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Abstract

This thesis describes all aspects of the preparation of a decision table for the Bay

of Fundy sea scallop fishery. We first describe inshore scallop fisheries in Canada,

and the usual monitoring and fishery management processes for them. Next we

examine the precautionary approach used by Canadian fisheries to ensure their

sustainability. A state-space assessment model (SSAM) is then introduced in a

frequentist setting as a tool for obtaining estimates (and predictions) of scallop

biomass. In an effort to provide scientific advice for fishery management, we

construct a decision table for Scallop Production Area (SPA) 4 using this model.

The current SSAMs account for population dynamics along with measurement

and process error, but neglect spatial sources of variability. We are working to

enhance the SSAM framework to incorporate data from scientific surveys with

fine-scale spatial information. We close by discussing several open questions

regarding how to modify decision table to capture outputs from this upgraded

model.
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Chapter 1

Introduction

1.1 Background

In this chapter, we provide a brief introduction to inshore scallop fisheries.

References for this material include [8] and [12]. For a concise introduction

about scallops, we also refer the reader to [2] which we loosely follow here.

1.1.1 Fishery science

Fishery science is about understanding the population dynamics, tracking the

harvesting process, and developing effective fishery regulations to best preserve

healthy and sustainable stock status. Fish stocks are assessed using biological

and fisheries data. To describe the stock, biological data include age structure,

age at first spawning, fecundity, ratio of males and females, natural mortality

(M), fishing growth rate, spawning behavior, critical habitats, migratory habits,

and food preferences. Fisheries data often include the type of fishery (e.g.,

commercial versus recreational), gear type (longline, road and reel, nets, etc.),

pounds of fish caught, fishing effort, and the time and geographic location of

the best catches. Stock assessment models combine both biological and fisheries

data to estimate total biomass of the stock. These models make it possible to

assess the current status and condition of the stock as well as to predict how

1



Insights on the Decision Table

stocks will respond to varying levels of fishing pressure in the future [1].

Overfishing has been a global concern as it reduces fish stocks, jeopardizes em-

ployment opportunities, and causes serious social, economic, and environmental

problems. Recently, state-space assessment models (SSAMs) are well-accepted

as standard deterministic and parametric stock assessment models [1]. It follows

that if we can estimate the biomass of the stock and understand its biology,

then we can estimate how many fish can be safely removed from the stock in

order to ensure a sustainable resource.

1.1.2 Incentives for sea scallop fishery

Scallop harvesting is an important economic component of the commercial

fishery in Maritimes Region as it contributes a substantial portion to the

total value of fish landings, which in turn provides significant socio-economic

benefits to individuals and communities throughout rural Nova Scotia and New

Brunswick [8].

However, weak management measures failed to regulate fishing efforts at a

sustainable level. For example, catches at Bay of Fundy increased drastically

in 1989, but little concern was put into protecting small scallops so that they

could grow to larger sizes or spawn in the subsequent years. Correspondingly,

scallop stocks were quickly reduced in the fall of 1989. As a result, shrinking

stocks and higher fishing costs led to a severe economic crisis as available stocks

were no longer able to supply an active fleet with scallop harvest [8].

In response to the depletion of stock status each year, limited entry and

strict criteria for issuing fishing licences were introduced to control harvesting

capacity. In 1996, it was recognized by the federal court that there were offshore

licenses and four classes of inshore scallop licenses (detailed definitions can be

found in the Glossary): Full-Bay Fleet, Mid-Bay Fleet, Upper-Bay Fleet, and

Inshore East of Baccaro Fleet [12]. This regulation limits access to fishing areas

and enhances fishery management.

2
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In an effort to record commercial biomass and monitor stock status, the Bay

of Fundy fleets were required to participate in a Dockside Monitoring Program

(DMP). During a fishing trip, a monitoring document (logbook) was kept.

Upon ending the trip, data were entered into the database of Maritime Region

Fisheries Information System (MARFIS) kept by Department of Fisheries and

Oceans Canada (DFO). In 1999, the industry implemented an inshore port

sampling protocol. Sampling equipment was specified and measuring processes

were defined. All data is to be entered and verified in a spreadsheet format

in a timely manner. This strategy provided information on the catch profile

of scallops landed and was used to monitor the percentage of small juvenile

scallops within the catch. On top of catch rate and biomass, industries were

also interested in determining the impact that clappers had on scallop fishery.

Analogously, guidelines for a Clapper Event were created for samples to be

collected and submitted to DFO Science.

1.1.3 Fishing locations

For inshore fleets, Bay of Fundy is the most active scallop harvesting area in the

Maritimes region. All scallop fishing in the Bay of Fundy takes place in Scallop

Fishing Areas (SFA) 28A, 28B, 28C, and 28D as shown by Figure 1.1. These

areas can be further subdivided into areas that are closed by either regulation

or variation orders that restrict fishing during all or part of the year. However,

some scallop biological production areas may fall within the boundaries of SFA.

Hence, Scallop Production Area (SPA) was created as a broader definition for

scallop fishing locations [8].

Correspondingly, scallop stocks in the Bay of Fundy are managed based on

rules established specifically for each SPA. It allows a more detailed evaluation

of the traditional and non-traditional (i.e., marginal) fishing areas through the

Bay of Fundy [8].
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Figure 1.1: Bay of Fundy Scallop Fishing Areas (SFAs) and Scallop Production
Areas (SPAs)

1.1.4 Management measures

Different management measures and controls were established to ensure sustain-

ability of the inshore scallop fishery. For example, “limited entry” means that

for any of the inshore scallop fleets, no new additional licenses are available;

“seasonal/area closure” refers to areas in Bay of Fundy that have regulated

seasons as a result of an agreement with the lobster fishery sector. Any changes

in seasonal fishing time are discussed through the advisory process to better

suit biological and economic objectives [8].

Several measures were adopted to regulate fishing efforts in favour of juvenile

scallops. “Minimum shell height size” means any scallop less than or equal

to the specified size may not be retained for shucking. “Meat count” means

only larger scallops can be retained for shucking, and the count is expressed as

the number of scallops whose meat weight is a minimum of 500 g. Note that

the quantitative standards vary across regions, and can be modified by DFO

through Variation Order [8].

Moreover, regulations for quota allocations across license holders are set,

with Dockside Monitoring Program (DMP) and Vessel Monitoring System

(VMS) launched to provide up-to-date and accurate data for DFO database [8].
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1.2 Science in stock assessment

1.2.1 Biological analysis

The sea scallop, Placopecten magellanicus, is a member of the class Bivalvia. It

is laterally compressed and its body is completely enclosed by two shells which

are connected by a dorsal hinge [2]. Scallops can be found in the Northwest

Atlantic from Cape Hatteras to Labrador and they live in relatively shallow

water (i.e., variable depth range of about 10–120 m). They aggregate in patches

and harvestable concentrations known as beds. The natural extent of these

beds is determined by favourable local conditions, such as water temperature,

food availability, substrate type, as well as spawning and settlement success [8].

Many scallops are hermaphrodites (having female and male organs sim-

ultaneously), altering their sex throughout their lives; while others exist as

dioecious species (males and females are separate); and a few are protoandrous

hermaphrodites (males when young then switching to female) [4]. At the age of

two, they usually become sexually active, but do not contribute significantly

to egg production until the age of four. Every year, spawning begins in late

August to early September when eggs and sperm are released into the water,

and fertilized ova sink to the bottom. After several weeks, the immature scallops

hatch and the larvae drift in water for almost a month before settling to bottom

to grow. Newly-settled sea scallops attach themselves to gravel, shells, and

other objects via byssal threads to avoid being swept away by the current.

Byssus is eventually lost with adulthood, transitioning almost all scallop species

into free swimmers [8, 11].

Most species of scallops can move to avoid predators, by propelling them-

selves through the use of the adductor muscles that open and close their shells.

Swimming occurs by first taking in water through the open valves, then closing

the valves and propelling water from the corner of its hinge with strong force,

which in turn pushes the scallop forward [3]. Some species of scallops can be
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found on the ocean floor attached to objects by byssal threads. Others be found

on the ocean floor, moving with an extendable foot located between their valves

or burrowing themselves in the sand by extending and retracting their feet [4].

Scallop growth is characterized by measuring shell height (distance between

hinge and the opposite ventral margin). Shell heights can range up to 20 cm

but are rarely larger than 15 cm in fished areas. Age is determined from annual

rings on the shell that result from the slowing or cessation of growth which

usually occurs in the late winter. Rings can also form as a result of some trauma

such as contact with fishing gears. These kinds of rings are referred to as shock

marks and can be confused with the annual growth rings. Scallop growth can

vary between locations, due to inter-annual differences in food availability [8].

Rapid growth occurs within the first several years, with an increase of 50 to

80% in shell height and quadrupled size in meat weight. Usually, scallops reach

commercial size at about four to five years of age [11].

Natural mortality of sea scallop is high during its planktonic larval stage.

At this stage, unfavourable environmental conditions can negatively affect

population development. For example, currents can sweep larvae away from

suitable habitats. Predation is another major threat to larvae as they are an

important food source for many larger organisms. Once in their adult form,

scallops are subject to predation by seastars, predatory snails, crustaceans, and

some fish species [8].

1.2.2 Stock assessment

In consultation with industry and other stakeholders, DFO investigates methods

to provide long-term advice on fishery management. During the stock assessment

process, annual surveys are conducted throughout Bay of Fundy by commercial

fishing vessels. For instance, an annual industry assessment survey of Scallop

Fishing Area (SFA) 29 West of 65 °30’W was carried out under the department’s

use of fish program, various at-sea sampling and survey work were conducted
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by or on behalf of fishers with DFO personnel, and stock status were recorded

by at-sea observers. Where information was available, the amount and spatial

distribution of bycatch (i.e., catch of other non-targeted species such as lobsters)

were also collected [8].

Starting in 2013, stock status for SPA 1A, 1B, 3 and 4 (including 5) is

being evaluated in terms of predicted biomass in the context of Precautionary

Approach (PA). However, the current survey coverage is restricted by limited

human resources, technical problems, and logistical concerns [8].

In the Bay of Fundy, there have been two major recruitment events since

1981. Population trends of scallops in the inshore areas of Bay of Fundy and

southwest Nova Scotia are characterized by “boom and bust” cycles, where

rapid increases in population sizes occurred but were then fished down. Until

the next major recruitment takes place, fisheries scientists will focus on the

existing commercial size scallops produced by low levels of recruitment in most

areas. It is expected that sustainability will be achieved by keeping exploitation

rate below the net productivity rate of the stocks, and biomass above the Upper

Stock Reference Point (USR) [8]. The relationship between stock status and

reference points such as USR will be further discussed in chapter 2.

1.3 Management issues

When evaluating inshore scallop on its stock status, all factors must be taken

into account: impacts from all industry sectors (e.g., oil and gas, transport, etc),

conflicts among different ocean users, and interests of different fishing sectors.

Here we discuss several concerns in scallop surveys and resource management.

1. Species interactions: Annual surveys are conducted using scallop drags,

which leave a footprint on the ocean floor and may affect other species

living there. In addition, the use of drags in the scallop fishery will

potentially impact fisheries of a range of other species. For example,
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scallop fisheries and lobster fisheries have coexisted in some fishing areas,

and scallop drags interact with fixed lobster traps. As a result, fishing

participants in each sector have discussed through advisory process to

handle conflicts and develop applicable fishing plans to protect the interests

of both sides [8].

2. Juveniles protections: It is generally agreed upon by inshore scallop

fleets that small scallops should be protected from overfishing for the

following reasons. Firstly, this would provide a large number of animals

for spawning. Secondly, when recruited to the fishery, scallops of larger

size will maximize the yield as larger meats are worth a premium amount,

resulting in larger landed values. When there was an above average

number of juveniles confirmed by the sample data, industries initiated

closures in the Bay of Fundy to protect specific areas [8].

3. Catch monitoring: The inshore scallop fleets are required to participate

in DMP through a third party. However, there have been reports about

violations of the hail time requirement, inconsistent dockside weight

verification, and inaccurate landing information [8].

1.4 Objectives, strategies and tactics

The underlying principle of the fisheries management in Maritimes Region

is that fishery is a common property resource to be managed for the benefit

of all Canadians. Fishery management should be consistent with sustainable

development of fisheries, Aboriginal rights to fish for various purposes, as well

as socio-economic benefits to Canadian economy and fishing communities [8].

Overall, fisheries management is summarized by five comprehensive object-

ives as listed below [8].

8
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Conservation objectives: maintain equilibrium of the ecosystem.

1. Productivity: do not cause unacceptable reduction in productivity so that

components can play their roles in the functioning of the ecosystem.

2. Biodiversity: do not cause unacceptable reduction in biodiversity in order

to preserve the structure and natural resilience of the ecosystem.

3. Habitat: do not cause unacceptable modification to habitat in order to

safeguard both physical and chemical properties of the ecosystem.

Social, cultural, and economical objectives: ensure sustainable devel-

opment.

1. Culture and Sustenance: respect Aboriginal and treaty rights to fish.

2. Prosperity: create the circumstances for economically prosperous fisheries.

Ensuring protection and promoting recovery of at-risk species is a national

priority. The protection and recovery of species at risk falls within the general

fishery decision-making framework. In resource management, Precautionary

Approach (PA) is about being cautious when scientific information is uncertain,

unreliable, or inadequate; and not using the absence of adequate scientific

information as a reason to postpone or fail to take action to avoid serious harm

to the resource [7]. In the next chapter, we examine the decision framework

used by Canadian fisheries to ensure sustainability of key harvested stocks.

9



Chapter 2

Precautionary Approach in

Canadian Fisheries

2.1 Fishery decision-making framework

In this chapter, we introduce basic concepts pertaining to a fishery decision-

making framework. In particular, we describe reference points, stock status

zones, and the management of uncertainty and risk. References for this material

include [7] and [17].

Following is a list of primary components of the framework [7]:

1. Reference points and stock status zones (Healthy, Cautious, and Critical).

2. Harvest strategy and harvest decision rules.

3. Accounting for uncertainty and risk when developing reference points, as

well as defining and implementing decision rules.

2.2 Reference point and stock status zones

The stock status zones are defined by a Limit Reference Point (LRP) and

an Upper Stock Reference Point (USR). LRP marks the boundary between

cautious and critical zones. When a fish stock falls below this boundary, there

10
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is a high probability that its productivity will be impaired and serious harm will

occur. USR marks the boundary between healthy and cautious zones. When a

fish stock falls below this boundary, removal rate must be progressively reduced

in order to avoid serious harm to the stock. Note that the unit describing stock

status will vary depending on the nature of the resource. LRP is based on

biological criteria and established by Science through a peer-reviewed process.

USR is developed by fishery managers informed by consultations with the

fishery and other interests, with advice and input from Science [25].

In general, reference points will usually be determined using standard bio-

mass and harvest metrics. However, for a number of stocks, such measurements

are not available. In these cases, precautionary management actions should be

based on empirical measurements of reproductive potentials, with the objective

of avoiding serious harm to reproductive capacity of the stock [7].

Figure 2.1: Stock Status

2.3 Uncertainty and risks

The treatment of uncertainty and risks is an important aspect of the decision

framework when estimating stock status, setting reference points, as well as

11
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making and implementing management decisions. Both scientific uncertainty

and uncertainty related to the implementation of a management approach must

be explicitly considered. It is desirable to quantify scientific uncertainty as

much as possible, as they can be used to assess the probability of achieving a

target or the probability of a stock falling to a certain level under a specific

management approach [7].

For example, uncertainty should be incorporated in the calculation of stock

status and biological reference points [7]. In the population dynamics models to

be discussed in chapter 4, unobserved stock states such as population biomass

and natural mortality rates are predicted using state-space assessment models

under a frequentist framework. This model handled identifiability issues caused

by prior distributions which were assumed in the Baysian models [29]. In the

decision table to be introduced in chapter 5, we perform simulation study and

use the median of the outputs to eliminate effects of estimated parameters and

outliers.

When using the framework to instruct commercial fishery, it is important

to consider the impact from management actions on stock productivity. Based

on the condition of stock status, reference points and management actions can

be adjusted accordingly.

2.4 Applications of the decision framework

It is crucial to analyze stock status comprehensively before setting harvest

decision rules. In the healthy zone, where economic considerations may prevail,

stock reductions resulting from management actions are tolerated because there

is a low probability of the stock falling to the critical zone [7].

In the critical zone, conservation concerns are paramount and there is no

tolerance for preventable declines. In other words, management actions should

promote stock growth; removals by all human sources must be kept to the

12
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lowest possible level to get the stock out of critical zone within a reasonable

time frame [7].

When the stock is in the Cautious or Healthy zone, management actions

should be flexible, based on the stock status and the trajectory or rate of

change in status, within the bounds of the appropriate removal rate. For

example, if a stock is in the Cautious zone but has shown an obvious increase

in stock abundance, then management actions should balance socio-economic

and biological factors. It should promote the stock growth to the Health Zone

within a reasonable time frame, with a certain level of risk tolerance. The focus

of management actions will be shifted when a stock is in the Cautious zone and

is declining sharply [7].

Utilization of the decision-making framework should involve all fishing

participants, including fishermen, Provinces, Territories, Aboriginal people,

scientists, and fishery managers etc. Under this framework, development of

decision rules for scallop fisheries is a management responsibility and scientists

are to provide advice and support the development. Harvest Rate Strategy

with the associated harvest decision rules will take the form of a decision table.

Ultimately, decision table could be constructed for each stock. If successfully

implemented, this approach will facilitate stable and predictable commercial

fishery and contribute to fishery sustainability [7].

13



Chapter 3

Statistical Inference

3.1 Overview

In this chapter, we introduce the frequentist inference approach. In particular,

we introduce common methods such as maximum likelihood estimation, hypo-

thesis testing, and confidence intervals. References for this material include [28,

10], and the lecture notes of STAT 3460–Intermediate Statistical Theory–taught

by Dr. Edward Susko at Dalhousie University in the winter of 2019 [26].

Statistical inference is the process of using data analysis to deduce properties

of an underlying probability distribution of a population. Given a hypothesis

about a population, statistical inferences use data drawn from the population

with some form of sampling, select a statistical model of the process, deduce

propositions from the model, and make predictions based on the sampling data

[28].

Some common forms of statistical proposition are listed below.

1. A point estimate is a particular value that best approximates some

parameter of interest;

2. An interval estimate (e.g. a confidence interval or set estimate) is an

interval constructed using a dataset drawn from a population so that

under repeated sampling of the dataset, the interval would contain the

14
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true parameter value with the probability at the stated confidence level;

3. Rejection of a hypothesis;

4. Clustering or classification of data points into groups.

Given some data, y, to find a statistical model with parameter θ, we usually

have five questions in mind.

1. What values of θ are most consistent with y?

2. Which of several alternative models are most consistent with y?

3. What range of values of θ are consistent with y?

4. Is the model consistent with the data given any possible value of θ?

5. Does the data gathering process enable us to answer the previous questions

as accurately and precisely as possible? If not, how to improve the integrity

and accuracy of the data?

The first question can be answered by point estimation, and the second

question can be answered by hypothesis testing. The third and fourth ques-

tions can be answered by interval estimation and model checking respectively.

Uncertainty is inherent in the process of trying to learn about θ from y, and

the fifth question is answered by experimental and survey design methods [28].

Frequentists and Bayesian approaches are two main classes of methods to

answer questions 1 - 4, and they start from different basic assumptions. From

the frequentist perspective, parameters are treated as having values that are

fixed states of nature, and we want to learn about these parameters using

data. There is randomness in our estimation of parameters, but not in the

parameters themselves. From the Bayesian’s point of view, parameters are

treated as random variables, about which we want to update our beliefs in light

of data. In other words, our beliefs are summarized by probability distributions

of the parameters [10].

15
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3.2 Frequentist approach

In this section, we focus on the frequentist inference approach, which is the

underlying framework of the state-space assessment model introduced in the

next chapter.

In the frequentist framework, we use probability to investigate what would

happen under repeated replication of data sampling and the subsequent statist-

ical analysis. In this approach, probability is all about how frequently events

would occur. Following we introduce joint likelihood function, point estimation,

hypothesis testing, and confidence intervals.

3.2.1 Joint likelihood function

Joint likelihood function is a main starting point for point estimation and

statistical inferences, as it gives a comprehensive description of data with

regards to relative parameters. We assumes θ is of one dimension to simplify

the discussion below.

Definition 1. In discrete cases, if the observed sample values are x1, x2, ..., xn,

the probability of getting them P (X1 = x1, X2 = x2, ..., Xn = xn) = f(x1, x2, ..., xn; θ).

This is the value of the joint probability distribution of the random variables

X1, X2, ..., Xn at X1 = x1, X2 = x2, ..., Xn = xn. Since the sample values have

been observed and are therefore fixed numbers, we consider f(x1, x2, ..., xn; θ)

as a value of a function of θ, and we refer to this function as the likelihood

function [10].

An analogous definition applies when the random sample comes from a

continuous population, and in this case f(x1, x2, ..., xn; θ) is the value of the joint

probability density of the random variables X1, X2, ..., Xn at X1 = x1, X2 =

x2, ..., Xn = xn [10].

16
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3.2.2 Point estimation

For a population, we can conduct multiple sampling processes and retrieve sets

of independently randomly distributed data. Given each set of data, we can

propose a model with unknown parameters. Then with consideration of what

do these parameters mean, it is often possible to come up with a way of getting

reasonable parameter value guesses (i.e. estimations of unknown parameters)

from the data. However, such model-by-model reasoning is time-consuming

and unsatisfactory: how do we know if our estimation process is making good

use of data? Therefore, we come up with a more general approach to deal with

all models [28].

Among various estimation approaches such as the method of moments and

least squares methods, maximum likelihood estimation stands out in terms of

its practical utility and some nice probabilistic properties.

Maximum likelihood estimation

To start with, we give the intuition behind this approach. Parameter values

that make the observed data appear relatively probable are more likely to be

correct than parameter values that make the observed data appear relatively

improbable. So the idea is to judge the likelihood of parameter values using

fθ(y), the model’s probability density function (p.d.f) according to the given

value of θ, evaluated at the observed data. Because y is now fixed and we are

considering the likelihood as a function of θ, it is usual to write the likelihood as

L(θ) ≡ fθ(y). In fact, for theoretical and practical purposes, it is usual to work

with log likelihood l(θ) = logL(θ) [26]. The maximum likelihood estimator

(MLE) of θ is defined as

θ̂ = argmaxθl(θ)

Below is the formal definition of MLE. For easy discussions, we use a

simplified case when θ is of one dimension, so the first order derivative on θ
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is used directly instead of the partial derivative of θj, where j denotes the jth

element in θ.

Definition 2. If x1, x2, ..., xn are the values of a random sample from a pop-

ulation with the parameter θ, the likelihood function of the sample is given

by L(θ) = f(x1, x2, ..., xn; θ) for values of θ within a given domain. Here,

f(x1, x2, ..., xn; θ) is the value of the joint probability distribution or the joint

probability density of the random variables X1, X2, ..., Xn at X1 = x1, X2 =

x2, ..., Xn = xn. We refer to the value of θ that maximizes L(θ), θ̂, as the MLE

of θ. Usually, θ̂ can be obtained by solving equation dl(θ)
dθ

= 0, where l(θ) is a

log-likelihood function [10].

Sometimes we need to examine the log-likelihood function itself to determine

an MLE. Sometimes, MLE does not exist.

There is more to maximum likelihood estimation than just its intuitive

appeal. To see this, we need to consider what constitutes a good estimation

under replication of the data-gathering process. Repeating the estimation

process results in a different value of θ̂ for each replication. We want these

estimators to be consistent. This property is quantified as shown below [10].

Definition 3. If E(θ̂) = θ, then θ̂ is unbiased. When n→∞, if |E(θ̂)−θ| → 0,

then θ̂ is asymptotically unbiased.

Definition 4. If θ̂ is an unbiased estimator of the parameter θ and var(θ̂)→ 0

when n→∞, then θ̂ is a consistent estimator of θ.

Remark 1. Unbiasedness suggests that the estimator is accurate on average: a

long-run average of θ̂ would tend towards the true value of the parameter. Low

variance implies that any individual estimate is quite precise.

Theorem 1. With regularity conditions, and in the large sample limit, MLE is

the minimum variance unbiased estimator.

Theorem 2. With regularity conditions, MLE is consistent and asymptotically

normal.
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This gives MLE following advantages in statistical analysis.

1. MLE provides a consistent approach to parameter estimation problems,

and thus can be developed for a large variety of estimation situations. For

example, they can be applied to censored data in survival analysis [26].

2. The consistency and asymptotic normality allows MLE to have desirable

mathematical and optimality properties. For example, MLE becomes

minimum variance unbiased as the sample size increases. They have

approximate normal distributions and approximate sample variances that

can be used to generate confidence intervals/regions and hypothesis tests

for the parameters [6].

Given those nice statistical properties, there are several drawbacks of MLE.

For the completeness of the discussion, we give a brief summary below.

1. The likelihood equations need to be specifically worked out for a given

distribution and estimation problem. The mathematics is often non-trivial,

particularly if confidence intervals for the parameters are desired.

2. The numerical estimation is usually non-trivial (i.e. solutions to systems

of equations and solving complicated score functions may not be obvi-

ous). Except for a few cases where the maximum likelihood formulas

are simple, we tend to rely on high quality statistical software to obtain

MLE. Fortunately, high quality maximum likelihood software is becoming

increasingly common.

3. The advantages of asymptotic normality may be diminished when the

sample size is not large enough. In other words, MLE can be heavily

biased for a small sample [6].
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3.2.3 Hypothesis testing

Now consider the question of whether some defined restriction on θ is consistent

with y. Suppose that we have a model defining a p.d.f., fθ(y), for data vector

y and that we want to test the null hypothesis H0 : θ = θ0, where θ0 is

some specified value. We want to determine whether data could be reasonably

generated from fθ0(y). In other words, assuming null hypothesis is true, how

likely it is to obtain the effect y observed in your sample data [5, 28]?

P-value evaluates how well the sample data support the argument that the

null hypothesis is true. It measures how compatible our data are with the null

hypothesis. Accordingly, high p-value means our data are likely under the null

hypothesis, so we fail to reject H0. Low p-value means our data are not likely

given the null hypothesis, so there is a strong evidence against H0. Hence, the

smaller the p-value, the stronger the evidence against the null hypothesis [26].

The process of hypothesis testing consists of four steps.

1. Formulate the null hypothesis H0 and the alternative hypothesis Ha.

2. Identify a test statistic that can be used to assess the truth of the null

hypothesis.

3. Compute the p-value.

4. Compare the p-value with an acceptable significance value α. If p ≤ α, it

means the observed effect is statistically significant, so we reject the null

hypothesis; otherwise, we fail to reject the null hypothesis.

3.2.4 Confidence intervals

Confidence interval describes the amount of uncertainty associated with a

sample estimate of a population parameter. Recall the question of finding the

range of values for the parameters that are consistent with the data. We can

provide a range of values for any parameter θ that would have been accepted in
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a hypothesis test. For example, we can return a set of values for θ that would

yield a p-value of more that 5% if used as a null hypothesis for the parameter.

Such a set is known as a 95% confidence set for θ. If the set is continuous, then

its upper bound and lower bound define a 95% confidence interval [28].

If we reject a hypothesis when the p-values is less than 5%, then we will

reject the null hypothesis on 5% of occasions when it is correct and therefore

accept it on 95% when it is correct. This means the corresponding confidence

intervals must exclude the true parameter value on those 5% of occasions as

well. Therefore, a 95% confidence interval has a 0.95 probability of including

the true parameter value (with an infinite sequence of replicates of the data

gathering and intervals estimation process) [28, 10].
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State Space Assessment Model

This chapter is based on identifiable state-space assessment models (SSAM)

proposed by [29]. Here we give a brief introduction about the hierarchical

SSAM. Understanding this model helps us generate a decision table within the

frequentist framework.

SSAMs are prevalent in fisheries science for providing management advice

when faced with noisy survey and commercial fishery data. A frequentist frame-

work was suggested where inferences were made using Laplace approximation

with automatic differentiation. The approach is implemented with an R package,

Template Model Builder (TMB), to speed up the model-fitting process. In

addition, this model handles some identifiability issues associated with SSAMs,

and thus yields reliable inference and provides more conservative advice than

models in a Bayesian framework [29].

In order to assess stock status for commercial species of fish and inverteb-

rates, we need mathematical population dynamics models to interpret observed

fisheries data collected through time [19]. The results of these assessments are

used to set fishing quotas in an effort to protect stocks from over-exploitation

and to quantify the progress of rebuilding stocks that have been reduced to

below sustainable levels. Effective fisheries management relies on not only

having appropriate data and model, but also accounting for all possible sources
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of uncertainty when making statistical inferences. These uncertainties result

from the over-simplification of the assumed population dynamics and the obser-

vational nature of fisheries data. Note that such oversimplification is inevitable

due to our limited understanding of the biological and environmental processes

[29].

4.1 Model framework

The SSAM is defined by two stochastic processes Xt and Yt, with the index

t = 1, 2, ... denoting distinct time steps. The q-dimensional Xt process is often

called the unobserved state sequence as it represents dynamic features of the

system under study that are not directly observed. In fisheries science, Xt

usually include the fish stock biomass, its abundance, and the fishing mortality

rate. The r-dimensional Yt process is directly observed and acts as a vector of

response variables. In fisheries science, Yt usually include the reported total

commercial catch and survey indices corresponding to a standardized fishing

effort. On top of Xt and Yt, there are some other variables observed in the

survey, and they usually play the role of fixed covariates and thus will be

omitted in the model notation [1].

4.2 Notations

The SSAM is a hierarchical model, and thus it can be conveniently represented

by a set of equations, each representing a different level of hierarchy [1]. There

are two hierarchical levels in the the model [29] we used to generate the

decision table. The top level is a system of observation equations linking

observed variables to unobserved variables and observation error. The second

level consists of process equations describing the dynamics of the unobserved

variables, along with process error [29]. Deeper levels of hierarchy can be

added, such as prior distributions of model parameters if the SSAM is cast in a
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Bayesian Framework [1]. All variables are indexed by a discrete time index t =

1,...,T referring to years.

Generally in fisheries science, the SSAM can be written as shown below:

E[Yt|Xt] = g(Xt|θ)

E[Xt|Xt−1] = h(Xt−1|θ)

where functions g and h satisfying some regularity conditions with initial

states X0 to be estimated, and θ is a vector of unknown model parameters. Xt

are considered as random effects, whereas θ are considered fixed. Terminology-

wise, Xt is said to be predicted, while θ is said to be estimated [1].

Explanatory variables: zt

Let zt denote a vector of observed quantities that are considered as fixed

explanatory (or control) variables. Then zt = (Nt, Ct, gt, g
R
t , rt, CVεt, CVνt)>.

Nt : survey estimates of the biomass of recruitment size scallops.

Ct : commercial catch reported at the end of the year.

gt : growth rates of commercial size scallops.

gRt : growth rates of recruitment size scallops.

rt : ratio of commercial size scallops caught in lined and unlined survey

drags, where the lined gear is meant to catch scallops of smaller size.

Response variables: Yt

Let Yt denote a vector of observed quantities that are considered as response

variables. Then Yt = (It, IRt , Lt)>.

It : survey index of the biomass of commercial size scallops.

IRt : survey index of the biomass of recruitment size scallops.

Lt : survey estimates of the number of scallops that die due to natural

causes.
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Response variables: Xt

Let Xt denote a vector of unobserved state variables, representing features of

the fish stock that cannot be directly observed. Then Xt = (Bt, Rt,mt)>.

Bt : population biomass of commercial size scallops (commercial biomass).

Rt : population biomass of recruitment size scallops (recruitment biomass).

mt : natural mortality rate (death due to any cause other than fishing).

4.3 Observation and process equations

The SSAM used to generate the decision table in this thesis [29] is inherited

from the model of [23]. It is cast within a frequentist approach, without

the use of priors or constraints between parameters. Thus we consider θ =

(qI , qR, S, a, χ, σ2
ε , σ

2
ν , σ

2
κ, σ

2
ζ , σ

2
τ , σ

2
φ, σ

2
η) as a vector of fixed effects, and X1:T is

considered as dynamic random effects to be predicted based on some estimate

of θ.

For t = 1, ..., T , the observation equations are shown below.

It = qIBtεt, εt
ind∼ ulN(σ2

ε ) (1)

IRt = qRRtνt, νt
ind∼ ulN(σ2

ν) (2)

Lt = mtS

(
S

2Nt−1 +
(

1− S

2

)
Nt

)
κt, κt

ind∼ ulN(σ2
κ) (3)

Ct = Ct−1

Bt−1
Bt

(
Bt−1

aB1/2

)χ
ζt, ζt

ind∼ ulN(σ2
ζ ) (4)

Remark

1. The survey indices It and IRt of commercial and recruitment biomass are

assumed to be proportional to their respective stock features (denoted

by Bt and Rt respectively), both with multiplicative noise representing

model and survey uncertainties.

25



Insights on the Decision Table

2. ulN(σ2) denotes a log-normal distribution with unit mean and variance

σ2 on the natural logarithm scale.

3. qt and qR are two separate catchability coefficients [24]. The error terms

εt, νt, and κt follow the log-normal distributions, where σ2
ν and σ2

ε are

assumed to be constant through time.

4. In equation (4), index t starts at t = 2. Motivated by data simulation

[29], this equation was adapted from [27]. In the 10,000 independent

simulations, some samples featured a depleted stock (i.e., Ct > Bt at

some t). Such depletion resulted from the interaction of many random

factors. In particular, the random walks for logRt and logmt occasionally

produced too few recruits, which coincided with low levels for Bt. This

phenomenon is more significant as the range of time series is extended.

We assume the existence of an equilibrium biomass at which fishing effort

remains at a constant level on average. Then the catch is assumed to be

driven by effort-dynamics, rather than being fixed throughout the time.

By simulating catch, the risk of stock depletion is drastically reduced as

the fishing mortality is realistically adjusted in accordance with the stock

population.

5. There are several parameters to estimate from data: a is the ratio of

biomass at bio-economic equilibrium to biomass at maximum sustainable

yield (which is assumed equal to half of the initial commercial biomass

B1); χ is the rate at which effort enters or exits fishery; and σ2
ζ is the

observation variance.

For t = 2, ..., T , the process equations are shown below.

Bt = exp(−mt)gt−1(Bt−1 − Ct−1) + exp(−mt)gRt−1Rt−1τt, τt
ind∼ ulN(σ2

τ ) (5)

Rt = Rt−1φt, φt
ind∼ ulN(σ2

φ) (6)
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mt = mt−1ηt, ηt
ind∼ ulN(σ2

η) (7)

Remark

The process equations are used predominantly to construct the decision

table

4.4 Model summary

In the frequentist approach, considering θ as a fixed unknown parameter at the

population level, the observation and process equations can be combined to

define the joint likelihood of Y1:T and X1:T as shown below.

L(θ,y1:T ,x1:T ) = p(y1|x1,θ)
T∏
t=w

p(yt|xt,θ)p(xt|xt−1,θ) (8)

Since only y1:T is observed, θ is estimated by maximizing the marginal

log-likelihood as follows.

logL(θ,y1:T ) = log
∫
L(θ,y1:T ,x1:T )dx1:T (9)

To approximate the high-dimensional integral, [29] used Laplace’s method

as implemented in the R package TMB, whose efficient implementation allows

fast-fitting of the model and running 10,000 replications of the simulation study

in a short amount of time. This has in turn sped up the generation process for

the decision table.
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Decision Table

As introduced in chapter 1, the Bay of Fundy is fished by three separate scallop

fishing fleets: Full Bay, Mid Bay, and Upper Bay. In our assessment, scallop

removals included landings from all three inshore scallop fleets, as well as

Food, Social, and Ceremonial (FSC) catch by scallop drag. Note that landed

recreational and FSC catch by dip netting, diving, tongs, and hand are not

available and thus are not accounted for in the assessment [17].

5.1 Commercial data and survey

In this assessment, scallops with a shell height of 80 mm and greater are referred

to as commercial data, and scallops with a shell height of 65 to 79 mm are

referred to as recruits, and are expected to grow to commercial size in the

following year. Scallops less than 65 mm are defined as prerecruits [17]. As

an important component of the assessment of scallop stock in the Maritimes

region, commercial data is in the form of catch, effort, and location [18].

Three survey designs are used in the Bay of Fundy annual survey: simple

random, stratified random, and sampling with partial replacement (SPR). For

simple random, survey tows are distributed randomly within a survey area.

For stratified random, survey tows are distributed proportionally to a number

of strata and the tow replacement within each stratum is random. For SPR,
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a subset of tows in a given year is a repeat of tows in the previous year.

Throughout the survey period, every live scallop and clapper (dead scallop with

paired shells) are counted and used to estimate abundance and shell height

frequencies. Detailed biological sampling is done on approximately every other

tow or based on the judgement of the lead DFO scientist aboard. Each scallop

from the sample is shucked, the meat is weighed to the tenth of a gram, and the

shell height is measured. These data determine the meat weight-shell height

relationships that are used to estimate biomass of the stock. Individual shells

are also aged, but the age data of the current year was not immediately available

[17].

5.2 Decision table architecture

The Decision table is also called the Harvest Scenario Table. It is used to

review the status of scallop stocks by evaluating the annual catch level in terms

of resulting exploitation (e), expected changes in biomass (%), probability of

biomass increase, probability that after removal the stock will be above the

Upper Stock Reference Point (USR), and above the Limit Reference Point

(LRP) [20, 21]. We continue to assume a USR of 750 t and a LRP of 530 t.
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Catch e % Change Pr Increase Pr > LRP Pr > USR

80 0.1035 -7.0819 0.3962 0.8234 0.3866

100 0.1292 -9.5871 0.3636 0.7882 0.3558

120 0.1543 -11.7578 0.3278 0.7702 0.3196

140 0.1831 -16.2065 0.2596 0.7092 0.2544

160 0.2084 -18.4482 0.241 0.6842 0.2362

180 0.2347 -21.2374 0.21 0.6292 0.2026

200 0.2584 -22.9879 0.1806 0.6056 0.1764

220 0.2834 -25.3592 0.1506 0.5568 0.1466

240 0.3123 -29.1001 0.1242 0.4948 0.1198

260 0.3388 -31.9255 0.1026 0.4404 0.0992

280 0.3622 -33.8637 0.081 0.4078 0.0778

300 0.3917 -37.495 0.0596 0.3404 0.0574

320 0.4146 -39.3861 0.0432 0.2906 0.0422

340 0.4391 -41.7436 0.0354 0.2534 0.034

360 0.4646 -44.3334 0.0296 0.2054 0.0288

380 0.4917 -47.306 0.0206 0.1566 0.0194

400 0.5179 -50.044 0.015 0.1208 0.0138

420 0.5415 -52.2898 0.0082 0.0944 0.0082

440 0.5695 -55.3727 0.0066 0.068 0.0064

460 0.5961 -58.1894 0.0024 0.0454 0.0024

480 0.6218 -60.8296 0.0024 0.0298 0.0022

500 0.6469 -63.3911 0.003 0.0208 0.003

Table 5.1: Decision table for SPA 4 scallop data

5.3 Decision table interpretation

Harvest scenarios for 2016/2017, as well as the catches that correspond to

predicted biomass changes in the following year 2017/2018, are presented in the
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Table 5.1. Given different catch rates and based on data obtained from previous

years, we estimate the resulting biomass next year. For example, a catch of 80

t corresponds to a predicted exploitation rate of 0.1035, and is predicted to

result in an 7.0819% negative change in biomass. The probability of biomass

increase is 39.62%. As a result, around 82.34% of time the biomass will stay

above the LRP, and around 38.66% of time the biomass will stay above USR.

Based on different values of LRP and USR, given a sequence of catch rates,

we will produce different tables. As discussed in chapter 2, LRP and USR are

boundary lines define different stock status zone. LRP represents the stock

status below which serious harm is occurring to the stock. At this stock status

level, there may also be resultant impacts to the ecosystem, associated species

and a long-term loss of fishing opportunities. Reasoning similarly, USR is the

stock level threshold below which removals must be progressively reduced in

order to avoid reaching the LRP. [7]. Here, our decision table can be used

as a reference for fishery manager to adjust fishing quota to maintain the

sustainability of scallop stock status.

5.4 Decision table generation

In this case study, we used the SSAM developed by [29] to construct a decision

table, with data collected from the year of 2016/2017 issued by DFO. Next, we

ran a number of simulations to estimate the resulting biomass given certain

catch rates. Below is an algebraic description of the decision-table generating

process. Note that for each catch rate, 5000 simulations are generated to yield

Bt+1. R code for the state-space assessment model and the decision table

generation can be found in the appendix.

Firstly, define a sequence of catch rates.
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Ct+1 := c(80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340,

360, 380, 400, 420, 440, 460, 480, 500)

Then the exploitation rate (e) corresponding to a certain catch rate is

calculated by the following equations inherited from the SSAM. Note that

Bt+1 and mt+1 are population biomass and instantaneous natural mortality,

respectively in year t+ 1. gt is the growth rate of the portion of the population

recruited to fishery in year t, and gRt is the growth rate of the portion of the

population recruited to fishery in year t+ 1. Ct+1 is the commercial catch in

year t+ 1, which can be set to a sequence of fixed values within the decision

table generator. The τt+1 represents random process error associated with the

model dynamics. The state-space structure of the model and the Frequentist

methods for estimation were reviewed in [29].

e = median( Ct+1

Ct+1 +Bt+1
)

Bt+1 = (e−mt+1gt(Bt − Ct+1) + e−mt+1gRt Rt)τt+1 τt+1 ∼ ulN(σ2
τ )

mt+1 = mtηt+1 ηt+1 ∼ ulN(σ2
η)

Rt = Rt−1φt+1 φt+1 ∼ ulN(σ2
φ)

The expected changes in biomass (%) is calculated by

% change = median(Bt+1−Bt

Bt
)

The probability of biomass increase can be calculated by

Pr Increase = The number of simulations where % change > 0
5000

The probability that after removal the stock will be above the LRP = 530:
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Pr > LRP = The number of simulations where expected biomass > LRP
5000

The probability that after removal the stock will be above the USR = 750:

Pr > USR = The number of simulations where expected biomass > USR
5000
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Chapter 6

Conclusions and Open Questions

6.1 Summary

Fisheries scientists collect biological and fisheries data, and then build models

to perform stock assessments. These models evaluate stock status and predict

biomass, then provides fisheries managers with information required to regulate

fish stocks [14, 9]. The Complex State Space Assessment Models (SSAMs)

required in the field of fish stock assessment stimulate further development of

both the underlying statistical theory and supporting software. Correspondingly,

the advancement of statistical software empowers fisheries management and

increases the accuracy and the quality of stock assessment. For example, new

software such as Automatic Differentiation Model Builder (ADMB, [22]) and

R package Template Model Builder (TMB, [15]) made it possible to use the

Laplace approximation to implement these models efficiently. As a result,

SSAMs become fully operational and now they are prevalent assessment tools

in global fisheries stock management [1].

In this thesis, we discussed the background underlying Canadian scallop

fisheries and the decision-making framework used in the sustainable fishery

management. We then introduced the frequentist inference approach, based

on which a state-space assessment model (SSAM) was developed [29] to assess
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the stock status and predict population biomass. Next, we applied the SSAM

in a case study to construct a decision table, using data collected from the

Bay of Fundy Scallop Production Area 4. Ultimately, this table will support

scallop fishery management with predictions about stock status corresponding

to different catch rates.

The discussion below follows from the proposal of Collaborative Research

Team (CRT) project (2018-2021) titled “Towards Sustainable Fisheries: State

Space Assessment Models for Complex Fisheries and Biological Data”. Funded

by Canadian Statistical Sciences Institute (CANSSI), this project is led by Dr.

Joanna Mills Flemming, with statistical and fisheries collaborators from various

institutes in Canada, Europe, USA. This initiative allows statisticians together

with marine biologists and fisheries managers to establish best practices for

stock assessments in Canada.

6.2 Open questions

In fishery stock assessment, usually it is not possible to measure abundance

directly, so we input catches reported by scientific survey vessels into a SSAM.

This model accounts for factors (e.g., gear type, time of day, spatial changes in

fishing) which are expected to affect catchability. The goal is to retrieve the

most precise yearly indices of abundance. Then we use these indices with their

estimated uncertainties as observations in the model. At present, time-series

methods are incorporated in the SSAMs fitted under both Bayesian [23] and

frequentist [29] frameworks. SSAMs account for population dynamics along

with measurement and process error; however, they neglect spatial source of

variability.

We begin by considering the integrated modelling problem: how can commer-

cial landings which involve no spatial information be combined with scientific

surveys that have fine-scale spatial information within the same model? Stat-
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isticians involved in the CRT project are working to develop a spatio-temporal

model for the scallop fishery, which can reliably predict biomass into 1 to 2 years.

Resulting estimates and predictions will be at a much finer spatial resolution

than previously available ones. Meanwhile, we are hoping that advancements in

computational power and estimation techniques will empower such integrated

models, which could analyze as much relevant data as possible. As a result, a

decision table should be implemented to fully describe the predictions produced

by the spatio-temporal models, and make the numerical values meaningful to

fishery managers.

As a result, there are some concerns we need to address in order to carry

out a spatio-temporal stock status analysis.

1. Data concerns: Given catch reported from a Scallop Production Area per

year, how to allocate them to different locations in the area? As survey

data are provided via the Dockside Monitoring Program, is it possible

to incorporate spatial details into the reporting system? If so, is there

a way to best monitor the data collection process to ensure the validity

and integrity of the reported data? In addition, in other fisheries where

scallops are considered bycatch, how could we partition the reported

bycatch into different locations?

2. Model concerns: At this point, it is still unclear whether it is possible

to develop a spatio-temporal model that converges and produces reliable

biomass predictions. Once a model is proposed, simulation study is needed

to show that results are not unduly affected by outliers and violations

of underlying assumptions. However, it is uncertain that the current

available statistical software will support the efficient implementation of

such a simulation study.

3. Decision table concerns: The current decision table is of two dimensions.

Given a catch value, a row displays predicted values for various referenced
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characteristics of the stock. Stock managers will be able to use the decision

table as a scientific reference to decide the Total Allowable Catch for the

next year in order to maintain a healthy stock status. Without an explicit

spatio-temporal model in place, we do not know what form the decision

table will take. Will it become an integrated multi-page reference book,

where each page contains a decision table dedicated to one location or an

area, or will there be some scale-up to larger area(s) a priori.

Moreover, the current decision table is generated in the R environment

with a number of simulations of data. Apparently, integrating spatial

information will complicate the model, but how will that affect the gener-

ation of a new decision table? If the dimensions of the decision table turn

out to be multidimensional, can we continue to run the simulation in R, or

should we switch to different programming environment? Correspondingly,

what impact will it have on the efficiency of the table generation?
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Glossary

bycatch In the fishing industry, bycatch is a fish or other marine species that

is caught unintentionally while catching certain target species and target

sizes of fish, crabs etc. Bycatch can be either of a different species, the

wrong sex, or undersized or juvenile individuals of the target species. 7

byssal threads are strong, silky fibers extending from the muscular foot, used

to attach to a firm support, such as a rock [4]. 5

Clapper Event occurs when the number of clappers (dead paired shells) in

a regular fishing tow makes up 25 percent or more of the total catch in

that tow. Certain information should be collected about that tow and

any similar tows in that area[8]. 3

Dockside Monitoring Program (DMP) All inshore scallop license holders

must hail out to the Interactive Voice Recognition (IVR) center at the

start of the trip and must hail in to a Dockside Monitoring Company

(DMC) before they land with their scallops. All inshore scallop license

holders are required to submit monitoring documents or logbooks to the

DMC for entry into the DFO (Fisheries and Oceans Canada) database.

The weight of scallops landed is verified by a Dockside Observer [8]. 3, 4

Full-Bay Fleet Scallop fishing of full-bay fleet is its primary activity. Full

Bay scallop license holders are able to fish scallops anywhere in the Bay

of Fundy, and the fleet has traditionally been based in Digby and Nova

Scotia [12, 17]. 2
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hail time requirement The Bay of Fundy fleets are required to hail out

before leaving port to an Interactive Voice Recognition Centre (IVR) to

start their fishing trip. All inshore fleets are required to hail in to a DMC

at least two hours prior to returning to port [8]. 8

Harvest Rate Strategy is the approach taken to manage the harvest of a

stock and is a necessary element of any fishery plan [7]. 13

Inshore East of Baccaro Fleet have access to SFA 29 East of 65°30’ west

longitude and a small scallop fishery in SFA 29 West of 65°30’ west

Longitude to the 43°40’ north latitude line. Scallops are not the primary

fishery (mainly lobster) for the licence holders [12]. 2

juvenile is an individual organism that has not yet reached its adult form,

sexual maturity or size. 8

Limit Reference Point (LRP) marks the boundary between the cautious

and critical zone. When a fish stock falls below this zone, there is a high

probability that its productivity will be so impaired that serious harm

will occur [7]. 10

maximum likelihood estimator (MLE) begins with the mathematical ex-

pression known as a likelihood function (or log-likelihood function) of the

sample data. The likelihood of a set of data is the probability of obtaining

that particular set of data given the chosen probability model. This

expression contains the unknown parameters. Those values of the para-

meter that maximize the sample likelihood are known as the maximum

likelihood estimators (MLE). 17

Mid-Bay Fleet Mid Bay license holders can only fish for scallops on the

northern side of the Mid Bay line (Figure 1), and traditionally the fleet

has consisted mainly of New Brunswick-based vessels with multiple licenses

for different species [12, 17]. 2
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minimum variance When the sample size grows to infinity, the estimator

has the smallest variance, and thus the narrowest confidence interval, of

all estimators of that type. 19

minimum variance unbiased estimator The estimator for the parameter

θ of a given distribution that has the smallest variance of all unbiased

estimators for θ is called the minimum variance unbiased estimator, or

the best unbiased estimator for θ [10]. 18

observation equations are equations of a SSM specifying how observed

quantities depend on unobserved states, typically including an (observa-

tion) error term [1]. 23

p-value is the probability of obtaining an effect at least as extreme as the one

in your sample data, assuming the truth of the null hypothesis [5]. 20

plankton are the diverse collection of organisms that live in large bodies

of water and are unable to swim against a current [16].The individual

organisms constituting plankton provide a crucial source of food to many

large aquatic organisms, such as fish and whales. Technically the term

does not include organisms on the surface of the water or those that swim

actively in the water. 6

Precautionary Approach (PA) In resource management, the PA is about

being cautious when scientific information is uncertain or inadequate, and

not using the absence of adequate scientific information as an excuse to

postpone or fail to take action to avoid serious harm to the resource [7].

7, 9

process equations are equations of a SSM specifying how unobserved states

at a given time depend on past states, typically including an (process)

error term [1]. 23
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recruitment Changes in fish populations are primarily driven by variability in

recruitment. Recruitment can be defined as the number of fish surviving

to enter the fishery or to some life history stage such as settlement or

maturity [13]. 7

state-space assessment models are a class of hierarchical statistical models

specifying dynamic unobserved random variables (states) and their link

to observed random variables [1]. 2, 12, 22

stock assessment models are statistical models used to infer the current

state of fish stocks and predict trajectories of their key features [1]. 1

unbiased When the sample size grows to infinity, the average value of the

parameter estimates will be approximated to the population value. 19

Upper Stock Reference Point (USR) marks the boundary between the

healthy and cautious zone. When a fish stock falls below this point, the

removal rate must be progressively reduced in order to avoid serious harm

to the stock [7]. 7, 10

Upper-Bay Fleet Upper bay license holders fish east of the Upper Bay line,

and are often multi-species vessels based in either Nova Scotia or New

Brunswick. [12, 17]. 2

Vessel Monitoring System (VMS) are mandatory for the Full Bay, Mid

Bay, and Upper Bay Fleets that fish in the Bay of Fundy. The eligible

East of Baccaro license holders with access to some scallop fishing areas

must have VMS [8]. 4
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Appendix A

R Code

1 library(TMB)

2 compile("SS2v4.cpp") # alternative model

3 dyn.load(dynlib("SS2v4"))

4

5 #* Skip this line

6 {

7 source('SS2v4simul.r') # simulate data according to

alternative model↪→

8

9 simulate<- FALSE

10 ### setup and design as in paper

11 NY <- 26 # time series length, as in BoF real data

12 yearsvec <- 1:NY

13 year <-1992:2017

14

15 gt <- rep(1.3,NY) # 1.2*rlnorm(NY,meanlog=-(0.1^2),sdlog=0.1)

16 gRt <- rep(1.8,NY) #

1.8*rlnorm(NY,meanlog=-(0.1^2),sdlog=0.1)↪→
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17 Nt <-

exp(16.8+as.numeric(arima.sim(model=list(ar=c(1.2,-0.5)),n=NY,sd=0.3)))↪→

18

19 sigmatau <- 0.1 # Bt

20 sigmaphi <- 0.1 # Rt

21 sigmam <- 0.1 # mt

22 sigmaepsilon <- 0.1 # It

23 sigmaupsilon <- 0.1 # Jt

24 sigmakappa <- 0.1 # Lt

25 sigmaC <- 0.1 # Ct

26 qI <- 0.4

27 qR <- 0.2

28 S <- 0.5

29 a <- 1.6

30 chi <- 0.1

31

32 theta.true <- c(sigmatau,sigmaphi,sigmam,

33 sigmaepsilon,sigmaupsilon,sigmakappa,sigmaC,

34 qI,qR,S,a,chi)

35 length.theta <- length(theta.true)

36

37 B1 <- 1000 # initial Bt

38 R1 <- 0.2*B1 # initial Rt

39 m1 <- 0.2 # initial mt

40 C1 <- 0.2*B1 # initial Ct

41

42

43 ### simulate

44 if( simulate == TRUE ) {
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45 dat <- SS2v4simul(gt=gt,gRt=gRt,Nt=Nt,

46 B1=B1,R1=R1,m1=m1,C1=C1,

47

sigmatau=sigmatau,sigmaphi=sigmaphi,sigmam=sigmam,↪→

48

sigmaeps=sigmaepsilon,sigmaups=sigmaupsilon,↪→

49 sigmakap=sigmakappa,sigmaC=sigmaC,

50

qI=qI,qR=qR,S=S,a=a,chi=chi,seedvalue=NULL)↪→

51 str(dat) # all vectors of length NY

52 any(dat$Bt<=dat$Ct) # stock depleted?

53 } else {}

54 }

55

56 ### fit SSM

57 if( simulate == TRUE ){

58 datalist <- list('I'=dat$It,'IR'=dat$Jt,'L'=dat$Lt,'C'=dat$Ct,

59 'g'=dat$gt,'gR'=dat$gRt,'N'=dat$Nt)

60

61 } else {

62 datalist<-

DDspa4.2017.dat[c("I","IR","clappers","C","g","gR","N")]↪→

63 # datalist<-

DDspa4.2017.dat[c("I","IR","clappers","C","g","gR","N")]↪→

64 names(datalist)[[3]]<- "L"

65 datalist<- lapply(datalist,tail,NY)

66 }

67 # When enable_catcheq is set to 1, the fitted model is the full

alternative model;↪→
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68 # when enable_catcheq is set to 0, equation(9) is ignored and a

reduced model is fitted.↪→

69 datalist<-c(datalist,list(enable_catcheq = 0))

70 #log_a = 0, log_sigma_C = 0, log_chi = -1

71 parlist <-

list('log_sigma_tau'=0,'log_sigma_phi'=0,'log_sigma_m'=0,↪→

72 'log_sigma_epsilon'=0,'log_sigma_upsilon'=0,

73 'log_sigma_kappa'=0,'log_sigma_C'=0,

74 'log_q_I'=-1,'log_q_R'=-1,

75 'log_S'=0,'log_a'=0,'log_chi'=-1,

76 # 'log_B'=rep(log(max(dat$It)*10),NY),

77 # 'log_R'=rep(log(max(dat$Jt)*10),NY),

78 'log_B'=rep(log(max(datalist$I)*10),NY),

79 'log_R'=rep(log(max(datalist$IR)*10),NY),

80 'log_m'=rep(log(0.5),NY))

81

82 #A switch to adjust the model depending on the setting:

wheteher enable_catch is equal to 0 or not.↪→

83 if(datalist$enable_catcheq == 0){

84 maplist = list(log_a = as.factor(NA),log_sigma_C =

as.factor(NA),↪→

85 log_chi = as.factor(NA))

86 }else{

87 maplist = list()

88 }

89

90 obj <- MakeADFun(data=datalist,parameters=parlist,

91 random=c('log_B','log_R','log_m'),

92 map = maplist,
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93 DLL="SS2v4",silent=T)

94

95 system.time(opt <-

try(nlminb(start=obj$par,obj=obj$fn,gr=obj$gr,↪→

96

control=list(eval.max=1000,iter.max=1000)),T))↪→

97 # ^ less than 1 sec

98 opt$message # converged properly?

99

100

101 ### look at fixed param estimates

102 system.time(rep <- sdreport(obj,bias.correct=F))

103 # ^ less than 1 sec

104 summ.rep <- summary(rep)

105

106 summ.rep[(length.theta+3*NY+1):(2*length.theta+3*NY),]

107 ### plot predicted randeff with CI as colored envelope

108 pred.Bt <- summ.rep[dimnames(summ.rep)[[1]]=='B',1]

109 pred.logBt <- summ.rep[dimnames(summ.rep)[[1]]=='log_B',1]

110 se.pred.logBt <- summ.rep[dimnames(summ.rep)[[1]]=='log_B',2]

111 lb.ci.Bt <- exp(pred.logBt-1.96*se.pred.logBt) # 95% CI lower

bound↪→

112 ub.ci.Bt <- exp(pred.logBt+1.96*se.pred.logBt) # 95% CI lower

bound↪→

113

114 pred.Rt <- summ.rep[dimnames(summ.rep)[[1]]=='R',1]

115 pred.logRt <- summ.rep[dimnames(summ.rep)[[1]]=='log_R',1]

116 se.pred.logRt <- summ.rep[dimnames(summ.rep)[[1]]=='log_R',2]
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117 lb.ci.Rt <- exp(pred.logRt-1.96*se.pred.logRt) # 95% CI lower

bound↪→

118 ub.ci.Rt <- exp(pred.logRt+1.96*se.pred.logRt) # 95% CI lower

bound↪→

119

120 pred.mt <- summ.rep[dimnames(summ.rep)[[1]]=='m',1]

121 pred.logmt <- summ.rep[dimnames(summ.rep)[[1]]=='log_m',1]

122 se.pred.logmt <- summ.rep[dimnames(summ.rep)[[1]]=='log_m',2]

123 lb.ci.mt <- exp(pred.logmt-1.96*se.pred.logmt) # 95% CI lower

bound↪→

124 ub.ci.mt <- exp(pred.logmt+1.96*se.pred.logmt) # 95% CI lower

bound↪→

125 # ############Plot for the reduced model##########

126 pred.Bt.Reduced <- pred.Bt

127 lb.ci.Bt.Reduced <- lb.ci.Bt

128 ub.ci.Bt.Reduced <- ub.ci.Bt

129 pred.Rt.Reduced <- pred.Rt

130 lb.ci.Rt.Reduced <- lb.ci.Rt

131 ub.ci.Rt.Reduced <- ub.ci.Rt

132 pred.mt.Reduced <- pred.mt

133 lb.ci.mt.Reduced <- lb.ci.mt

134 ub.ci.mt.Reduced <- ub.ci.mt

135

136 colmed <- c('#2b05ff') # color code for pred

137 colenv <- paste0(colmed,'30') # color for envelope

138

139 par(mfrow=c(3,1))

140 # Bt

141 library(scales)
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142

143 plot(year,pred.Bt.Reduced,type='o',col=colmed[1],pch=0,

144 xlab='Years',ylab=expression(italic(B[t])),

145 main=expression('Predicted commercial

biomass'~italic(B[t])),↪→

146 ylim=c(100,6000))

147 grid(nx=NA,ny=NULL,equilogs=F)

148 polygon(c(year,year[NY:1]),c(lb.ci.Bt.Reduced,ub.ci.Bt.Reduced[NY:1]),

149 col=colenv[1],border=NA,xpd=F)

150

151 # lines(year,pred.Bt.Full,type='o', col='red')

152 #

polygon(c(yearsvec,yearsvec[NY:1]),c(lb.ci.Bt.Full,ub.ci.Bt.Full[NY:1]),↪→

153 # col=alpha('red',0.4),border=NA,xpd=F)

154

155 legend("topright", col = c(colmed[1], 'red'), lty = 1, bty="o",

legend=c("Reduced", "Full"))↪→

156

157

158 # Rt

159 plot(year,pred.Rt.Reduced,type='o',col=colmed[1],pch=0,

160 xlab='Years',ylab=expression(italic(R[t])),

161 main=expression('Predicted recruitment

biomass'~italic(R[t])),↪→

162 ylim=c(1,4500))

163 grid(nx=NA,ny=NULL,equilogs=F)

164 polygon(c(year,year[NY:1]),c(lb.ci.Rt.Reduced,ub.ci.Rt.Reduced[NY:1]),

165 col=colenv[1],border=NA,xpd=F)

166 # lines(yearsvec,pred.Rt.Full,type='o', col='red')
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167 #

polygon(c(yearsvec,yearsvec[NY:1]),c(lb.ci.Rt.Full,ub.ci.Rt.Full[NY:1]),↪→

168 # col=alpha('red',0.4),border=NA,xpd=F)

169

170 legend("topright", col = c(colmed[1], 'red'), lty = 1, bty="o",

legend=c("Reduced", "Full"))↪→

171

172 # mt

173 plot(year,pred.mt.Reduced,type='o',col=colmed[1],pch=0,

174 xlab='Years',ylab=expression(italic(m[t])),

175 main=expression('Predicted natural mortality

rate'~italic(m[t])),↪→

176 ylim=c(0,0.3))

177 #,xlim = c(1992,2017)

178

179

180 grid(nx=NA,ny=NULL,equilogs=F)

181 polygon(c(year,year[NY:1]),c(lb.ci.mt.Reduced,ub.ci.mt.Reduced[NY:1]),

182 col=colenv[1],border=NA,xpd=F)

183 # lines(yearsvec,pred.mt.Full,type='o', col='red')

184 #

polygon(c(yearsvec,yearsvec[NY:1]),c(lb.ci.mt.Full,ub.ci.mt.Full[NY:1]),↪→

185 # col=alpha('red',0.3),border=NA,xpd=F)

186 legend("topright", col = c(colmed[1], 'red'), lty = 1, bty="o",

legend=c("Reduced", "Full"))↪→

187 # ############Plot for the full model##########

188 # pred.Bt.Full <- pred.Bt

189 # lb.ci.Bt.Full <- lb.ci.Bt

190 # ub.ci.Bt.Full <- ub.ci.Bt
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191 # pred.Rt.Full <- pred.Rt

192 # lb.ci.Rt.Full <- lb.ci.Rt

193 # ub.ci.Rt.Full <- ub.ci.Rt

194 # pred.mt.Full <- pred.mt

195 # lb.ci.mt.Full <- lb.ci.mt

196 # ub.ci.mt.Full <- ub.ci.mt

197 #

198 # colmed <- c('#2b05ff') # color code for pred

199 # colenv <- paste0(colmed,'30') # color for envelope

200 #

201 # par(mfrow=c(3,1))

202 # # Bt

203 # library(scales)

204 #

205 # plot(year,pred.Bt.Full,type='o',col=colmed[1],pch=0,

206 # xlab='Years',ylab=expression(italic(B[t])),

207 # main=expression('Predicted commercial

biomass'~italic(B[t])),↪→

208 # ylim=c(100,6000))

209 # grid(nx=NA,ny=NULL,equilogs=F)

210 #

polygon(c(year,year[NY:1]),c(lb.ci.Bt.Full,ub.ci.Bt.Full[NY:1]),↪→

211 # col=colenv[1],border=NA,xpd=F)

212 #

213 # # lines(year,pred.Bt.Full,type='o', col='red')

214 # #

polygon(c(yearsvec,yearsvec[NY:1]),c(lb.ci.Bt.Full,ub.ci.Bt.Full[NY:1]),↪→

215 # # col=alpha('red',0.4),border=NA,xpd=F)

216 #
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217 # legend("topright", col = c(colmed[1], 'red'), lty = 1,

bty="o", legend=c("Reduced", "Full"))↪→

218 #

219 #

220 # # Rt

221 # plot(year,pred.Rt.Full,type='o',col=colmed[1],pch=0,

222 # xlab='Years',ylab=expression(italic(R[t])),

223 # main=expression('Predicted recruitment

biomass'~italic(R[t])),↪→

224 # ylim=c(1,4500))

225 # grid(nx=NA,ny=NULL,equilogs=F)

226 #

polygon(c(year,year[NY:1]),c(lb.ci.Rt.Full,ub.ci.Rt.Full[NY:1]),↪→

227 # col=colenv[1],border=NA,xpd=F)

228 # # lines(yearsvec,pred.Rt.Full,type='o', col='red')

229 # #

polygon(c(yearsvec,yearsvec[NY:1]),c(lb.ci.Rt.Full,ub.ci.Rt.Full[NY:1]),↪→

230 # # col=alpha('red',0.4),border=NA,xpd=F)

231 #

232 # legend("topright", col = c(colmed[1], 'red'), lty = 1,

bty="o", legend=c("Reduced", "Full"))↪→

233 #

234 # # mt

235 # plot(year,pred.mt.Full,type='o',col=colmed[1],pch=0,

236 # xlab='Years',ylab=expression(italic(m[t])),

237 # main=expression('Predicted natural mortality

rate'~italic(m[t])),↪→

238 # ylim=c(0,0.3))

239 # #,xlim = c(1992,2017)
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240 #

241 #

242 # grid(nx=NA,ny=NULL,equilogs=F)

243 #

polygon(c(year,year[NY:1]),c(lb.ci.mt.Full,ub.ci.mt.Full[NY:1]),↪→

244 # col=colenv[1],border=NA,xpd=F)

245 # # lines(yearsvec,pred.mt.Full,type='o', col='red')

246 # #

polygon(c(yearsvec,yearsvec[NY:1]),c(lb.ci.mt.Full,ub.ci.mt.Full[NY:1]),↪→

247 # # col=alpha('red',0.3),border=NA,xpd=F)

248 # legend("topright", col = c(colmed[1], 'red'), lty = 1,

bty="o", legend=c("Reduced", "Full"))↪→

249

250 # ############END BoF_SSM############

251

252 # ############Decision-table generation############

253 # sigma_eta: random effects of natural mortality rate (m_tplu)

254 sigma_eta<-summ.rep['sigma_m',1]

255

256 # sigma_tau: random effects of population biomass of commercial

size scallops (b_tplus)↪→

257 sigma_tau<-summ.rep['sigma_tau',1]

258

259 # And sigma for recruits

260 sigma_phi <- summ.rep['sigma_phi',1]

261

262 # results store the computed b_tplus from each one of the 5000

simulations↪→

263 results<-c()
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264

265 # g_t: growth rates of commercial size scallops (mean number

per tow) from 2017↪→

266 g_t <- 1.078598

267

268 # gR_t:growth rates for recruitment size scallops from 2017

269 gR_t <-1.612625

270

271 # B_t: population biomass of commercial size scallops (metric

tons) from 2017↪→

272 B_t <- 7.454024e+02

273

274 # R_t: population biomass of recruitment size scallops (metric

tons) from 2016↪→

275 R_t <- 2.428874e+01

276

277

278 # m_t: natural mortality rate

279 m_t <- 5.118057e-02

280

281 # Generate 5000 times of simulation with random effects

sigma_eta and sigma_tau and sigma_phi↪→

282

283 #results store the computed b_tplus from each one of the 5000

simulations↪→

284 n_sims <- 5000

285 catch <- seq(80,500,by=20)

286 n_catch <- length(catch)

287 LRP <- 530 # Limit Reference Point (LRP), will vary by area
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288 USR <- 750 # Upper Reference Point (USR), will vary by area

289 sims_res <- NULL; sum_stats <- NULL # A couple of lists to

store all the data...↪→

290 b_tplus <- NA; eta <- NA; tau <- NA ;phi <- NA; m_tplus <- NA;

R_est <- NA; B_process <-NA↪→

291

292 for (j in 1:n_catch)

293 {

294 for(i in 1:n_sims)

295 {

296 # eta, tau, and phi follows a log-normal distribution with

unit mean and standard deviation sigma_eta, sigma_tau,

and sigma_phi

↪→

↪→

297 eta[i] <- rlnorm(1,-(sigma_eta^2)/2,sigma_eta)

298 tau[i] <- rlnorm(1,-(sigma_tau^2)/2,sigma_tau)

299 phi[i] <- rlnorm(1,-(sigma_phi^2)/2,sigma_phi)

300 m_tplus[i] <- m_t*eta[i]

301 R_est[i] <- R_t*phi[i]

302

303 #b_tplus <- (exp(-m_tplus)*g_t*(B_t -

Ct_plus)+exp(-m_tplus)*gR_t*R_t)*tau↪→

304 # Break the formula this into 2 lines

305 B_process[i] <- exp(-m_tplus[i])*g_t*(B_t -

catch[j])+exp(-m_tplus[i])*gR_t*R_est[i]↪→

306 b_tplus[i] <- (B_process[i])*tau[i]

307 } # end for(i in n_sims)

308 # Get this into a data frame and calculate all the other

interesting pieces↪→
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309 sims_res[[as.character(catch[j])]] <- data.frame(B_next =

b_tplus,B_process = B_process,R_est = R_est,m =

m_tplus,eta=eta,tau=tau,phi=phi)

↪→

↪→

310 sims_res[[as.character(catch[j])]]$exp <- catch[j]/(catch[j] +

b_tplus) # exploitation rate↪→

311 sims_res[[as.character(catch[j])]]$Per_change <- 100*(b_tplus

- B_t)/B_t # Percent change in biomass next year↪→

312 sum_stats[[as.character(catch[j])]]$Exploit <-

median(sims_res[[as.character(catch[j])]]$exp)↪→

313 sum_stats[[as.character(catch[j])]]$Med_Pre_change <-

median(sims_res[[as.character(catch[j])]]$Per_change)↪→

314

315 sum_stats[[as.character(catch[j])]]$P_increase <-

length(which(sims_res[[as.character(catch[j])]]$B_next >

B_t))/n_sims

↪→

↪→

316 sum_stats[[as.character(catch[j])]]$P_above_LRP <-

length(which(sims_res[[as.character(catch[j])]]$B_next >

LRP))/n_sims

↪→

↪→

317 sum_stats[[as.character(catch[j])]]$P_above_USR <-

length(which(sims_res[[as.character(catch[j])]]$B_next >

USR))/n_sims

↪→

↪→

318

319 sum_stats$catch <- rownames(sum_stats)

320 }

321 # Now unwrap the summary stats lists into a data frame with the

results↪→

322 sum_stats <- do.call(rbind.data.frame,sum_stats)

323 sum_stats$catch <- rownames(sum_stats)
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