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Introduction 
Phenotypic expressions of traits in organisms are determined by a combination of genetic 

predisposition and environmental factors. Hereditary predisposition enhances likelihood 

of certain genes to be expressed while environmental factors can trigger genes to 

replicate. The purpose of the current research is to examine potato data and determine if 

gene expression measured during the growth period can predict certain quantitative 

phenotypic features observed after harvesting. The features that will be used for the 

response are total yield, specific gravity and total nitrogen uptake (N uptake).  

We want to know if using gene expression data will improve predictions in 

addition to the already established predictor of controlling the amount of fertilizer added. 

Ultimately the goal is to find genes that can predict yield, total N uptake and specific 

gravity before harvesting. This information could be utilized in many ways such as 

gauging the amount of fertilizer that should be added during the growth season. A high 

yield prediction early in the growth cycle could mean less need for the addition of 

fertilizer, this is beneficial because overuse of fertilizer leads to toxins in the local 

groundwater. Also adding fertilizer delays the formation of tubers until after harvesting 

occurs meaning that although tubers collected may be larger, they will be immature 

which can affect quality during food production. The dataset used for the analysis also 

contains variations in the experimental design across different sites and so the current 

analysis also attempts to find predictions that are able to generalize results across various 

sites and cultivars. 

 A total of 63 genes were considered during gene expression measurement of leaf 

samples. Therefore, another objective is to reduce the number of genes that can be used 

to predict the response. This is important from a practical perspective since gene 

expression sampling is laborious and expensive; minimizing the number of genes to 

sample will increase efficiency. It is also interesting to compare the different genes 

selected between response variables as it could provide insight into the nature of the 

underlying mechanisms of each response. 

There are a number of ways to perform feature selection. The current analysis 

compares two different methods of variable selection and model assessment: Lasso 

regression and Random Forest regression. Lasso feature selection is a method that 



penalizes linear regression coefficients, truncating small coefficients to zero while 

random forest is a non-linear, non-parametric method that uses bootstrapped training 

samples to build decision trees. In the current analysis we will be using Lasso as a feature 

selection tool and then fitting the reduced predictors onto a linear regression model. 

Random forest will also be used to find a reduced model and then fit the reduced set with 

a random forest regression. Both models will be compared to the full set of predictors to 

assess if reducing predictors eliminated any noise.  

 

Experimental Design 
Leaves were sampled for gene expression at different time points. Depending on 

the site, leaves were sampled either once, twice or three times. All response variables 

were calculated at the end of the analysis and therefore different time points for leaf 

sampling have the same response values. For the purposes of this analysis, only gene 

expression data collected at the first time point for each site will be used. This 

corresponds to any gene sampling that took place between 42 and 50 days after planting.  

Data was collected at various different sites in four different provinces across 

Canada. Five cultivars were used and various different levels of fertilizer were added 

depending on the site. The cultivars used were Russet Burbank, Jemseg, Shepody, 

Atlantic and Classic Russet. Different cultivars were used at different sites, as outlined in 

the table below.  

 Atlantic Classic Russet Jemseg Russet Burbank Shepody 
Charlottetown 2014 0 0 0 20 0 

Fredericton GE 2012 20 0 0 19 19 

Fredericton MAT 2014 0 0 12 12 12 

Fredericton PK 2014 0 0 0 8 4 

Off-Carberry 2014 0 0 0 12 0 

On-Carberry 2014 0 0 0 12 0 

Peribonka 2014 0 12 0 0 0 
Table 1. Cultivars used by the different sites. Note that Classic Russet is confounded with Peribonka. 

 



The Fredericton sites are marked three different ways due to different 

experimental conditions and years. Different types of fertilizer were added depending on 

site however for the purposes of the current analysis we will treat all fertilizer as the 

same. Fertilizer was also added at different time intervals depending on site but only the 

total amount added was used to simplify the analysis. Amount of fertilizer factors 106 

and 120 were combined as well as the factors 180 and 200 since they are similar enough 

in value and did not show any significant differences in the response. The following 

tables outline the distribution of total fertilizer added with regards to site and cultivar.  

 

 0 60 106/120 180/200 240 
Charlottetown 2014 4 4 4 4 4 

Fredericton GE 2012 11 12 12 12 11 

Fredericton MAT 2014 12 0 12 12 0 

Fredericton PK 2014 7 0 0 5 0 

Off-Carberry 2014 4 4 0 4 0 

On-Carberry 2014 4 4 0 4 0 

Peribonka 2014 4 4 0 4 0 
Table 2. Total fertilizer added by site. 

 

 0 60 106/120 180/200 240 
Atlantic 4 4 4 4 4 

Classic Russet 4 4 0 4 0 

Jemseg 4 0 4 4 0 

Russet Burbank 25 16 12 23 7 

Shepody 9 4 8 10 4 
Table 3. Total fertilizer added for the different cultivars. 

 

These variables (site, cultivar and total fertilizer added) were treated as factors so that the 

effects based on these variables can be controlled for in the regression model. 

 

 

 



Exploratory Analysis of Predictive Factors 
The following are exploratory plots of the factors against total yield. This should give 

some idea about how exactly these factors could have a predictive effect on the 

responses.  

 
Figure 1. Boxplots showing the distribution of total yield, specific gravity, and N uptake for each cultivar. 

 

It appears as though the response varies depending on cultivar but in different ways 

depending on the response variable. The total yield for the cultivar Atlantic has a reliably 

high yield compared to other cultivars, this pattern is not found for specific gravity and N 

uptake.  

 

 
Figure 2. Response variables plotted against site.  

 

There also seems to be some variation in the response depending on site. It is important 

to remember that there is a confounding response with the cultivar classic russet and the 

Peribonka site.  



 
Figure 3. Fertilizer added by response.  

 

Here we see a possible trend in the response as more fertilizer is added. There also 

appears to be less variability for the 240 kg/ha condition. The effect is minimal for the 

specific gravity response compared to the variations in N uptake and total yield. All three 

sets of plots show that there is some variation between the different site and cultivars that 

could be controlled for, as we discussed earlier.  

 

Methods 
Setup 
The natural logarithm was shown to be an effective method in normalizing the gene data 

and so the transformed data was used in the analysis. Outliers were deleted as they were 

suspected to be data recording errors. R packages glmnet and randomForest were used for 

the analysis. Total Yield was measured as the weight of the tubers in kilograms per 

hectare. Specific gravity is the weight of the tubers in air divided by the difference 

between the weight of the tubers in air and the weight of the tubers in water. To measure 

total nitrogen uptake, vines, stolons and roots of the plant were washed and dried, then 

total concentration was determined by combustion.  

 

 

 

 



Overview of Statistical Concepts 

a) Lasso 
Lasso, which stands for least absolute shrinkage and selection operator, is a regularization 

method for regression. Coefficients for the model are calculated using the following 

formula (ESL). 
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The penalty term  ! |!!|
!
!!!  truncates small coefficients to zero, as regulated by the 

tuning parameter !; larger values for ! result in more conservative regularization. In the 

current analysis ! was chosen through 10-fold cross validation, as is convention.  

 

b) Random Forest 
Random Forest is a non-linear, non-parametric method that can be used for either 

regression or classification. It involves repeated sampling of training datasets 

(bootstrapping) as defined through the following algorithm (ISLR): 

 

For bootstrap training samples 1 to B, grow a regression tree Tb through the following 

procedure: 

i. Consider a random subset m of the p predictors. 

ii. Find the strongest variable and split the response into two nodes.  

iii. Repeat for the next most important variable on each of the resulting nodes. 

iv. Stop until a certain specified node size is reached.  

 

At the end of the algorithm, the output a set of B trees {Tb}. It should be noted that for 

regression, it is convention to consider p/3 predictor for the subset m.  

The final model is an average of all trees from each bootstrap 
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This can be useful if data is non-linear or non-parametric and often leads to a higher 

predictive accuracy but loses some interpretability in the final result. If relationships in 

the data are linear, random forest is not necessarily ideal. 

 

c) Cross-validation 
In an attempt to strengthen the results of the feature selection, 10-fold cross validation 

was used. Data was separated into 10 random, even chunks (i.e. 90% training and 10% 

testing). One chunk would be used as testing data and the remaining nine chunks were 

used as training data. This was repeated 10 times for each chunk, i.e. until all 10 separate 

chunks were used as testing data. This method was used to validate both the Lasso and 

Random Forest feature selection models.  Both methods used the same training and 

testing sets in each fold. The analysis was repeated ten times for each test fold and final 

test error was averaged over each fold as defined by the following formula (ISLR). 
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Model Assessment 
Five different models were assessed, each for a linear model and a non-linear random 

forest model. The mean squared error was used to assess the fit because it can be used for 

both linear and non-linear models. Adjusted R-squared values were also calculated for 

the linear models as to have another indicator of the effectiveness of the model. The 

following are the models that were assessed:  

a) Full model: includes all genes and factor variables. 

b) Factors-only model: a model without the gene data (i.e. only site, cultivar and 

total amount of fertilizer). This was done as a way to compare the contribution 

that gene expression predictors made to other models. 

c) Reduced within each fold model: a reduced set of variables were chosen for this 

model from the 100 bootstrap samples within each fold. For the random forest 

models the top 20 highest predictors were chosen.  

d) 10 times chosen Lasso & 10 times chosen random forest: after all cross-validation 

was completed, the model that contained only variables that were selected in all 



10 folds was calculated, giving a set of predictors from the Lasso and a set of 

predictors from random forest methods. This was done because it translates to a 

more realistic approach as ideally only a certain selection of genes would be used 

as a prediction tool, as was previously discussed. 

 

Feature Selection Procedure 
a) Lasso 
Consider a set training and testing data. Using the glmnet package in R, ten-fold cross 

validation was used to find the best lambda based on a model using data from the training 

set. This chosen lambda was then used to tune the training model and select out the 

coefficients that were not equal to zero. This was repeated 100 times on bootstrapped 

samples of the training data and a count of how many times each coefficient was included 

was calculated. It should be noted that 1000 iterations would be ideal but was too 

computationally expensive with current resources.  

A reduced model was selected from the coefficients that were included more than 

50% of the time. In other words, the reduced model includes only the genes that were 

selected from the bootstrapped training samples more than 50 times. The reduced model 

was then fitted to a linear model and MSE between predicted test response and actual test 

response was calculated and compared to a linear model fitted with all predictors 

(reduced within each fold).  

After all folds of the cross-validation were completed, predictors that were 

included in every fold were then selected to be in another reduced model (10 times 

chosen Lasso). This model was applied across all folds of the cross-validation and MSE 

was calculated. These results were then compared to MSE from a linear model including 

all predictors and a linear model that only includes site, cultivar and total fertilizer added.  

 

b) Random Forest 
The random forest model was fitted to the training data, using 1000 trees and 20 variables 

considered at each split. The top 20 most important variables were then selected for the 

reduced model. This was determined by selecting the largest values of percentage mean 



squared error decrease. The full and reduced model were used to predict values for the 

test data and the MSE was calculated and compared for both as well as a model that only 

contained site, cultivar and total fertilizer added. Another model was used that only 

included predictors found in all 10 folds, similarly to the Lasso mentioned above. The 

reduced predictor model considered a subset of m=6 predictors and the model that does 

not contain gene data only considers m=1, as is consistent with the p/3 subset convention 

that was mentioned above.  

Results 
Predictors Chosen through Feature Selection 
The following is a table of the predictors that were selected in each bootstrap more than 

50% of the time for all 10 folds during Lasso selection. 

Total Yield Specific Gravity N Uptake 

Cultivar Cultivar Cultivar 

Site Site Site 

Total N Total N Total N 

St.ATrfA St.ATrfA St.AOX 

St.CatTR St.EPI St.Apase 

St.CGL St.GluAse St.ATrfA 

St.CysPI1 St.Nod St.CLH 

St.FT St.P109A St.FT 

St.LOB38B St.PLD St.LOB38B 

St.MSRB St.ProD St.MtN21 

St.Nod  St.NT 

St.P109A  St.PEPT 

St.PDX   

St.PLD   

St.PolyAP   

St.ProD   

St.RPK   

Table 4. Genes and factors selected for the 10 times chosen Lasso model.  



 

Note that the factor variables (site, cultivar and total N) and the gene St. ATrfA were 

selected in each model. Below are the predictors that were among the 20 most important 

for all ten folds of the random forest.  

Total Yield Specific Gravity N Uptake 

Cultivar Cultivar Site 

Site Site TotalN 

Total N St_NT2 St_NT2 

St.TRDX St.CatTR St.Apase 

St.Unk2 St.DUF506A St.GR3 

St.CWP St.FT St.ProH 

St.DUF506A St.GluAse St.SulfT2C 

St.Nod St.MSF5A St.Unk1 

St.Unk4 St.SulfT St.Xyl 

St.Xyl St.Xyl  

Table 5. Predictor variables used in the 10 times chosen random forest model for each 

response variable.  

 

Model Assessment 
The following tables summarize the MSE calculated for the ten models in each of the 

response variables as well as the adjusted R-squared value for the linear models.  

Total Yield Full 
Model 

Factors 
only 

Reduced within 
each fold 

10 times 
chosen Lasso 

10 times chosen 
Random Forest 

Linear model 58.950 34.015 36.600 29.994 32.311 

Random Forest 37.093 31.224 38.633 39.550 34.212 
Table 6. MSE for total yield. The 10 times chosen Lasso linear model was the most successful 
with an MSE of 29.994 
 

Specific Gravity Full Model Factors only Reduced within 
each fold 

10 times 
chosen Lasso 

10 times chosen 
Random Forest 

Linear Model 6.7328 x 10-5 4.7524 x 10-5 4.1137 x 10-5 3.9527 x 10-5 3.8259 x 10-5 
Random Forest 3.8352 x 10-5 3.9707 x 10-5 3.9492 x 10-5 3.7682 x 10-5 3.3520 x 10-5 

Table 7. MSE for specific gravity.  



 

N Uptake Full 
Model 

Factors 
only 

Reduced within 
each fold 

10 times 
chosen Lasso 

10 times chosen 
Random Forest 

Linear Model 2596.246 1848.019 1570.721 1562.44 1543.521 
Random Forest 1735.094 1768.837 1905.381 1750.924 1548.272 

Table 8. MSE for N uptake. The predictors found from the 10 times chosen random forest model 
executed on a linear model yielded the smallest MSE. 
 

The units of the MSE between the response variables are vastly different and therefore 

the MSE can only be compared between models within one response. Adjusted R-

squared is a unit-less measurement of the variability explained by a given model. This 

was used to compare linear models between responses.  

 

 Full Model Factors only Reduced within 
each fold 

10 times 
chosen Lasso 

10 times chosen 
Random Forest 

Total Yield 0.721 0.669 0.748 0.739 0.686 
Specific Gravity 0.526 0.408 0.554 0.499 0.444 

N Uptake 0.815 0.760 0.786 0.772 0.775 
Table 9. Adjusted R-squared for the linear models. Specific gravity shows consistently lower 
scores compared to the other responses.  
 

Conclusion 
Total Yield 

For the linear model, including all predictors resulted in the largest mean squared 

error. The best fit for the linear model was to use only the genes that were selected in all 

folds during cross validation, which yielded an MSE of 29.994. For the random forest 

model, the reduced within each fold model actually performed slightly worse than the 

model containing all predictors. The random forest model that only contained the factors 

performed the best with an MSE of 31.22. Random forest variable selection did not tend 

to change the error rate between the full and reduced model very much in general 

compared to the Lasso models. Both models performed better using their own 10 times 

chosen variables. Adjusted R-squared values indicate that 66.9% of the variability has 

been explained by the factor variables. The genes however do add some explanation for 

additional variability in all the models where they were included. The reduced within 



each fold model had the highest percentage, with added genes explaining an extra 7.9% 

of the variability.  

 

Specific Gravity 
 The small MSE values are due to the small differences in the response values, 

which is simply the nature of the measurement. The 10 times chosen random forest 

reduced predictor set used on a random forest model was the most successful with an 

MSE of 3.3520 x 10-5. The full linear model had the poorest fit by far. Random forest 

modeling outperformed the linear model in all categories. Factor variables explained 

40.8% of the variability according to the adjusted R-squared value, and the reduced 

within each fold model fared best with a 14.6% increased in the explained variability. In 

terms of factors total N was not included in the 10 times chosen random forest model, 

indicating that amount of fertilizer added was less important to the model compared to 

the other responses, which was consistent with the observations made on the exploratory 

plots. 

 

N Uptake 
 The reduced model as determined by the 10 times random forest while using a 

linear model indicated the lowest MSE with a value of 1543.521. The full model had the 

highest R-squared of all models across all responses, with a value of 0.815. However, the 

MSE score for this was by far the largest when compared to other N uptake models. 

Factors were indicated to explain 76% of the variability and adding genes in all cases 

gave a slight improvement to the model. The random forest variable selection did not 

indicate cultivar as a predictor that needed to be included in the model. 

 

General Conclusions  
There is not a strong connection between predictors chosen in the two models. It 

is not clear from the current analysis which genes included during variable selection were 

most significant, especially for the Lasso model. In other words since we used the cutoff 

of 50% genes selected from the bootstrap, we did not assess which genes that were above 

the cutoff contributed the most times. The first 20 variables chosen for the random forest 



analysis was also an arbitrary cutoff. Both methods could benefit from further analysis on 

how many significant predictors are necessary. 

Overall, results indicate that the most significant predictors were by far the factor 

predictors (i.e. site, cultivar and total N added) for both the MSE and adjusted R-squared 

calculations. Although gene expression predictors improved scores in most cases, it was 

only marginally so. Site was the only predictor that was selected amongst all responses in 

both 10 times chosen random forest and lasso models, indicating a strong site effect. This 

means for the current study, it is not realistic to use only genes as a predictive measure 

for the response without including/controlling for site, cultivar and total fertilizer added. 

Further studies with a more uniform experimental design where these factors are 

controlled for could be beneficial in providing further insight on the predictive abilities of 

the gene expression. Error rates between both models in each response are similar. This 

indicates that the data is following a linear model since the non-linear model did little to 

improve the fit. 

Although the genes do not appear to significantly contribute to predictive 

accuracy, it is possible to analyze selected genes from the reduced models from a 

qualitative perspective. Genes that were selected from the 10 times chosen lasso and 

random forest models indicate that there is some relation between these gene expressions 

and the response. Even though the relation is not powerful enough to yield an accurate 

prediction from a statistical perspective, these results do offer some scientific insight as to 

which genes are responsible for regulating certain characteristics in the plant. For 

example, the St.FT is responsible for regulating when tubers will begin to form. 

Therefore the expression of gene is related to the size of the tuber and therefore it makes 

sense that it would be a significant gene for the total yield response. In conclusion, 

further research can be done to further tune reduced models with more validity.  

 

 

 

 

 



References 
Introduction to Statistical Learning: with Applications in R  

 G. James, D. Witten, T. Hastie and R. Tibshirani (2013). 

 

The Elements of Statistical Learning: Data Mining, Inference, and Prediction 

 T. Hastie, R. Tibshirani and J. Friedman (2008). 

 

RStudio: Integrated Development for R.  

 RStudio Team (2015). 

 

Special thanks to Dr. H. Gu and Dr. H. Tai. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Appendix 
R code 
 
The following code is provided for the total yield response variable. The same code was 

applied to other response variables with slight modifications where necessary. 

 
```{r setup} 
rm(list=ls()) 
setwd("/Users/miaparenteau/Desktop/HONOURS") 
library(plyr) 
library(glmnet) 
library(randomForest) 
set.seed(679) 
 
# import the raw dataset 
raw.dat<-read.csv("Sorted and Compiled.csv",header = TRUE) 
 
# eliminate unnecessary columns 
dat<-raw.dat[,-c(1,4,5,6,7,9,10,12)] 
dat<-rename(dat,c("Site.year"="Site","total.yield..t.ha."="Total 
Yield", 
                  
"relative.yield..total.yield.max.plot.yield.for.trial."=  
                    "Relative Yield","Total.N.rate.kg.ha"="Total 
N Added", 
                  "SPEC_GRAV"="Specific 
Gravity","Total.N.uptake.kg.N.ha"= 
                    "Total N Uptake")) 
y<-dat[,5:8] # response variables 
genes<-log(dat[,9:71]) # log transformed gene data 
 
# We now transform the remaining predictors into factors 
site<-as.factor(dat$Site) 
cul<-as.factor(dat$cultivar) 
DAP<-as.factor(dat$DAP.for.leaf.sampling) 
TotalN<-as.factor(dat$`Total N Added`) 
TotalN<-
revalue(TotalN,c("106"="106/120","120"="106/120","200"="180/200",
"180"="180/200")) 
# combine 106 and 120 as well as 180 and 200 
 
x<-data.frame(site,cul,TotalN,DAP) # all categorial predictors in 
one data frame 
 
dat<-data.frame(y,x,genes) # the dataset 
 
# only choose data from the first time point 
dap1<-dat[(dat$DAP==42|dat$DAP==47|dat$DAP==50|dat$DAP==48),]  



dap1<-dap1[,-c(1,2,4,8)] # eliminate unwanted response variables 
dap1<-dap1[-48,] # eliminating an outlier 
dap1.y<-dap1[,1] # choosing Total Yield to be the response 
dap1.x<-dap1[,-1] 
 
``` 
 
 
```{r training and testing sets} 
dff<-dap1 
dff<-order(runif(nrow(dff))) 
bins<-rep(1:10,length(dff)/10) 
indices<-(split(dff, bins)) # splitting the data into 10 "equal" 
parts. 
 
# Set of empty lists 
test<-list() 
train<-list() 
dat.train<-list() # training data for each fold 
dat.test<-list() # testing data for each fold 
 
######### 
bootstraps=list() # empty list 
lass=list() 
 
# A loop to store all training and testing folds into a list.  
for (i in 1:10){ 
  for (j in 1:10){ 
    test[[j]]<-as.vector(unlist(indices[j])) 
    train[[j]]<-as.vector(unlist(indices[-j])) 
  } 
  dat.train[[i]]<-dap1[train[[i]],] # list with 10 elements 
  dat.test[[i]]<-dap1[test[[i]],] # list with 10 elements 
} 
``` 
 
 
```{r lm full and fac} 
# Full model and factors only assessment in each of the ten folds 
full.lm.mod<-list() 
full.lm.pred<-list() 
full.mse<-list() 
fac.lm.mod<-list() 
fac.lm.pred<-list() 
fac.mse<-list() 
full.r.sq<-list() 
fac.r.sq<-list() 
 
for (i in 1:10){ 
  full.lm.mod[[i]]<-lm(Total.Yield~.,data = dat.train[[i]]) 
  full.lm.pred[[i]]<-predict(full.lm.mod[[i]],newdata = 
dat.test[[i]]) 



  full.mse[[i]]<-(mean((full.lm.pred[[i]]-
dat.test[[i]]$Total.Yield)^2)) 
  full.r.sq[[i]]<-summary(full.lm.mod[[i]])$adj.r.squared 
   
  fac.lm.mod[[i]]<-lm(Total.Yield~site+cul+TotalN, data = 
dat.train[[i]]) 
  fac.lm.pred[[i]]<-predict(fac.lm.mod[[i]],newdata = 
dat.test[[i]][,1:4]) 
  fac.mse[[i]]<-(mean((fac.lm.pred[[i]]-
dat.test[[i]]$Total.Yield)^2)) 
  fac.r.sq[[i]]<-summary(fac.lm.mod[[i]])$adj.r.squared 
} 
 
RSQ.lm.full<-mean(unlist(full.r.sq)) 
RSQ.lm.fac<-mean(unlist(fac.r.sq)) 
MSE.lm.full<-mean(unlist(full.mse)) 
MSE.lm.fac<-mean(unlist(fac.mse)) 
 
MSE.lm.full 
MSE.lm.fac 
RSQ.lm.full 
RSQ.lm.fac 
``` 
 
```{r bootstrapping & coef selection} 
# function to resample the data with replacement 
resamp<-function(dat){ 
  dat[sample(dim(dat)[1], dim(dat)[1],replace=TRUE),]  
} 
 
##### Bootstrap Iterations 
t=100 
 
bootstr<-vector("list",t) 
for (i in 1:t){ 
  bootstr[[i]]<-lapply(dat.train, resamp) # indexed by the number 
of bootstrap iterations 
} 
 
switched<-function(alist){ 
  alist<-apply(do.call(rbind, alist), 2, as.list) 
  lapply(alist, function(X) X[!sapply(X, is.null)]) 
} 
 
boot.folds<-switched(bootstr) 
 
lasso.coef<-function(dat1){ 
  y<-dat1[,1] 
  dat.x<-dat1[,2:67] 
  dat1<-data.frame(y,dat.x) 
  x<-model.matrix(y~.,data=dat1) # creating a design matrix 
  lasso.mod<-glmnet(x,y,alpha = 1) # the model (lasso) 



  cv.out<-cv.glmnet(x,y,alpha=1,nfolds=10) # 10-fold cv to find 
lambda 
  bestlam<-cv.out$lambda.min # finding the smallest lambda 
  
lasso.coef=predict(lasso.mod,s=bestlam,newx=x,type='coefficients'
)[1:ncol(dat1),] 
  return(names(lasso.coef[lasso.coef!=0])) 
} 
 
lassoed <- lapply(boot.folds, function (x) { 
  lapply(x, lasso.coef)}) 
 
takeitoff<- lapply(lassoed, unlist) 
incl<-lapply(takeitoff,count) 
``` 
 
```{r within fold reduced for lm} 
 
thresh<-0.5 # only pull genes that were selected a certain 
proportion of the time.  
 
incl.50<-list() 
incl.50names<-list() 
names.use<-list() 
train.red<-list() 
train.y.red<-list() 
train.x.red<-list() 
test.red<-list() 
test.y.red<-list() 
test.x.red<-list() 
red.lm.mod<-list() 
red.lm.pred<-list() 
red.mse<-list() 
red.r.sq<-list() 
 
 for (i in 1:10){ 
  incl.50[[i]]<-incl[[i]][(incl[[i]]$freq)>t*thresh,] 
  incl.50names[[i]]<-as.vector(incl.50[[i]]$x) 
  names.use[[i]]<-names(dap1)[(names(dap1) %in% 
incl.50names[[i]])] 
   
  train.red[[i]] <-
data.frame(dat.train[[i]][,1:4],dat.train[[i]][,names.use[[i]]]) 
  train.y.red[[i]] <-train.red[[i]][,1] 
  train.x.red[[i]]<-train.red[[i]][,-1] 
  train.red[[i]] <-data.frame(train.y.red[[i]],train.x.red[[i]]) 
 
  test.red[[i]]<-
data.frame(dat.test[[i]][,1:4],dat.test[[i]][,names.use[[i]]]) 
  test.y.red[[i]]<-test.red[[i]][,1] 
  test.x.red[[i]]<-test.red[[i]][,-1] 
  test.red[[i]]<-data.frame(test.y.red[[i]],test.x.red[[i]]) 



   
  red.lm.mod[[i]]<-lm(train.red[[i]]$train.y.red..i.. ~ .,data = 
train.red[[i]]) 
  red.lm.pred[[i]]<-predict(red.lm.mod[[i]],newdata = 
test.red[[i]]) 
  red.mse[[i]]<-(mean((red.lm.pred[[i]]-test.y.red[[i]])^2)) 
   
  red.r.sq[[i]]<-summary(red.lm.mod[[i]])$adj.r.squared 
} 
 
RSQ.lm.red<-mean(unlist(red.r.sq)) 
MSE.lm.red<-mean(unlist(red.mse)) 
MSE.lm.red 
RSQ.lm.red 
``` 
 
```{r full reduced and factors only for rf} 
# Set of empty lists 
test<-list() 
train<-list() 
dat.train<-list() # training data for each fold 
dat.test<-list() # testing data for each fold 
 
bootstraps=list() # empty list 
lass=list() 
 
# A loop to store all training and testing folds into a list.  
for (i in 1:10){ 
  for (j in 1:10){ 
    test[[j]]<-as.vector(unlist(indices[j])) 
    train[[j]]<-as.vector(unlist(indices[-j])) 
  } 
  dat.train[[i]]<-dap1[train[[i]],] # list with 10 elements 
  dat.test[[i]]<-dap1[test[[i]],] # list with 10 elements 
} 
 
### 
 
random.potato<-list() 
p.random<-list() 
rf.mse.full<-list() 
imp<-list() 
q<-list() 
red.train<-list() 
red.test<-list() 
red.potato<-list() 
p.red<-list() 
rf.mse.red<-list() 
fac.rf.mod<-list() 
fac.rf.pred<-list() 
fac.rf.mse<-list() 
imp.names<-list() 



 
for(i in 1:10){ 
  # full set 
 random.potato[[i]]<-randomForest(Total.Yield ~ ., 
    data = 
dat.train[[i]],ntree=1000,mtry=round(ncol(dat.train[[i]])/3),impo
rtance=TRUE)  
  p.random[[i]]<-
predict(random.potato[[i]],newdata=dat.test[[i]])  
  rf.mse.full[[i]]<-(mean((p.random[[i]]-
dat.test[[i]]$Total.Yield)^2)) 
   
  # reduced set 
  imp[[i]]<-importance(random.potato[[i]]) 
  q[[i]]<-(imp[[i]][order(imp[[i]][,1], decreasing = 
TRUE),][1:20,]) # top 20 predictors 
   
  imp.names[[i]]<-rownames(q[[i]]) 
   
  red.train[[i]]<-
data.frame(dat.train[[i]]$Total.Yield,dat.train[[i]][,(colnames(d
at.train[[i]])=row.names(q[[i]]))]) 
  red.test[[i]]<-
data.frame(dat.test[[i]]$Total.Yield,dat.test[[i]][,(colnames(dat
.test[[i]])=row.names(q[[i]]))]) 
  red.potato[[i]]<-
randomForest(dat.train..i...Total.Yield~.,data=red.train[[i]],ntr
ee=1000,mtry=round(ncol(red.train[[i]])/3),importance=TRUE) 
  p.red[[i]]<-predict(red.potato[[i]],newdata = red.test[[i]]) 
  rf.mse.red[[i]]<-(mean((p.red[[i]]-
red.test[[i]]$dat.test..i...Total.Yield)^2)) 
} 
 
MSE.rf.full<-mean(unlist(rf.mse.full)) 
MSE.rf.red<-mean(unlist(rf.mse.red)) 
MSE.rf.full 
MSE.rf.red 
 
for (i in 1:10){ 
  for (j in 1:10){ 
    test[[j]]<-as.vector(unlist(indices[j])) 
    train[[j]]<-as.vector(unlist(indices[-j])) 
  } 
  dat.train[[i]]<-dap1[train[[i]],] # list with 10 elements 
  dat.test[[i]]<-dap1[test[[i]],] # list with 10 elements 
} 
 
for (i in 1:10){ 
  # factors only 
  fac.rf.mod[[i]]<-randomForest(Total.Yield~., data = 
dat.train[[i]][,1:4],ntree=1000,mtry=1,importance=TRUE) 



  fac.rf.pred[[i]]<-predict(fac.rf.mod[[i]],newdata = 
dat.test[[i]][,1:4]) 
  fac.rf.mse[[i]]<-(mean((fac.rf.pred[[i]]-
dat.test[[i]]$Total.Yield)^2)) 
} 
 
MSE.rf.fac<-mean(unlist(fac.rf.mse)) 
MSE.rf.fac 
 
plot(dap1[unlist(test),]$Total.Yield,unlist(p.red)) # reduced 
random forest model 
 
``` 
 
```{r lasso 10 for lm and rf} 
more.than.50<-count(unlist(incl.50names)) 
 
more.than.50<-more.than.50[more.than.50$x%in%colnames(genes),] 
 
jj<-more.than.50[more.than.50$freq==10,] 
names.use.lasso10<-as.vector(jj$x) 
 
train.lasso10<-list() 
train.y.lasso10<-list() 
train.x.lasso10<-list() 
test.lasso10<-list() 
test.y.lasso10<-list() 
test.x.lasso10<-list() 
lasso10.lm.mod<-list() 
lasso10.lm.pred<-list() 
lasso10.mse<-list() 
lasso10.rf.mod<-list() 
p.red<-list() 
lasso10.mse.rf<-list() 
lasso10.rf.pred<-list() 
lasso10.r.sq<-list() 
 
for (i in 1:10){ 
  train.lasso10[[i]] <-
data.frame(dat.train[[i]][,1:4],dat.train[[i]][,names.use.lasso10
]) 
  train.y.lasso10[[i]] <-train.lasso10[[i]][,1] 
  train.x.lasso10[[i]]<-train.lasso10[[i]][,-1] 
  train.lasso10[[i]] <-
data.frame(train.y.lasso10[[i]],train.x.lasso10[[i]]) 
   
  test.lasso10[[i]]<-
data.frame(dat.test[[i]][,1:4],dat.test[[i]][,names.use.lasso10]) 
  test.y.lasso10[[i]]<-test.lasso10[[i]][,1] 
  test.x.lasso10[[i]]<-test.lasso10[[i]][,-1] 
  test.lasso10[[i]]<-
data.frame(test.y.lasso10[[i]],test.x.lasso10[[i]]) 



   
  lasso10.lm.mod[[i]]<-lm(train.lasso10[[i]]$train.y.lasso10..i.. 
~ .,data = train.lasso10[[i]]) 
  lasso10.lm.pred[[i]]<-predict(lasso10.lm.mod[[i]],newdata = 
test.lasso10[[i]]) 
  lasso10.mse[[i]]<-(mean((lasso10.lm.pred[[i]]-
test.y.lasso10[[i]])^2)) 
  lasso10.r.sq[[i]]<-summary(lasso10.lm.mod[[i]])$adj.r.squared 
} 
 
RSQ.lm.lasso10<-mean(unlist(lasso10.r.sq)) 
MSE.lm.lasso10<-mean(unlist(lasso10.mse)) 
MSE.lm.lasso10 
RSQ.lm.lasso10 
 
for (i in 1:10){ 
  for (j in 1:10){ 
    test[[j]]<-as.vector(unlist(indices[j])) 
    train[[j]]<-as.vector(unlist(indices[-j])) 
  } 
  dat.train[[i]]<-dap1[train[[i]],] # list with 10 elements 
  dat.test[[i]]<-dap1[test[[i]],] # list with 10 elements 
} 
### 
for (i in 1:10){ 
  lasso10.rf.mod[[i]]<-
randomForest(train.lasso10[[i]]$train.y.lasso10..i.. ~ . 
                      ,data=train.lasso10[[i]],ntree=1000, 
                      
mtry=round(length(names.use.lasso10)/3),importance=TRUE) 
  lasso10.rf.pred[[i]]<-predict(lasso10.rf.mod[[i]],newdata = 
test.lasso10[[i]]) 
  lasso10.mse.rf[[i]]<-(mean((lasso10.rf.pred[[i]]-
test.y.lasso10[[i]])^2)) 
} 
 
MSE.rf.lasso10<-mean(unlist(lasso10.mse.rf)) 
MSE.rf.lasso10 
``` 
 
 
 
```{r rf 10 for lm and rf} 
cv.count<-count(unlist(imp.names)) 
cv.count<-cv.count[cv.count$freq==10,]$x 
names.use.rf10<-as.vector(cv.count) 
 
train.rf10<-list() 
train.y.rf10<-list() 
train.x.rf10<-list() 
test.rf10<-list() 
test.y.rf10<-list() 



test.x.rf10<-list() 
rf10.lm.mod<-list() 
rf10.lm.pred<-list() 
rf10.lm.mse<-list() 
rf10.rf.mod<-list() 
p.red<-list() 
rf10.mse.rf<-list() 
rf10.rf.pred<-list() 
rf10.r.sq<-list() 
 
for (i in 1:10){ 
  train.rf10[[i]] <-
data.frame(dat.train[[i]][,1],dat.train[[i]][,names.use.rf10]) 
  train.y.rf10[[i]] <-train.rf10[[i]][,1] 
  train.x.rf10[[i]]<-train.rf10[[i]][,-1] 
  train.rf10[[i]] <-
data.frame(train.y.rf10[[i]],train.x.rf10[[i]]) 
   
  test.rf10[[i]]<-
data.frame(dat.test[[i]][,1],dat.test[[i]][,names.use.rf10]) 
  test.y.rf10[[i]]<-test.rf10[[i]][,1] 
  test.x.rf10[[i]]<-test.rf10[[i]][,-1] 
  test.rf10[[i]]<-data.frame(test.y.rf10[[i]],test.x.rf10[[i]]) 
   
  rf10.lm.mod[[i]]<-lm(train.rf10[[i]]$train.y.rf10..i.. ~ .,data 
= train.rf10[[i]]) 
  rf10.lm.pred[[i]]<-predict(rf10.lm.mod[[i]],newdata = 
test.rf10[[i]]) 
  rf10.lm.mse[[i]]<-(mean((rf10.lm.pred[[i]]-
test.y.rf10[[i]])^2)) 
  rf10.r.sq[[i]]<-summary(rf10.lm.mod[[i]])$adj.r.squared 
} 
 
RSQ.lm.rf10<-mean(unlist(rf10.r.sq)) 
MSE.lm.rf10<-mean(unlist(rf10.lm.mse)) 
MSE.lm.rf10 
RSQ.lm.rf10 
 
for (i in 1:10){ 
  for (j in 1:10){ 
    test[[j]]<-as.vector(unlist(indices[j])) 
    train[[j]]<-as.vector(unlist(indices[-j])) 
  } 
  dat.train[[i]]<-dap1[train[[i]],] # list with 10 elements 
  dat.test[[i]]<-dap1[test[[i]],] # list with 10 elements 
} 
### 
for (i in 1:10){ 
  rf10.rf.mod[[i]]<-
randomForest(train.rf10[[i]]$train.y.rf10..i.. ~ . 
                      ,data=train.rf10[[i]],ntree=1000, 



                      
mtry=round(length(names.use.rf10)/3),importance=TRUE) 
  rf10.rf.pred[[i]]<-predict(rf10.rf.mod[[i]],newdata = 
test.rf10[[i]]) 
  rf10.mse.rf[[i]]<-(mean((rf10.rf.pred[[i]]-
test.y.rf10[[i]])^2)) 
} 
 
MSE.rf.rf10<-mean(unlist(rf10.mse.rf)) 
MSE.rf.rf10 
``` 
 
```{r} 
final.results<-
matrix(c(MSE.lm.full,MSE.lm.red,MSE.lm.fac,MSE.lm.lasso10,MSE.lm.
rf10,MSE.rf.full,MSE.rf.red,MSE.rf.fac,MSE.rf.lasso10,MSE.rf.rf10
),ncol = 5,nrow = 2,byrow = TRUE) 
rownames(final.results)<-c("Linear Model","Random Forest") 
colnames(final.results)<-c("full","reduced","factors","lasso 
10","rf 10") 
final.results 
 
adj.r.squared<-
matrix(c(RSQ.lm.full,RSQ.lm.red,RSQ.lm.fac,RSQ.lm.lasso10,RSQ.lm.
rf10),ncol = 5,nrow = 1,byrow = TRUE) 
colnames(adj.r.squared)<-c("full","reduced","factors","lasso 
10","rf 10") 
adj.r.squared 
 
plot(dap1[unlist(test),]$Total.Yield,unlist(full.lm.pred), 
     xlab = "Actual",ylab="Predicted",main="Total Yield Full 
Model",xlim = c(-4,60),ylim = c(-4,60)) # full linear model 
abline(lm(unlist(full.lm.pred)~dap1[unlist(test),]$Total.Yield),c
ol="red") 
legend("bottomright", legend=c(round(RSQ.lm.full,2))) 
 
plot(unlist(test.y.lasso10),unlist(lasso10.lm.pred), 
     xlab = "Actual",ylab="Predicted",main="Total Yield Reduced 
Model",xlim = c(-4,60),ylim = c(-4,60)) # lasso 10 linear 
abline(lm(unlist(lasso10.lm.pred)~unlist(test.y.lasso10)),col="re
d") 
legend("bottomright", legend=c(round(RSQ.lm.lasso10,2))) 
 
# Genes that were used for the 10 times reduction 
names.use.lasso10 # genes that were used more that 50% of the 
time for all 10 folds 
names.use.rf10 # genes that were the top 20 most important 
predictors for all 10 folds 
``` 


