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Abstract

The microbiome plays a crucial role in health, environment, agriculture, and

other critical domains. Despite its significance, many studies treat microbial

communities as static entities, ignoring the inherent temporal dynamics. This research

addresses the measurement error in estimating microbial abundance, which can lead

to substantial discrepancies in understanding these dynamics. Given the presence of

large errors, traditional Markovian assumptions may not hold, indicating that the

abundance on one day may not necessarily depend on the previous day’s values.

Our study explores the impact of measurement error on microbial time series

data using Partial Auto-correlation Function (PACF). By systematically adding

varying levels of measurement error, we examine how these errors influence PACF at

different lags. The resulting relationship between PACF and measurement error offers

insights into the accuracy of abundance estimates. This approach provides a more

robust framework for analyzing temporal dynamics in microbial communities,

allowing researchers to better understand the variability and underlying processes

within these complex systems.

Keywords: Time Series; Measurement Error; Partial Auto-correlation Function

(PACF); Microbial Abundance; SIMEX.
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Introduction

Understanding the temporal dynamics of microbial communities is crucial for

research in health, environment, agriculture, and beyond. However, many studies treat

these communities as static, overlooking their inherent variability over time. To

address this gap, our research focuses on the measurement error in estimating

microbial abundance and how it impacts the analysis of temporal dynamics in these

ecosystems.

For this study, we use the moving picture dataset , which provides nearly daily

samples from four body sites of two healthy individuals. The dataset includes counts

of each microbe in each sample, along with the date of collection. Our analysis

focuses on data aggregated at the genus level, with attention given to the most

abundant genera in the gut dataset. This dataset serves as a robust source for

investigating the temporal dynamics of microbial communities and exploring the

impact of measurement error on time series analysis.

Given the significant role of measurement error, this report explores the use of

the Partial Auto-correlation Function (PACF) to understand its effect on microbial

time series data. By varying the levels of measurement error, we aim to determine its

impact on PACF and ultimately improve our understanding of microbial abundance

over time.



The data used in our study are sourced from a comprehensive research project

titled "Moving Pictures of the Human Microbiome." In this study, researchers

collected nearly daily samples from four body sites of two healthy individuals, one

male (M3) and one female (F4), over a period of 15 months for M3 and 6 months for

F4. The researchers sequenced the 16S rRNA gene from these samples, focusing on

three body sites: the gut (feces), mouth, and skin (both left and right palms).

The sequencing was carried out using the Illumina Genome Analyzer IIx

(GA-IIx), targeting the V4 region, with additional sequencing done using the 454

platform for the V2 region to ensure cross-platform consistency. The dataset includes

counts of each microbe in each sample, along with the date of collection. This data is

publicly available and has been used extensively to study the temporal dynamics of

the human microbiome.

For our analysis, we used the data aggregated at the genus level, focusing on the

most abundant genera in the gut dataset. By applying Partial Autocorrelation Function

(PACF) analysis to this data, we aimed to investigate the impact of measurement error

on microbial abundance estimates. This dataset, with its dense time series and

extensive body site coverage, provides a valuable resource for studying the temporal

variability in microbial communities.

This data source allows us to examine the persistent and transient components of

the microbiome, offering insights into how measurement error might affect the

interpretation of microbial abundance and the temporal dynamics in these ecosystems.



This research context sets the stage for our study's exploration of the effects of

measurement error on time series analysis within microbial communities.

The structure of this report is as follows: Section 2 describes the methods,

including data preparation and the process of simulating measurement error; Section 3

presents the results, focusing on the relationship between measurement error and

PACF at different lags; Section 4 offers conclusions and discussions, summarizing

key findings and suggesting areas for future research.

Through this approach, we aim to provide a deeper insight into the temporal

dynamics of microbial communities and contribute to a more accurate analysis of time

series data in the presence of measurement error.



Methods

Data Pre-processing

Data preprocessing is a crucial first step in any statistical analysis, ensuring that

the data is primed for accurate and efficient analysis. In this study, the preprocessing

involves several key stages:

Data Loading: We begin by loading the microbial community data from text files,

which involves reading comprehensive datasets containing counts of various

microbial genera across different samples. This is accomplished using R’s read.table

function, allowing us to handle large datasets efficiently and prepare them for further

manipulation. For instance, we use commands like gut2genera <- read.table ("

moving_pic_data_genus.data_FECES_2.txt ") to import data, ensuring all entries are

correctly formatted and accessible.

Data Cleaning: Once loaded, the data undergoes a cleaning process. This

includes verifying data integrity, removing or correcting any errors or outliers, and

ensuring that the dataset is consistent. This stage is critical for obtaining reliable

results from subsequent analyses. During this phase, we also perform operations like

aggregating total counts for each genus within each sample. This is achieved through

operations such as colSums (gut2genera), which provides a summary of the total

counts for each microbial genus.

Data Transformation and Selection: After cleaning, we focus on data

transformation and selection, where specific variables of interest are extracted and



transformed as needed for the analysis. In our study, this includes isolating the counts

of a particular genus of interest, such as Bacteroides, using specific indexing methods.

The data is also normalized or transformed to meet the assumptions of the statistical

tests we plan to use. For example, we compute proportions of the Bacteroides genus

relative to the total microbial counts in each sample using the formula:

This transformation is crucial for comparing microbial abundances across different

samples, which may vary significantly in total microbial counts.

Principle and Implementation of Linear Regression Model

Model Establishment: The model is based on the assumption that there is a linear

relationship between the measurement errors and the observed values. We use a linear

regression model with the noisy Bacteroides proportions

(noisy_Bacterioides_prop_new) as the response variable and the artificially

introduced measurement errors (measurement_error_new) as the explanatory variable.

The model is expressed as:

Here, Y represents the noisy Bacteroides proportion, X denotes the measurement

error, β0 and β1 are the coefficients to be estimated, and ϵ is the error term, assumed

to be normally distributed with a mean of zero.



Model Fitting and Coefficient Estimation: The model is fitted using the least

squares method, which estimates the values of β0 and β1. This step is implemented

using R's lm() function, calculating the influence of the explanatory variable

(measurement error) on the response variable (noisy Bacteroides proportion).

Error Estimation and Data Correction: The fitted model is used to predict the part

of data variation caused by measurement errors, termed estimated_measurement_error.

By subtracting this estimated error part from the noisy data, we obtain the corrected

data (noise_free_log_data):

Effect Evaluation: The effectiveness and accuracy of the error correction are

evaluated by plotting and further statistical analysis (such as calculation of the Partial

Autocorrelation Function, PACF), to verify the validity of the model correction.

SIMEXMethod

SIMEX (Simulation Extrapolation) is used to address measurement error in data.

The steps include simulation, fitting, and extrapolation.

Simulate Error Increase: Artificially adds varying levels of error to the original

data to simulate the impact of measurement errors. Error simulation can be

implemented by adding normally distributed random noise:



Fit Model and Record Results: For each level of error, fit the statistical model

(such as linear or time series models) and record key statistics or model parameters.

Extrapolate to Zero Error: Use linear regression or similar methods to extrapolate

the effects of error to zero, estimating the true model parameters under no

measurement error. If θ^(λ) represents the estimated model parameter at error level λ,

the extrapolation model can be expressed as:

where β0 and β1 are coefficients obtained by regressing θ^(λ) against λ.



Results

From the beginning, we introduce random measurement errors into the

Bacterioides proportion data, which are normally distributed with a mean of zero and

a standard deviation that is 50% of the Bacterioides proportion's standard deviation.

In the graph, the horizontal axis d1 represents the Bacterioides proportion data

with added measurement errors, and the vertical axis d2 represents the generated

measurement errors. The smoothing line in the graph, fitted using a Generalized

Additive Model (GAM), helps to visualize any trends between d1 and d2.

The plot reveals several key observations. The points are dispersed without a

clear pattern or trend, indicating no strong linear relationship or correlation between

d1 and d2. This suggests that the measurement errors were successfully introduced

randomly without systematically altering the proportion data. Although the smoothing



line is nearly horizontal, the overall scatter of points shows a certain level of

variability, likely caused by the introduction of measurement errors, affecting the

stability and predictability of the data. Given the randomness of measurement errors

and the data's dispersion, further analysis might need to consider using statistical

methods that can handle high variability and nonlinear relationships. Approaches such

as Random Forest or other machine learning methods, which do not require a clear

linear relationship between data points, might be suitable.

Then a regression model is built using measurement error as an explanatory

variable for the noisy Bacterioides proportion showcases the relationship between the

introduced measurement errors and their influence on the noisy data.

Observing the plot, the vertical axis represents the noisy Bacterioides proportion,

while the horizontal axis shows the measurement error. The data points are scattered



across the plot with a horizontal trend line indicating that there isn't a strong, direct

correlation between the measurement error magnitude and the proportion values. This

suggests that while measurement errors have been added to the data, their impact does

not seem to systematically shift the Bacterioides proportion in a particular direction,

which is crucial for ensuring the integrity of the statistical analyses that follow.

This result indicates a level of robustness in the noisy Bacterioides data against

the variation introduced by measurement errors. This observation is critical as it

suggests that subsequent analysis using methods like Random Forest, which can

handle non-linear relationships and interaction effects without assuming a linear

relationship between variables, could be particularly effective. These methods would

allow us to further dissect the data to understand underlying patterns and predict

outcomes more accurately without the assumption that errors linearly affect the

dependent variable.

Then the effect of measurement error on the partial auto-correlation function

(PACF) before and after accounting for the error is illustrated by plots.



Initially, most lags are within the confidence interval, indicating that the

autocorrelation is not significant, suggesting that the noise inherent in the data may be

masking the true structure of the time series. However, after correcting for

measurement error, the overall trend and specific points (e.g., lags 4 and 10) exhibit

changes in auto-correlations, although most auto-correlations remain insignificant.

This adjustment reveals more about the true dynamics of the series, emphasizing the

significant impact of measurement error on the statistical properties of the data. This

analysis highlights the need to employ robust statistical methods to assess and correct



for measurement errors before any serious time series analysis, ensuring that

conclusions are based on true data structures and not artifacts introduced by

inaccurate measurements.

Based on these findings, it is recommended that appropriate statistical methods

be used to assess and correct for measurement errors before conducting any serious

time series analysis. This may include using more complex models to model both the

observed data and their potential measurement errors, or using methods such as

SIMEX to estimate and correct for the effects of errors.

The "Random Forest Prediction Curve" plot illustrates the relationship between

measurement errors and the noisy proportion of Bacteroides, modeled using a random

forest algorithm. The scatter of points across the plot reflects the inherent variability

in the noisy Bacterioides proportions as a function of measurement error. The blue

line, representing the random forest model's predictions, shows a relatively dynamic



fit to the data points, indicating the model's responsiveness to variations in

measurement error. And the fluctuations in the prediction curve suggest that the

model is picking up nonlinear relationships between the measurement error and the

Bacterioides proportion.



In these plots representing the partial autocorrelation functions (PACF) for both

the data with simulated measurement error and the adjusted data with the estimated

measurement error subtracted, we observe that the error adjustment has minimal

impact on the overall structure and significance of the autocorrelations at different

lags. This suggests that while the measurement error does introduce noise into the

data, its overall effect on the temporal dependencies captured by PACF is limited.

The lack of significant change between the PACF plots of the noisy and

noise-adjusted data indicates that our method of estimating and correcting for

measurement error is appropriately calibrated. This consistency reassures us that the

measurement error does not drastically affect the underlying auto-correlation structure

of the data, which is crucial for any further time series analysis or modeling we might

want to perform. For future analysis, this implies that the temporal dynamics of the

Bacteroides proportion are robust to measurement error, allowing us to proceed with

more complex modeling techniques, such as time series forecasting or further

multivariate time series analysis, with confidence in the stability of the underlying

data characteristics.



This plot showing the effect of measurement error on the AR(1) coefficient

clearly illustrates a trend where increasing error levels are associated with a decrease

in the AR(1) coefficient. This trend is visually represented by a downward slope in

the linear fit line across the scatter plot. Essentially, as the measurement error

increases, the AR(1) coefficient tends towards zero, indicating a diminishing

auto-regressive relationship in the data.

This outcome suggests that measurement error can significantly influence the

estimated parameters in time series analysis, potentially leading to underestimation of

auto-regressive terms. The presence of error introduces noise that disrupts the true

signal in the data, thereby affecting the reliability of the auto-correlation at lag 1. In

practical terms, if measurement error is not properly accounted for, it can lead to

misleading interpretations of the data's temporal dynamics.



Recognizing the impact of measurement error on our estimates, it is paramount

to either adjust for this error or improve measurement techniques to ensure the

integrity of our time series models. Future analyses might include exploring methods

to robustly estimate and correct for measurement error or employing simulation

techniques like the Simulation Extrapolation (SIMEX) method to assess and adjust

the impact of measurement error on our estimates.

The scatter plot illustrating the impact of measurement error on the AR(2)

coefficient highlights a positive correlation between error magnitude and the AR(2)

coefficient, as evidenced by the upward slope in the linear fit line. This pattern

suggests that as measurement error increases, the second-order autoregressive term in

the model becomes more pronounced, contrasting with the diminishing effect seen in



AR(1). This observed behavior implies that the influence of previous states becomes

increasingly significant when additional noise is introduced into the system.

From all the above analyses, we can conclude that applying robust statistical

techniques can mitigate or correctly account for the effects of measurement errors,

thereby refining our predictive models and ensuring that our conclusions are based on

an accurate representation of the underlying dynamics. It is crucial to choose a robust

method to handle measurement errors. Therefore, we introduce the SIMEX method

from here.

We conduct a simulation to examine the impact of measurement error on the

second lag of the partial auto-correlation function (PACF2) for Bacteroides proportion

time series data.

We defined a range of standard deviation levels for measurement error and

simulated the impact at each level, calculating PACF2 values and plotting these



against the measurement error standard deviations. The graph reveals that as

measurement error increases, PACF2 values generally rise and their variability also

increases. This suggests that measurement errors might lead to an overestimation of

the autocorrelation in time series data, potentially misguiding predictions and

hypothesis testing results.

Then in this next part, we explored the impact of measurement errors on the

first-order autoregressive model (AR(1)) coefficient in Bacteroides proportion data.

By setting error levels from 10% to 100% of the standard deviation of the original

data, we simulated various error conditions and added these errors to the original data.

We fitted an AR(1) model to each affected dataset, extracted the AR(1) coefficients,

and analyzed the relationship between error levels and AR(1) coefficients through

linear regression. We predicted the AR(1) coefficients under different measurement

error levels and presented the results graphically, with special markers for the original

data's AR(1) coefficient and the zero-error prediction.



We used a simulation method to explore the impact of measurement error on the

second partial auto-correlation function (PACF2) of time series data for Bacteroides

proportions. Specifically, we first calculated the standard deviation of the original

data and set a range of measurement error standard deviations based on this, ranging

from 10% to 100% of the original standard deviation, across 1000 points. For each

error level, we simulated measurement errors, added them to the original data, and

calculated theP ACF2 values for each affected dataset, recording the results.



To understand how measurement error systematically influences PACF2, we

established a linear regression model, using the error level as the independent variable

and PACF2 as the dependent variable. Additionally, we predicted the PACF2 values

under various levels of measurement error, which are depicted in the chart with a red

line. We also marked the actual PACF2 value of the original data (green dot) and the

model's predicted PACF2 value at zero error (red dot).

In this study, we analyze the impact of measurement error on the second-order

delay of the partial autocorrelation function (PACF2) in Bacteroidetes proportion time

series data and try to estimate PACF2 in the error-free state by extrapolating

prediction methods. value. First, we set a series of error levels based on the standard

deviation of the original data, simulated the impact of these errors on PACF2, and

analyzed the relationship between error levels and PACF2 through a linear regression



model. Through this model, we predict that the PACF2 value in the zero-error state is

0.1190154.

Next, we calculated the PACF2 value of the original data and subtracted it from

the predicted PACF2 in the zero-error state, resulting in an estimated measurement

error value of -0.009087473. Based on this estimation error, we adjusted the original

data, hoping to reduce the impact of the error through this adjustment, and reanalyzed

the PACF2 values of the adjusted data. The results show that the difference of

0.009087473 between the pre- and post-adjusted PACF2 values can be regarded as

the inferred measurement error of the original data.

This shows that although we improve the accuracy of the data by estimating and

adjusting for measurement error, the adjustment does have an impact on the value of

PACF2. This finding highlights the complexity of analyzing and adjusting for

measurement error in practical applications, showing the importance of understanding

data characteristics and accurately assessing measurement error for data analysis.



Conclusion

In conclusion, our study has effectively highlighted the significant impact of

measurement error on the estimation of microbial abundance in time series data,

particularly through the lens of Partial Auto-correlation Function (PACF) analysis. By

systematically introducing and varying levels of measurement error into our dataset

and examining its effect on PACF across different lags, we observed a trend where

increased measurement errors generally inflate the PACF values, indicating a

potential overestimation of autocorrelation. This misestimation can mislead

interpretations and analyses in microbial community dynamics.

Our exploration involved a robust methodological framework where we

simulated measurement errors, analyzed their impact using linear regression, and

applied extrapolation techniques to predict the true PACF values at zero error. Despite

our efforts to adjust the data based on estimated measurement errors, the adjustment

showed minimal impact on the PACF values, suggesting either the resilience of the

original data against measurement noise or the subtlety of error impact at certain error

levels.

This research underscores the necessity for rigorous methodologies to account

for and correct measurement errors in ecological and biological time series analyses.

Future research should focus on refining these error adjustment techniques and

exploring more sophisticated models that can more dynamically account for

measurement errors. Our findings advocate for the continuous assessment of



measurement error impacts to enhance the accuracy and reliability of conclusions

drawn from time series data in microbial ecology and other scientific disciplines..
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Appendix

(R code for all processes)

data pre-processing

gut2genera<-read.table("moving_pic_data_genus.data_FECES_2.txt")

time_gut_2<-read.table("date_gut2.txt")

head(sort(colSums(gut2genera)[colSums(gut2genera)>0],decreasing=TRUE))

Bacterioides_prop<-gut2genera[,"k__Bacteria.p__Bacteroidetes.c__Bacteroidia.o__Bacter

oidales.f__Bacteroidaceae.g__Bacteroides."]/rowSums(gut2genera)

Add measurement error

library(ggplot2)

measurement_error <- rnorm(length(Bacterioides_prop), mean = 0, sd = 0.5*sd(Ba

cterioides_prop))

noisy_Bacterioides_prop <- Bacterioides_prop + measurement_error

noisy_Bacterioides_prop_new <- noisy_Bacterioides_prop[1:332]

measurement_error_new <- measurement_error[3:334]

ggplot(data.frame(d1=noisy_Bacterioides_prop_new,d2=measurement_error_new),ma

pping=aes(x=d1,y=d2))+geom_point()+geom_smooth(method="gam")

## `geom_smooth()` using formula = 'y ~ s(x, bs = "cs")'

Build a regression model with measurement errors as explanatory variables

library(forecast)

## Registered S3 method overwritten by 'quantmod':

## method from

## as.zoo.data.frame zoo

model <- lm(noisy_Bacterioides_prop_new ~ measurement_error_new, data.frame(n

oisy_Bacterioides_prop_new, measurement_error_new))

estimated_measurement_error <- predict(model, type = "response")

library(ranger)

library(randomForest)

Predict the impact of measurement errors

ggplot(data.frame(noisy_Bacterioides_prop_new, measurement_error_new), aes(x =

measurement_error_new, y = noisy_Bacterioides_prop_new)) +



geom_point() +

geom_line(aes(y = estimated_measurement_error), color = "blue") +

labs(title = "Prediction Curve", x = "Measurement Error", y = "Noisy Bacterioide

s Prop") +

theme_minimal()

Subtract the estimated measurement error from the data

noise_free_log_data <- noisy_Bacterioides_prop_new - estimated_measurement_error

pacf_values <- pacf(noisy_Bacterioides_prop_new, lag.max = 10, plot = TRUE)

pacf_values <- pacf(noise_free_log_data, lag.max = 10, plot = TRUE)

Establish a random forest model

rf_model <- ranger(noisy_Bacterioides_prop_new ~ measurement_error_new, data.fr

ame(noisy_Bacterioides_prop_new, measurement_error_new))

#Predict new data sets and create prediction graphs
predictions <- predict(rf_model,data=data.frame(noisy_Bacterioides_prop_new, meas

urement_error_new))

ggplot(data.frame(noisy_Bacterioides_prop_new, measurement_error_new), aes(x =

measurement_error_new, y = noisy_Bacterioides_prop_new)) +

geom_point() +

geom_line(aes(y = predictions$predictions), color = "blue") +

labs(title = "Random Forest Prediction Curve", x = "Measurement Error", y = "N

oisy Bacterioides Prop") +

theme_minimal()

Subtract the estimated measurement error from the data

noise_free_log_data <- noisy_Bacterioides_prop_new - estimated_measurement_error

pacf_values <- pacf(noisy_Bacterioides_prop_new, lag.max = 10, plot = TRUE)

pacf_values <- pacf(noise_free_log_data, lag.max = 10, plot = TRUE)For AR(1)

total_sd <- sd(Bacterioides_prop)

error_levels <- seq(0, 2 * total_sd, length.out = 1000)

ar1_coefficients <- numeric(length(error_levels))

for (i in seq_along(error_levels)) {

measurement_error <- rnorm(length(Bacterioides_prop), mean = 0, sd = error_l

evels[i])

Bacterioides_prop_error_temp <- Bacterioides_prop + measurement_error

temp_model <- arima(Bacterioides_prop_error_temp, order = c(1, 0, 0))



ar1_coefficients[i] <- temp_model$coef[1]

}

data_plot <- data.frame(ErrorLevel = error_levels, AR1Coefficient = ar1_coefficients)

ggplot(data_plot, aes(x = ErrorLevel, y = AR1Coefficient)) +

geom_point() +

geom_line() +

geom_smooth(method = "lm", color = "blue") +

labs(title = "Effect of Measurement Error on AR(1) Coefficient", x = "Error", y =

"AR(1) Coefficient")

## `geom_smooth()` using formula = 'y ~ x'

For AR(2)

total_sd <- sd(Bacterioides_prop)

error_levels <- seq(0, 2 * total_sd, length.out = 1000)

ar1_coefficients <- numeric(length(error_levels))

for (i in seq_along(error_levels)) {

measurement_error <- rnorm(length(Bacterioides_prop), mean = 0, sd = error_l

evels[i])

Bacterioides_prop_error_temp <- Bacterioides_prop + measurement_error

temp_model <- arima(Bacterioides_prop_error_temp, order = c(2, 0, 0))

ar1_coefficients[i] <- temp_model$coef[2]

}

data_plot <- data.frame(ErrorLevel = error_levels, AR1Coefficient = ar1_coefficients)

ggplot(data_plot, aes(x = ErrorLevel, y = AR1Coefficient)) +

geom_point() +

geom_line() +

geom_smooth(method = "lm", color = "blue") +

labs(title = "Effect of Measurement Error on AR(2) Coefficient", x = "Error", y =

"AR(2) Coefficient")

## `geom_smooth()` using formula = 'y ~ x'

PACF2 vs Measurement error

error_sd_levels <- seq(0, 2*total_sd, length.out = 1000)

results <- data.frame(ErrorSD = error_sd_levels, PACF2 = numeric(length(error_sd_

levels)))

Bacterioides_prop_error <- Bacterioides_prop + measurement_error

Bacterioides_prop_error <- na.omit(Bacterioides_prop_error)

set.seed(123)



for (i in seq_along(error_sd_levels)) {

measurement_error <- rnorm(length(Bacterioides_prop), mean = 0, sd = error_s

d_levels[i])

Bacterioides_prop_error <- Bacterioides_prop + measurement_error

pacf_values <- pacf(Bacterioides_prop_error, lag.max = 10, plot = FALSE)

results$PACF2[i] <- pacf_values$acf[2]

}

ggplot(results, aes(x = ErrorSD, y = PACF2)) +

geom_point() +

geom_line() +

labs(title = "PACF2 vs Measurement Error", x = "Measurement Error SD", y = "

PACF2") +

geom_smooth(method="gam")+

theme_minimal()

## `geom_smooth()` using formula = 'y ~ s(x, bs = "cs")'

# create data frame
total_sd <- sd(Bacterioides_prop)

error_sd_levels <- seq(0, 2*total_sd, length.out = 1000)

results <- data.frame(ErrorSD = error_sd_levels, PACF2 = numeric(length(error_sd_

levels)))

set.seed(123)

for (i in seq_along(error_sd_levels)) {

measurement_error <- rnorm(length(Bacterioides_prop), mean = 0, sd = error_s

d_levels[i])

Bacterioides_prop_error <- Bacterioides_prop + measurement_error

pacf_values <- pacf(Bacterioides_prop_error, lag.max = 10, plot = FALSE)

results$PACF2[i] <- pacf_values$acf[1]

}

error_sd_levels

PACF2 <- results$PACF2

model <- lm(y ~ x, data.frame(x=error_sd_levels, y=PACF2))

xnew <- c(c(0), error_sd_levels)

estimated_PACF2 <- predict(model, data.frame(x=xnew))

pacf_values <- pacf(Bacterioides_prop, lag.max = 10, plot = FALSE)

PACF2_raw <- pacf_values$acf[1]

#PACF2 vs Measurement error



ggplot(results, aes(x = error_sd_levels, y = PACF2)) +

geom_point() +

geom_line(aes(x = xnew,y=estimated_PACF2),color = "red",data=data.frame(xnew

=xnew, estimated_PACF2=estimated_PACF2)) +

labs(title = "PACF2 vs Measurement Error", x = "Measurement Error SD", y = "

PACF2") +

geom_smooth(method="gam")+

geom_point(aes(x = c(0),y=c(PACF2_raw)),color = "green", size = 2,data=data.fra

me(c(0), c(PACF2_raw)))+

geom_point(aes(x = c(0),y=c(estimated_PACF2[1])),color = "red", size = 2,data=d

ata.frame(c(0), c(estimated_PACF2[1])))+

theme_minimal()

## `geom_smooth()` using formula = 'y ~ s(x, bs = "cs")'

set.seed(123)

library(forecast)

total_sd <- sd(Bacterioides_prop)

error_levels <- seq(0.01* total_sd, 1* total_sd, length.out = 100)

pacf2_values <- numeric(length(error_levels))

for (i in seq_along(error_levels)) {

measurement_error <- rnorm(length(Bacterioides_prop), mean = 0, sd = error

_levels[i])

noisy_data <- Bacterioides_prop + measurement_error

pacf_result <- pacf(noisy_data, lag.max = 332, plot = FALSE)

pacf2_values[i] <- pacf_result$acf[3]

}

results <- data.frame(ErrorLevel = error_levels, PACF2 = pacf2_values)

extrapolation_model <- lm(PACF2 ~ ErrorLevel, data = results)

predicted_zero_error_pacf2 <- predict(extrapolation_model, newdata = data.frame

(ErrorLevel = 0))

print(predicted_zero_error_pacf2)

## 1

## 0.1190154



original_pacf2 <- pacf(Bacterioides_prop, lag.max = 336, plot = FALSE)$acf[3]

estimated_measurement_error <- original_pacf2 - predicted_zero_error_pacf2

print(estimated_measurement_error)

## 1

## -0.009087473


