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Introduction: 

Matern covariance function: in statistics, the Matern covariance (named after Swedish 
forestry statistician Bertil Matern) is a covariance function for spatial statistics, geographic 
statistics, machine learning, image analysis, and other applications of multivariate 
statistical analysis in metric Spaces. It is commonly used to define the statistical covariance 
between two measurements at points d units apart. And since the covariance only depends 
on the distance between the points, it is stationary. Our goal of this paper is to assess the 
performance of maximum likelihood estimators of the parameters of the Matern 
covariance function. 

Defination: 

The Matern covariance between two points with d distance unit is given by: 
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where 𝜏 is the gamma function, 𝐾𝜈 is the modified Bessel function of the second kind, and 𝜌 
and 𝜈 are non-negative parameters of the covariance 

Plot of 1-dimensional matern covariance function. 

At first, we would like to see the effect of each of the three parameters in the matern 
covariance. So, each time, we hold the values of two parameters and only change the value 
of the parameter left. 

Here we use the matern.covariance() function from the package rSPDE in r to simulate data 
of the Matern covariance and  then use plot() and lines() function to plot.  

It’s worthy to mention that there are three parameters in matern.covariance() function 
corresponding to the parameters in the definition given above. One is kappa which refers to 
the parameter 𝜌 in the 𝐶𝑣(𝑑), the other two parameters are 𝜈 and 𝜎, which are as same as 
the definition of the 𝐶𝑣(𝑑). 

The relative r-code is in the appendix at the end of the report. 



 
 

 

 

First, we fix 𝜌 and 𝜈,change the value of 𝜎. 

 

 

According the function of covariance function, we can see sigma looks like a constant and 
scales the covariance function. 

Also, from the plot, we can see holding the d, 𝜌 and 𝜈 same, when 𝜎 is larger, the value of 
the Matern covariance is larger at the same distance d. It is consistent with the fomula. So, 
in the following study, to simple the question, we just fix 𝜎 = 1. 

 

Then, we fix 𝜈, 𝜎 and change the value of 𝜌. 



 
 

 

According to the formula of the covariance function, the 𝜌 is denominator and scales the 
distance d. 

From the plot, we can see holding the 𝜎 and 𝜈 same, when  𝜌 is larger, the value of the 
Matern covariance is smaller at the same distance d. And the covariance function becomes 
more concentrated near 0 with increasing 𝜌. 

 

At last, we fix 𝜌, 𝜎 and change the value of 𝜈. 

 

According to the formula, we can also see when 𝜈 =
1

2
,𝐶(𝑑) = 𝜎2𝑒𝑥𝑝 −

𝑑

𝜌
.  So, 𝜈 is a shape 

parameter of this function. 



 
 

From the graph, it looks as though as 𝜈 increases with other parameters fixed, the 

covariance between two points at a fixed distance increase. And when 𝜈 =
1

2
, the shape of 

Matern covariance looks like an exponential distribution. 

Research question: 

The usual practice, when fitting the Matern covariance function to observed data, needs to 
fix the parameter 𝜈 .  This raises questions such as follows: What is the effect of using the 
wrong 𝜈 on the estimates of 𝜎 and 𝜌?  What is the effect on the estimated covariance 
function when the wrong value of 𝜈 is used?  Is it possible to estimate 𝜈 in addition to 𝜎 and 
𝜌? 

 

Method: 

The main functions used in r: 

matern.image{fields}:Given two sets of locations defined on a 2-d grid efficiently multiplies a 

cross covariance with a vector. 

sim.rf {fields}: Simulates a stationary Gaussian random field on a regular grid with unit marginal 

variance. 

likfit{geoR}: Maximum likelihood (ML) or restricted maximum likelihood (REML) parameter 

estimation for (transformed) Gaussian random fields. 

Relative bias:𝐵𝑖𝑎𝑠^ =
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value.  

it’s worthy to mention that if we would like to use likfit() function to get the maximum 
likelihood estimation for matern covariance function. we need to fix parameter 𝜈 which is 
shown as kappa in this function. And the question we study is to find a reasonable value to 
plug in. 

Idea: 

First, we use matern.image() function and sim.rf() function from package fields in r to 
simulate a set of data with specific true parameters set by us. So, we know what exactly the 
true values of these parameters are.  

Then, we set a sequence (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,2,3,4,5,6,7,8,9,10,15,20) 
working as the potential value of the parameter 𝜈, and then use likfit() function from 
package geoR to do maximum likelihood estimation using each of them as fixed value 
separately. After that, We pick the value with the largest log_likihood as the picked value of 



 
 

𝜈 in the likfit() function and do maximum likelihood estimation again to record the 
estimation for the other two parameters. 

At last, we also use likfit() function in r to get the maximum likelihood estimations for 
𝜎, 𝜌, 𝜈 based on using true value of 𝜈 and wrong value of 𝜈 as fixed value separately and 
record the estimations. 

Repeat this procedure 100 times. 

To make this study more convinceful, we set the true value of (𝜈, 𝜌, 𝜎) equal 
(0.5,1,1),(2.5,1,1),(0.5,3,1) and (2.5,3,1) separately corresponding to different shape of pdf 
of matern covariance. 

We also calculate the relative bias and relative mean squared errors to see the 
performances of the sequence method compared with the others. 

Process: 

Here are some specific codes we used to realize the idea we talked above.  



 
 

As mentioned before, we use 4 different sets initial parameters to simulate data. Here, we 
set true value of 𝜈 equal 0.5 and true value of 𝜌 and 𝜎 equal 1. 

 



 
 

 

Cause, the parameterization used in the functions are different with the definition of 
covariance we used, here is a comparison table to make it clear. 

covariance function 𝐶𝑣(𝑑) matern.image.cov() likfit() 

𝜌 𝜃 Don’t need 

𝜈 smoothness kappa(fixed parameter) 

𝜎 scale=1 Don’t need 

 



 
 

We only need to change the initial values to get the whole four sets of data. 

Analysis 

After collecting the data, we would like to do some simple plot first. In the following 
boxplots, the true parameters in the title represent the values of the parameter we used to 
simulate the data at first. 

The parameters in the x-axis represent the estimators we got with different fixed 𝜈 in 
likfit(). 

𝜈0, 𝜌0, 𝜎0 represent the estimations we got setting fixed 𝜈 equal true value. 

𝜈1, 𝜌1, 𝜎1 represent the estimations we got setting fixed 𝜈 equal wrong value. 

𝜈𝑀𝐿𝐸 , 𝜌𝑀𝐿𝐸𝜎𝑀𝐿𝐸 represent the estimations we got setting fixed 𝜈 equal picked value from 
the sequence. 

The relative r-code is in the appendix at the end of the report. 

Case I: 

(𝜈 = 2.5, 𝜌 = 3, 𝜎 = 1) 

 



 
 

 

 

Case II: 

(𝜈 =
1

2
, 𝜌 = 3, 𝜎 = 1) 

 



 
 

 

 

 

 

Case III 

(𝜈 =
5

2
, 𝜌 = 1, 𝜎 = 1) 

 



 
 

 

 

Case IV: 

(𝜈 =
1

2
, 𝜌 = 1, 𝜎 = 1) 

 



 
 

 

 
From the boxplots above, we can see in the first three cases(case I (𝜈 =2.5, 𝜌 =3, 𝜎 =1), case 
II (𝜈 =0.5, 𝜌 =3 and 𝜎 =1) and case III (𝜈 =2.5, 𝜌 =1 and 𝜎 =1)) the estimates of 𝜌 and 𝜎 when 
𝜈 is fixed at the picked value have a better performance than when 𝜈 is fixed at the wrong 
value.  

In the case IV (𝜈 =
1

2
, 𝜌 = 1, 𝜎 = 1), the estimates of 𝜎 when 𝜈 is fixed at the picked value 

are better than when 𝜈 is fixed at the wrong value. However, the estimates of 𝜌 when 𝜈 is 
fixed at the wrong value are better than when 𝜈 is fixed at the picked value in general.  

For the variance of the estimates, we can say in case II (𝜈 =0.5, 𝜌 =3 and 𝜎 =1) and case IV 
(𝜈 =0.5, 𝜌 =1, 𝜎 =1) ,the performance of the estimates of  𝜎 and 𝜌 when 𝜈 is fixed at the 
picked value is higher than 𝜈 is fixed at the wrong value.  

it’s also worthy to point out that in case II and case III,the estimates of 𝜈 have a number of 
large outliers, but apart from the outliers, the majority of estimates can be better than 
using incorrect 𝜈. 

 

 



 
 

Histogram of the estimates with a large number of outliers. 

The relative r-code is in the appendix at the end of the report. 

In case I (𝜈 =2.5, 𝜌 =1, 𝜎 =1), we make the histograms for the estimates of 𝜌 and 𝜎. 

 

 

 

 



 
 

 

 

From the histograms, we can see the histogram of 𝜌𝑚𝑙𝑒 has a positive skewness. And the 
distributions of 𝜎𝑚𝑙𝑒 look like normal. 

In case II (𝜈 =0.5, 𝜌 =3 and 𝜎 =1), we make the histograms for the estimates of 𝜈, 𝜌 and 𝜎. 

 

It doesn’t make too much sense to make a histogram for estimates for 𝜈 when we use the 
true 𝜈 and the wrong 𝜈. Cause the estimates for them are a constant as the value we use. 



 
 

 

 

 

 

 



 
 

 

 

In case III (𝜈 =2.5, 𝜌 =1 and 𝜎 =1),we make the histograms for the estimates of 𝜈, 𝜌 and 𝜎. 

 

 

 



 
 

 

 

 

 



 
 

In case IV (𝜈 =0.5, 𝜌 =1, 𝜎 =1), we make the histograms for the estimates of 𝜈, 𝜌 and 𝜎. 

 

 

 

 



 
 

 

 

 

 

Relative bias and MSE 

In this part, we calculate the relative bias and MLE for estimations and also summarize the 
output in the table. 

The relative r-code is in the appendix at the end of the report. 

The order of the elements in bracket in the following two tables:(true 𝜈,picked 𝜈 ,wrong 𝜈) 

 

 



 
 

     Table of relative bias 

 
𝝂 𝝆 𝝈 

(𝜈 =
5

2
, 𝜌 = 3) 

(0, 2.516, -0.8) (0.011, -0.3596, 5.376) (-0.0266, -0.108 ,0.178) 

(𝜈 =
1

2
, 𝜌 = 3) 

(0, 2.416 ,4) (-0.0179, -0.279,0.663) (-0.067, -0.155, -0.318) 

 

(𝜈 =
5

2
, 𝜌 = 1) 

(0, 0.756, -0.8) (0.0115, -0.165,7.34) (0.0061, -0.042, 0.422) 

(𝜈 =
1

2
, 𝜌 = 1) 

(0, 13.396, 4) (0.118, -0.347, -0.431) (-0.12, -0.325, -0.4327) 

     Table of relative MSE 

 
𝝂 𝝆 𝝈 

(𝜈 =
5

2
, 𝜌 = 3) 

(0, 13.912, 0.64) (0.0118, 0.289, 33.26) (0.077, 0.071, 0.187) 

(𝜈 =
1

2
, 𝜌 = 3) 

(0, 54.3352  , 16 ) (0.0458, 0.2028, 0.441) (0.031, 0.0573, 0.117) 

 

(𝜈 =
5

2
, 𝜌 = 1) 

(0, 3.137 , 0.64) (0.004, 0.094 , 61.934) (0.0297, 0.034,0.321) 

(𝜈 =
1

2
, 𝜌 = 1) 

(0, 416.572 , 16) (0.078, 0.384 , 0.2044) (0.043, 0.1684,0.2198) 

The red part: relative bias/MSE of the estimates when we use picked larger than when we 
used wrong value. 



 
 

Comment: 

(1) For the 𝝆 and 𝝈, we can see most of relative bias and relative MSE based on the 
picked 𝝂 are smaller than the values based on the wrong 𝝂, except the relative MSE 

when (𝜈 =
1

2
, 𝜌 = 1).  However, these two values are 0.384 and 0.2044 are also 

closed. And there are some outliers in the estimates of 𝝆 when we use picked 𝜈. The 
performance of majority part of estimates when we used picked values are not 
worse than the performance of the estimates when we used the wrong values. 

(2) For the 𝜈, half of relative bias and relative MSE based on the picked 𝝂 are bigger than 
the values based on the wrong 𝝂. That’s a little bit surprised. But it’s reasonable, 
cause our sequence is from 0.1 to 20, and the true value of 𝜈 we picked are 0.5 and 
2.5. if we pick larger 𝜈,or decrease the range of sequence of 𝜈, it’s likely to become 
better .Also, in the real case, If we can predict the approximately range of 𝜈 through 
plotting the data ,and set the corresponding sequence of 𝜈, it is likely to be a better  
method. 

Conclusion: 
(1) Generally, the estimates for 𝜈 and 𝜎 are better when we used the picked value as fixed 𝜈 
than when we used the wrong value.A special case is case 4 when the 𝜈 =0.5 and 𝜌 =1,there 
are some outliers for the estimates of 𝜌, and the two sets of estimates are very similar 
whatever we use picked 𝜈 or wrong 𝜈. 
(2) One interesting thing is when the true 𝜈 is small, even the performance of estimates 
when we use picked nu is better, however a large variance appears.  
(3) For estimates for 𝜈, it’s hard to say something, cause the range of our sequence is too 
large and the value of wrong 𝜈 is very closed to the true 𝜈.Sometimes the estimates when 
we use picked value is better. If we have enough time maybe, we should try nu=0.5 and 10 
to probe further. 

 

 

APPENDIX 

The r-code for Plot of 1-dimensional matern covariance function. 

library(rSPDE) 

## Loading required package: Matrix 

##  
## Attaching package: 'rSPDE' 



 
 

## The following object is masked from 'package:stats': 
##  
##     simulate 

x = seq(from = 0, to = 10, length.out = 101) 

#sigma 
y1 = matern.covariance(x, kappa = 10, nu = 5, sigma = 1) 
plot(x,y1,type = "l", ylab = "m(d)", xlab = "d",main=expression(paste('plot o
f matern covariance holding ',rho,"=10,",nu,'=5' ))) 
y2 = matern.covariance(x, kappa = 10, nu = 5, sigma = 3) 
lines(x,y2,col = 'red') 
y3 = matern.covariance(x, kappa = 10, nu = 5, sigma = 5) 
lines(x,y3,col = 'blue') 
legend(8,1,legend = c(expression(paste(sigma,"=1," )),expression(paste(sigma,
"=3," )) 
,expression(paste(sigma,"=5," ))),col=c('black','red','blue'),lty=1:1) 

#rho 
y1 = matern.covariance(x, kappa = 1, nu = 1/5, sigma = 1) 
plot(x,y1,type = "l", ylab = "m(d)", xlab = "d",main=expression(paste('plot o
f matern covariance holding ',sigma,"=1,",nu,'=1/5' ))) 
y2 = matern.covariance(x, kappa = 3, nu = 1/5, sigma = 1) 
lines(x,y2,col = 'red') 
y3 = matern.covariance(x, kappa = 5, nu = 1/5, sigma = 1) 
lines(x,y3,col = 'blue') 
legend(8,1,legend = c(expression(paste(rho,"=1," )),expression(paste(rho,"=3,
" )),expression(paste(rho,"=5," ))),col=c('black','red','blue'),lty=1:1) 

#nu 
y1 = matern.covariance(x, kappa = 1, nu = 1/2, sigma = 1) 
plot(x,y1,ylab = "m(d)", xlab = "d",col = 'black',type= 'l',main=expression(p
aste('plot of matern covariance holding ',rho,"=1,",sigma,'=1' ))) 
y2 = matern.covariance(x, kappa = 1, nu = 1, sigma = 1) 
lines(x,y2,col = 'red') 
y3 = matern.covariance(x, kappa = 1, nu = 5/2, sigma = 1) 
lines(x,y3,col = 'blue') 
legend(8,1,legend = c(expression(paste(nu,"=0.5" )),expression(paste(nu,"=1" 
)),expression(paste(nu,"=2.5" ))),col=c('black','red','blue'),lty=1:1) 

The r-code for plot for the boxplots of the estimations for same 
parameter. 

#nu = 2.5 rho = 3 
nu0_1 <- data1[,1] 
nu_mle_1 <- data1[,4] 
nu1_1 <- data1[,7] 
data_11 <- cbind(nu0_1,nu_mle_1,nu1_1) 
boxplot(data_11,main= expression(paste('Boxplot of estimate of ',nu,'   (True
 ',nu,'=2.5 ',rho,'=3 ',sigma,'=1)' ))) 
abline(h = 2.5) 



 
 

rho0_1 <- data1[,2] 
rho_mle_1 <- data1[,5] 
rho1_1 <- data1[,8] 
data_12 <- cbind(rho0_1,rho_mle_1,rho1_1) 
boxplot(data_12,main= expression(paste('Boxplot of estimate of ',rho,'   (Tru
e ',nu,'=2.5 ',rho,'=3 ',sigma,'=1)' ))) 
abline(h = 3) 

sigma0_1 <- data1[,3] 
sigma_mle_1 <- data1[,6] 
sigma1_1 <- data1[,9] 
data_13 <- cbind(sigma0_1,sigma_mle_1,sigma1_1) 
boxplot(data_13,main= expression(paste('Boxplot of estimate of ',sigma,'   (T
rue ',nu,'=2.5 ',rho,'=3 ',sigma,'=1)' ))) 
abline(h = 1) 

The r-code for making the histograms. 

hist(sigma0,main= expression(paste('histogram of estimate of ',sigma,'0')),xlab =c(expressi
on(paste(sigma,'0')))) 

hist(sigma_mle,main= expression(paste('histogram of estimate of ',sigma,'mle')),xlab =c(ex
pression(paste(sigma,'mle')))) 

hist(sigma1,main= expression(paste('histogram of estimate of ',sigma,'1')),,xlab =c(express
ion(paste(sigma,'1')))) 

hist(rho0,main= expression(paste('histogram of estimate of ',rho,'0')),xlab =c(expression(p
aste(rho,'0')))) 

hist(rho_mle,main= expression(paste('histogram of estimate of ',rho,'mle')),xlab =c(express
ion(paste(rho,'mle')))) 

hist(rho1,main= expression(paste('histogram of estimate of ',rho,'1')),,xlab =c(expression(
paste(rho,'1')))) 

 

The r-code for calculating the MLE and relative bias. 

#true parameter 
nu1_true <- 2.5  
rho1_true <- 3 
sigma1_true <- 1 
 
#relative bias  
nu0_1 <- as.vector(nu0_1) 
rela_bias11 <- (mean(nu0_1 - nu1_true))/nu1_true 
nu_mle_1 <- as.vector(nu_mle_1) 
rela_bias12 <- (mean(nu_mle_1 - nu1_true))/nu1_true 
nu1_1 <- as.vector(nu1_1) 



 
 

rela_bias13 <- (mean(nu1_1 - nu1_true))/nu1_true 
 
rho0_1 <- as.vector(rho0_1) 
rela_bias14 <- (mean(rho0_1 - rho1_true))/rho1_true 
rho_mle_1 <- as.vector(rho_mle_1) 
rela_bias15 <- (mean(rho_mle_1 - rho1_true))/rho1_true 
rho1_1 <- as.vector(rho1_1) 
rela_bias16 <- (mean(rho1_1 - rho1_true))/rho1_true 
 
sigma0_1 <- as.vector(sigma0_1) 
rela_bias17 <- (mean(sigma0_1 - sigma1_true))/sigma1_true 
sigma_mle_1 <- as.vector(sigma_mle_1) 
rela_bias18 <- (mean(sigma_mle_1 - sigma1_true))/sigma1_true 
sigma1_1 <- as.vector(sigma1_1) 
rela_bias19 <- (mean(sigma1_1 - sigma1_true))/sigma1_true 
 
cat('The relative bias for nu based on true value is ',rela_bias11,'\n' ) 

## The relative bias for nu based on true value is  0 

cat('The relative bias for nu based on best value picked is ',rela_bias12,'\n
' ) 

## The relative bias for nu based on best value picked is  2.516 

cat('The relative bias for nu based on wrong value is ',rela_bias13,'\n' ) 

## The relative bias for nu based on wrong value is  -0.8 

cat('The relative bias for rho based on true value is ',rela_bias14,'\n' ) 

## The relative bias for rho based on true value is  0.01068387 

cat('The relative bias for rho based on best value picked is ',rela_bias15,'\
n' ) 

## The relative bias for rho based on best value picked is  -0.3595894 

cat('The relative bias for rho based on wrong value is ',rela_bias16,'\n' ) 

## The relative bias for rho based on wrong value is  5.376361 

cat('The relative bias for sigma based on true value is ',rela_bias17,'\n' ) 

## The relative bias for sigma based on true value is  -0.02663211 

cat('The relative bias for sigma based on best value picked is ',rela_bias18,
'\n' ) 

## The relative bias for sigma based on best value picked is  -0.1076705 

cat('The relative bias for sigma based on wrong value is ',rela_bias19,'\n' ) 



 
 

## The relative bias for sigma based on wrong value is  0.1783664 

Calculate relative MSE 

#relative MLE 
rela_MSE11 <- mean(((nu0_1/nu1_true)-1)^2) 
rela_MSE12 <- mean(((nu_mle_1/nu1_true)-1)^2) 
rela_MSE13 <- mean(((nu1_1/nu1_true)-1)^2) 
 
rela_MSE14 <- mean(((rho0_1/rho1_true)-1)^2) 
rela_MSE15 <- mean(((rho_mle_1/rho1_true)-1)^2) 
rela_MSE16 <- mean(((rho1_1/rho1_true)-1)^2) 
 
rela_MSE17 <- mean(((sigma0_1/sigma1_true)-1)^2) 
rela_MSE18 <- mean(((sigma_mle_1/sigma1_true)-1)^2) 
rela_MSE19 <- mean(((sigma1_1/sigma1_true)-1)^2) 
 
 
 
cat('The relative MSE for nu based on true value is ',rela_MSE11,'\n' ) 

## The relative MSE for nu based on true value is  0 

cat('The relative MSE for nu based on best value picked is ',rela_MSE12,'\n' 
) 

## The relative MSE for nu based on best value picked is  13.912 

cat('The relative MSE for nu based on wrong value is ',rela_MSE13,'\n' ) 

## The relative MSE for nu based on wrong value is  0.64 

cat('The relative MSE for rho based on true value is ',rela_MSE14,'\n' ) 

## The relative MSE for rho based on true value is  0.01175599 

cat('The relative MSE for rho based on best value picked is ',rela_MSE15,'\n'
 ) 

## The relative MSE for rho based on best value picked is  0.2890243  

cat('The relative MSE for rho based on wrong value is ',rela_MSE16,'\n' ) 

## The relative MSE for rho based on wrong value is  33.26092 

cat('The relative MSE for sigma based on true value is ',rela_MSE17,'\n' ) 

## The relative MSE for sigma based on true value is  0.07707117 

cat('The relative MSE for sigma based on best value picked is ',rela_MSE18,'\
n' ) 

## The relative MSE for sigma based on best value picked is  0.07105509  



 
 

cat('The relative MSE for sigma based on wrong value is ',rela_MSE19,'\n' ) 

## The relative MSE for sigma based on wrong value is  0.1865675 
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