a Q-Q plot of the pseudo-

residuals, and an autocorrelation plot of the pseudo-residuals [6].

We used the “stateProbs” function to obtain the state probabilities for each num-

ber of states, stored in a matrix [6]. This matrix allowed us to derive our state

probability metrics.

Once we decided that two states are sufficient, we fitted some two-state models

with covariates. For computational reasons, we converted the environmental covari-

ates from metres to kilometres. We also derived a covariate for time of day as a

decimal number between 0 and 24 using the “clock” package so we could use tem-

poral covariates. Once we fitted our covariate models, we used the “plotStationary”

function to generate graphs of how covariates affect the stationary probabilities.

Figure 1.1 shows the first 15 observations of the wild boar data set, after the

data was split into tracks but before we performed additional preparations to make

it suitable to fit our step-and-turn hidden Markov model. Figure 1.2 is the first 15

observations of the wild boar data set, after the data was fully prepared for us to fit

our models with.

Figures 1.3 and 1.4 are histograms of the step length and turning angle values

of the data set, respectively. The step lengths have a high frequency of observations

near zero, with a long tail that is visible up to about 700 metres. The frequency of

the turning angles has two peaks, one around 0, and one around +/− π.
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Figure 1.2: The first 15 observations of the data set, after additional data prep

Figure 1.3: Histogram of the step lengths for our data set, derived from Easting and
Northing location coordinates.
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Figure 1.4: Histogram of the turning angles for our data set, derived from Easting
and Northing location coordinates



Chapter 2

Comparing the two-state, three-state, and four-state models

2.1 Features of the two-state, three-state, and four-state models

Figures 2.1-2.3 are the R outputs showing the maximum likelihood estimates of the

observation parameters and transition probabilities for the two-state, three-state, and

four-state models, fitted using the “fitHMM” function in moveHMM.

Figure 2.1 shows the R output for the fitted two-state model. State 1 has a turning

angle centered near −π, whereas state 2 has a turning angle distribution centered near

zero. State 1 has a step length mean of around 18.5 metres and state 2 has a step

length of around 242 metres. This indicates that state 1 clearly the less active state,

and state 2 is clearly the more active state. A boar in state two has a higher chance

of sustained movement in the same direction over multiple half-hour intervals. The

diagonal entries of the transition matrix are .93 for state 1 and .90 for state 2. These

values are quite high, and indicate that when an animal is in one state, it is very

likely it will remain in that state at the next observation.

Figure 2.2 shows the R output for the fitted three-state model. State 1 and 2 have

turning angles centered near −π, and state 3 has a turning angle distribution centered

near zero. The step length means and standard deviations increase from state 1 to

state 2 to state 3. There is a particularly large increase in mean step length from

state 2 to state 3, going from roughly 83 metres to 369 metres. Interestingly, turning

angle concentration is near 0 for state 2, meaning that the turning angle distribution

is basically uniform in this state. The turning angle concentration for state 3 is by

far the highest, indicating that in this state there is a lot of directional movement

sustained over multiple half-hour periods in this state. The diagonal entries of the

transition matrix show that if the animal is in state 1, it has a probability of .91 of

being in state 1 at the next observation, whereas if the animal is in state 2, it only

has a probability of .69 of being in state 2 at the next observation.

Figure 2.3 shows the R output for the fitted four-state model. States 1 and 2 have

12
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turning angle distributions centered near +/−π, and states 3 and 4 have turning angle

distributions centered near 0. Step length mean and standard deviation increases from

state 1 to state 2 to state 3 to state 4. Interestingly, turning angle concentrations

follow a different pattern, being lower for states 1 and 3 and higher for states 2 and 4.

For the four-state model, none of the diagonal entries for the transition probability

matrix are very high, ranging from about .68 to .77, indicating that state-switching

occurs quite frequently.

Generally, states where the average distance travelled is higher have turning angle

distributions centred at 0 and higher turning angle concentrations, although the four-

state model subverted this pattern somewhat. Generally, as the number of states

increases, the frequency of state-switching increases as well.

Figures 2.4-2.6 provide visualizations of the patterns discussed above, colour-coded

based on state, with the black dotted line representing the overall fitted distribution.

These visualizations were generated using the “plot” function in moveHMM.

2.2 Model checking

Table 2.1 shows the number of parameters, log-likelihood, AIC, and BIC for the two-

state, three-state, and four-state models. As expected, AIC and BIC both favour the

four-state model. Notably, the difference in AIC and BIC between three and four

state models is not as pronounced as the difference between the two and three state

models.

Tables 2.2 and 2.3 contain some information about the state probabilities. Ta-

ble 2.2 shows the probability that a randomly chosen observation will have a state

probability above a certain threshold. The thresholds we chose were .5, .7, and .95.

Higher values for this probability indicate that we are more certain overall about what

state the hidden process is in at a given time. Table 2.3 shows the mean informa-

tion entropy for a given observation increase as the number of states increase. Mean

entropy equals zero when we are certain about which state the process is in. The

maximum entropy is reached when all the state probabilities are equal to each other.

The maximum possible entropy is the natural logarithm of the number of states, so

it increases as the number of states increases. Both tables indicate that the as the

number of states increase, we are less and less certain about what state the hidden
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Figure 2.1: R output for the fitted two-state model

process is in at a given time. As the number of states increases, the states become

less and less distinguishable from one another.

Figures 2.7-2.9 show the pseudo-residual plots for the two-state, three-state, and

four-state models, respectively. The time-series and Q-Q pseudo-residual plots look

remarkably similar for all three models, and suggest that all three models capture the

data quite well. The autocorrelation plots of the pseudo-residuals for every model

indicate that there is some positive correlation between successive observations. The

x axis is the sequential gap between observations. Since observations are every half

hour, a gap of 24 corresponds to 12 hours and a gap of 48 corresponds to 24 hours.

Interestingly, there is some negative correlation around the 12-hour mark, and some

positive correlation around the 24-hour mark. This effect is most pronounced in the

two-state model, although it is not pronounced enough to warrant serious concern.



15

Figure 2.2: R output for the fitted three-state model

Table 2.1: Log-likelihoods and information criteria for the two-state, three-state, and
four-state models

Number of states p log-likelihood AIC ∆AIC BIC ∆BIC
2 11 -287770.5 575563 +6624 575658 +6451
3 20 -285651.7 571343 +2404 571516 +2309
4 31 -284438.3 568939 - 569207 -

2.3 Choosing the number of states

After careful considering, we have decided that the two-state model is best, despite

the fact that the two-state model has the worst AIC and BIC. This is because the

pseudo-residual plots in figure 2.7 tell us that the two-state model does a good job
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Figure 2.3: R output for the fitted four-state model

Table 2.2: State probability metrics

Number of states Pr(max(stateProbs)> .5) > .7 > .95
2 1 .9597 .8394
3 .9980 .8777 .5570
4 .9773 .7672 .2996

overall of fitting the data. Additionally, only having two states provides us with states

that are the most clearly differentiable from one another, as evidenced by our tables

of state probability metrics. Particularly striking was the fact that almost 84% of

our observations had a state probability of at least .95. This is in sharp contrast to

the three-state model, where only 55.7% of our observations fit this criteria, or the

four-state model, where only 30% of our observations fit this criteria. While there was

slightly more autocorrelation in the residuals for the two-state model, the differences

between models were not drastic. Ultimately, since each model had their advantages

and disadvantages, we opted to go with the simplest model.
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(a) Step length probability density functions

(b) Turning angle probability density functions

(c) Plotting animal 41’s most likely state sequence

Figure 2.4: Two-state model results
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(a) Step length probability density functions

(b) Turning angle probability density functions

(c) Plotting animal 41’s most likely state sequence

Figure 2.5: Three-state model results
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(a) Step length probability density functions

(b) Turning angle probability density functions

(c) Plotting animal 41’s most likely state sequence

Figure 2.6: Four-state model results
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Figure 2.7: Pseudo-residuals for the two-state model

Table 2.3: Mean information entropy for the state probabilities

Number of states mean entropy maximum possible entropy
2 .0919 log(2) = .6931
3 .2476 log(3) = 1.0986
4 .4099 log(4) = 1.3863
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Figure 2.8: Pseudo-residuals for the three-state model
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Figure 2.9: Pseudo-residuals for the four-state model



Chapter 3

Examining environmental and temporal factors

3.1 Choosing which covariates to include

Table 3.1: Covariate models, ranked based on AIC

Model covariates AIC ∆ AIC
1 sine time, cosine time, forest, large road, village 571778.2 -
2 forest, large road, village 575412.2 +3634.0
3 forest, large road, small road, village 575413.9 +3635.7
4 forest, small road, village 575466.9 +3688.7
5 forest, village 575468.5 +3690.3
6 forest 575470.7 +3692.5
7 forest, small road 575472.2 +3694.0
8 village 575522.7 +3744.5
9 small road 575561.3 +3783.1
10 no covariates 575562.9 +3784.7
11 large road 575565.9 +3787.7

While AIC and BIC are inadequate in determining the optimal number of states

in a hidden Markov model, we believe that either criterion can be a decent indicator

to look at when selecting covariates, after a number of states has been decided. As

the table above indicates, we have fitted 11 two-state models with different combi-

nations of 6 covariates, and then ranked them based on AIC. First, we identified the

optimal combination of environmental covariates and then added time covariates to

that model. The covariate model with the highest AIC is the model that includes the

time covariates, and the forest, large road, and village environmental covariates, but

does not include the small road covariate. The time covariates we included were sine

and cosine functions of the time of day: sin(time ∗ π
12
) and cos(time ∗ π

12
). We chose

the sine function because it equals 1 at 6am and −1 at 6pm. We chose the cosine

function because it equals 1 at 12am and −1 at 12pm. These time covariates had

a much more pronounced effect on the AIC and BIC than any of the environmental

23



24

Figure 3.1: Covariate regression coefficients for the final model

covariates, which suggests that the movement behaviour of the wild boars we looked

at follows strong circadian patterns. Thus, our final model is a two-state model with

two time of day covariates, the forest covariate, the large road covariate, and the

village covariate.

Figure 3.1 is the R output of the regression coefficients for the final model. The

further the coefficient is from zero, the more pronounced the effect the corresponding

covariate has. It is worth noting that since the regression contains a logit transforma-

tion, an increase of one covariate value by a certain amount will not always increase

the transition probability by a directly proportional amount, although the general

trend still holds. The R output confirms that the time covariates, particularly the

cosine function, have the largest effect on the transition probabilities, although the

forest covariate also has quite a considerable effect on the probability of switching

from state 2 to state 1.

3.2 Examining the effects of the covariates on the stationary

probabilities

Figures 3.2-3.5 are the plots of the effects of the covariates on the stationary probabili-

ties, using the “plotStationary” function in moveHMM. Using the argument “plotCI”,

we have included vertical 95% confidence intervals in the graphs to indicate the level

of certainty of the estimates [6]. The time of day covariate has the most pronounced

effect on the stationary distributions, with state 1 (the less active, or “resting” state)

being much more prevalent during the day, and state 2 being much more prevalent

at night. The stationary probabilities for a covariate are calculated and plotted as-

suming that all other covariates are at their mean value. Because of this, for the final
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Figure 3.2: Plot of the stationary probabilities based on the hour of the day (in
military time), from the final model.

model the plots for the environmental covariates were produced assuming that the

time was sometime around noon, meaning that the prevalence of state 1 was very

high regardless of what the value of the covariate of interest happened to be. It is

for this reason that we present the stationary distribution plots of the environmental

covariates from the model without time covariates to better illustrate their overall

effects. Of the environmental covariates, the forest distance had the largest effect,

with the more active state being much more prevalent outside the forest and the less

active state being much more prevalent deep inside the forest.

Our findings concerning the effect of time on the stationary probabilities are a

pretty good indication that these boars are nocturnal, which aligns nicely with the

findings of Fradin and Chamaillé-Jammes, who provided us with our data set [1].
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Figure 3.3: Plot of the stationary probabilities based on the distance to forest in
kilometres, based on the model with no time covariates.

Figure 3.4: Plot of the stationary probabilities based on the distance to village in
kilometres, based on the model with no time covariates.
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Figure 3.5: Plot of the stationary probabilities based on the distance to large road in
kilometres, based on the model with no time covariates.



Chapter 4

Conclusion

In this paper, we have explored how to select the best hidden Markov model when

investigating animal movement. As detailed in chapter two, we recommend consid-

ering a number of factors when selecting the number of states, including information

criteria, pseudo-residual plots, and the state probabilities. This is by no means a com-

prehensive list of what factors to look at. As Pohle et al. mention, the right number

of states may depend on the specific topic that is being investigated. In practice, it is

best to consult with an ecologist who is knowledgeable about the species in question

before making a decision [8].

In our analysis of the wild boar data set, we decided that the best model was a

two-state model with both temporal and environmental covariates. The two temporal

covariates and the distance to forest covariate had the largest impact on whether the

boars were in the more active state or the less active state. Our findings indicate that

these boars in the south of France tend to be more active at night, and tend to be

more active when they are outside the forest rather than within it.

If the reader is interested in fitting their own animal movement hidden Markov

models, we highly recommend looking at Théo Michelot’s website “https://CRAN.R-

project.org/package=moveHMM”, which includes helpful vignettes on how to fit these

kinds of hidden Markov models using moveHMM. We also recommend reading Hidden

Markov Models for Time Series by Walter Zucchini, Iain L. MacDonald, and Roland

Langrock [9] to develop a better understanding of the theory behind hidden Markov

models.

28



Bibliography

[1] Gustav Fradin and Simon Chammaille-Jammes. Hogs sleep like logs: Wild boars
reduce the risk of anthropic disturbance by adjusting where they rest. Ecology
and Evolution, 2023.

[2] Robert M. Gray. Entropy and Information Theory. Springer, 2021.

[3] Theo Michelot. Analyzing animal movement in r.
https://github.com/eco4cast/Statistical-Methods-Seminar-Series, 2022.

[4] Theo Michelot and Roland Langrock. A short guide to choosing initial parameter
values for the estimation in movehmm. cran.r-project.org, 2023.

[5] Theo Michelot, Roland Langrock, and Toby A. Patterson. movehmm: an r pack-
age for the statistical modelling of animal movement data using hidden markov
models. Methods in Ecology and Evolution, 2016.

[6] Theo Michelot, Roland Langrock, and Toby A. Patterson. movehmm: an r package
for the analysis of animal movement data. cran.r-project.org, 2023.

[7] Ran Nathan, Wayne M. Getz, Eloy Revilla, Marcel Holyoak, Ronen Kadmon,
David Saltz, and Peter E.Smouse. A movement ecology paradigm for unifying
organismal movement research. Proceedings of the National Academy of Sciences
of the United States of America, 2008.

[8] Jennifer Pohle, Roland Langrock, Floris M. van Beest, and Niels Martin Schmidt.
Selecting the number of states in hidden markov models: Pragmatic solutions
illustrated using animal movement. Journal of Agricultural, Biological and Envi-
ronmental Statistics, 2017.

[9] Walter Zucchini, Iain L. MacDonald, and Roland Langrock. Hidden Markov Mod-
els for Time Series. CRC Press, 2016.

29


	Title Page
	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Hidden Markov models
	Animal movement ecology
	Hidden Markov models for animal movement
	About the wild boar data set and using moveHMM

	Comparing the two-state, three-state, and four-state models
	Features of the two-state, three-state, and four-state models
	Model checking
	Choosing the number of states

	Examining environmental and temporal factors
	Choosing which covariates to include
	Examining the effects of the covariates on the stationary probabilities

	Conclusion
	Bibliography

