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1 Introduction

This paper presents a brief overview of the study of random walks and, more gener-
ally, the evolution of uncertainty over time.

The study of the random displacement of particles was first documented the 19th
century by the botanist Robert Brown (Gardiner, 1983). In 1827, Brown observed
that small grains of pollen, when suspended in water, moved in animated and irreg-
ular ways. Brown initially believed that the movement of the pollen particles was
due to some sort of life force that was associated with the grains but he was forced
to dismiss that hypothesis after observing that other non-living particles, such as
glass, behaved in a similar way. Over his lifetime, Brown was unable to provide an
explanation for the phenomenon that he was the first to document, but because of
his initial work on the subject the random displacement of a particle is sometimes
referred to as Brownian Motion.

In 1905, the physicist Albert Einstein was the first person to explain Brownian
Motion when he suggested in his paper On the Motion, Required by the Kinetic The-
ory of Heat, of Small Particles Suspended in a Stationary Liquid that the apparently
random motion of particles suspended in a liquid was caused by collisions between
the particles and the molecules that made up the liquid. What is interesting about
Einstein’s explanation is that though he approached the problem of Brownian Mo-
tion as a physicist, he recommended that the the system underlying the collisions
was so complicated that it should only be studied probabilistically and explained
statistically (Gardiner, 1983).

This paper does not discuss Brownian Motion directly but rather focuses on the
statistical characteristics of random walks. Over the course of this paper the subject
of random walks is treated first in discrete time and discrete space, then in discrete
time and continuous space and finally in continuous time and continuous space.

discrete space continuous space
discrete time Section 2 Section 4

continuous time Section 5

Section 2 introduces a discrete time, discrete space random walk in one dimension
and discusses its evolution over time if it is unbounded. Section 3 discusses the
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evolution of a random walk in discrete space in more detail and provides examples,
in one and two dimensions, of what happens to the evolution of a walk if it is spatially
bounded. Section 4 marks the shift in the context of the discussion of random walks
from discrete space to continuous space and introduces stochastic systems which are
systems that have both a deterministic and a random component. In this section
the Self Advecting Vortex Model (SAVM) model for ocean circulation is used as an
example to illustrate the evolution of stochastic systems over time. Finally, Section
5 provides a brief discussion of evolution of stochastic systems in continuous time
and continuous space and refers to the Fokker-Plank Equation.
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2 A Random Walk on a One Dimensional

Unbounded Lattice

Consider a discrete time, discrete space random walk in one dimension, where at
every time step, a particle has an equal probability of staying it in its current state
or moving instantaneously one state to the left or to the right. At any time step, the
probability of a particle moving to a neighbouring state can be represented with the
following diagram

tl ts tr
• • •

where the center point indicates the position of the particle at time n and ts, tl and
tr represent the transition probabilities of the particle staying in the same state or
moving one state to the left or to the right respectively. It should be noted that ts, tl
and tr must satisfy the the condition that tr + tl = 1− ts and that for this random
walk ts = tl = tr = 1/3.

The displacement between the states of such a random walk can be described by
the stochastic process Dm, where D indicates the set of displacements of the particle
between times m − 1 and m for m = 1, . . . , n. Since, in this random walk, at any
time step, the particle is only able to stay in its current state or move one state to
the right or to the left, each with an equal probability of 1/3, the stochastic process
Dm can be summarized as follows:

di -1 0 1
p(di) 1/3 1/3 1/3

For this random walk it is assumed that the displacement of the particle between
any two time successive steps is independent of the displacement of the particle
between any other two successive time steps. The expected value and variance of
the displacement of the particle are

E[D] ≡ µd =
3∑

i=1

dip(di) (1)

= −1(1/3) + 0(1/3) + 1(1/3) (2)

= 0 (3)
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V ar[D] ≡ σ2
d = E[(D − µd)2] = E[D2] =

3∑
i=1

d2
i p(di) (4)

= −12(1/3) + 02(1/3) + 12(1/3) (5)

= 2/3. (6)

The total displacement of the particle between at time n be determined by sum-
ming the displacements of the particle between time 0 and time n and this informa-
tion can be combined with the information about the initial state of the particle to
determine the state of the particle at time n. The position of the particle at time
n can therefore be expressed as Sn = S0 +

∑n
m=1Dn, where S0 indicates the initial

state of the particle. It follows then that the state of the particle at time n can
be described by the stochastic process Sn, where S denotes the set of states that
the particle can inhabit and n denotes time. It is assumed that the random walk
of the particle is unbounded and that the number of states of the walk increases
with time such that at any time n there are a total of K = 2n + 1 states and
S = {−bK/2c, . . . , 0, . . . , bK/2c}.

For this random walk it is also assumed that the one dimensional displacement of
the particle can be mapped on to the x-axis such that the particle is always initially
located at the origin, so S0 = 0, and the equation that describes the state of the
particle at time n can simplified to Sn =

∑n
m=1Dm so that Sn indicates the position

of the particle on the x-axis. In general, the state of the particle at time n depends
only on the state of the particle at time n−1 and on the displacement of the particle
over the interval m, which is the interval between time n− 1 and time n, so Sn can
also be expressed as Sn = Sn−1 +Dm. Since Sn−1 =

∑n−1
m=1Dm, expressing Sn as the

sum of the state of the particle at time n − 1 and the displacement of the particle
over the interval m is equivalent to expressing Sn as the sum of the displacements of
the particle up to time n.

The expected value and variance of the state of the particle therefore

E[S] ≡ µs = E[
n∑

m=1

Dm] (7)

= E[D1] + E[D2] + · · ·+ E[Dn] (8)

= µd + µd + · · ·+ µd (9)

= nµd = 0 (10)
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V ar[S] ≡ σ2
s = V ar[

n∑
m=1

Dm] (11)

= V ar[D1] + V ar[D2] + · · ·+ V ar[Dn] (12)

= σ2
d + σ2

d + · · ·+ σ2
d (13)

= nσ2
d =

2

3
n. (14)

In the five realizations of the random walk, shown in the plot on the left in Fig-
ure 1, it can be seen that the ensemble of the realizations has a mean of 0 and that
the variance of the ensemble increases with time. The statistical characteristics of
the realizations shown on the left are summarized by the plots shown on right, which
indicate the probability mass function, pn = p(S = s, n) , of the state of the random
walk. The similarity between the shape of the probability mass function of the state
of the random walk and a normal distribution is not coincidental because it can also
be shown that the the probability mass function of the state of the random walk
becomes approximately normally distributed as n→∞.

−10 −5 0 5 10

0
5

10
15

20

S

T
im

e

Figure 1: Five realizations of a random walk in one dimension.

Since Dm are iid with mean µd and variance σ2
d the Central Limit Theorem states
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that the distribution of the normalized sum of D1,. . .,Dn tends to the standard
normal distribution as n→∞. This implies that the distribution of the state of the
particle, Sn, normalized by a factor of σs, tends to the standard normal distribution
as n→∞. That is:

D1 + · · ·+Dn − nµd

σd

√
n

=

∑n
m=1Dm − nµd

σd

√
n

=
Sn − µs

σs

so

P

(
Sn − µs

σs

≤ a

)
= P

(
Sn

σs

≤ a

)
→ 1√

2π

∫ a

−∞
e−s2/2ds as n→∞

It should be noted that the Central Limit Theorem applies to both continuous
and discrete random variables. The only necessary condition for it to hold is that
the random variables are iid. To understand the asymptotic convergence of the
distribution of Sn, a discrete distribution, to the normal distribution, a continuous
distribution, note that its variance, σ2

s , increases with time (since σ2
s = n ·2/3), so as

n increases to infinity, the distance, ∆Sn, between the states Sn and Sn+1, relative
to the width of distribution of Sn, decreases to zero. That is, as n→∞, ∆Sn → 0,
so the distribution of Sn becomes asymptotically continuous.

The fact that Sn/σs is approximately normally distributed with mean 0 and vari-
ance 1 implies that Sn is approximately normally distributed with mean µs = 0
and variance σ2

s = n·2/3. This is shown in Figure 2. In Figure 2, SSD is the the
sum-of-squares of the difference between the probability mass function of Sn and the
corresponding normal distribution it approximates. It should be noted that though
the distribution of Sn is supposed to converge to a normal distribution asymptoti-
cally, convergence effectively occurs rather quickly in this case.
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Figure 2: The evolution of the probability mass function of the state of the particle
at time n and the corresponding normal distribution it approximates (indicated by
the red line). It should be noted the the pmf is centered at 0 and that its variance
increases by 2/3 units every time step as indicated by equations 10 and 14.
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3 Generalized Random Walks on Bounded

Lattices

Since the random walk introduced in Section 2 evolves according to the equation
Sn = Sn−1 +Dn, the probability mass function of Sn, pn, evolves in a similar way. In
fact, pn, the probability of the particle being at any given state at time n depends
only on pn−1, the probability of the particle being in any given state at time n − 1
and the transition probabilities of the particle moving from a state at time n− 1 to
a state at time n.

As such, the random walk satisfies the Markov property, which states that the
probability of a particle being in a given state n at time n depends only on the prob-
ability mass function at time n− 1 (Stewart, 1994). This is satisfied mathematically
if

p (Sn = sn|S0 = s0, . . . , Sn−1 = sn−1) = p (Sn = sn|Sn−1 = sn−1) .

This probability, which gives the conditional probability of a particle moving from
state sn−1 to state sn over one time step is known as a transition probability and it
can be expressed in the general form

tij = p (Sn = j|Sn−1 = i)

to indicate the probability of the particle moving from state i to state j. For the gen-
eralized random walks considered in this section let k = 1, . . . , K indicate the number
of states in the random walk and let i, i = −bK/2c, . . . , 0, . . . , bK/2c, indicate the
current state of particle in relation to the origin and j, j = −bK/2c, . . . , 0, . . . , bK/2c
indicate the subsequent state of the particle in relation to the origin. There are
therefore K transition probabilities for each state, stacked in a column, in order to
represent the probability of a particle in a given state moving to any of the other
states, and for an K state system the transition probabilities are arranged into the
KxK transition matrix T. Each transition probability, ti,j, must be a valid proba-
bility, and must therefore satisfy the condition that 0 ≤ ti,j ≤ 1, and in addition, the
sum of each of the columns of the transition matrix must sum to 1.

Given the transition matrix T, and pn−1, a vector that indicates the probability
of a particle being in any given state at time n−1, the probability of a particle being
at a given state at time n is given by the equation

pn = Tpn−1,
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which is a special case of the Chapman-Kolmogorov equation (Stewart, 1994), and
the evolution of the random walk can be described by updating pn at every time
new time step. Alternatively, the probability of a particle being at a given state at
time n can be found, given the initial location of the particle p0, using the equation

pn = Tnp0.

For the random walk described above, it is assumed that the initial location
of the particle is known to be at the origin, with probability 1. This can be
represented by the Kx1 probability mass vector, pn, whose elements p(si), i =
−bK/2c, . . . , 0, . . . , bK/2c, indicate the probability of the particle being at state i
at time n.

pn =



0−bK/2c
...

0−1

10

01
...

0bK/2c



The evolution of the pmf of the random walk can therefore be updated by mul-
tiplying the KxK transition matrix T by the Kx1 pn. For an unbounded random
walk, the number of states increases with n so the dimension of T and pn also
increase at every time step and the calculation of pn can be difficult. In general,
however, the transition matrix for an unbounded random walk is of the form

T =

.. .
...

. . . tl 0 0 . . .
ts tl 0
tr ts tl

0 tr ts
. . .

. . . 0 0 tr
. . .
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The computational problem presented by an unbounded random walk can be over-
come by augmenting the dimension of T and pn at every time step, or by initially
choosing the maximum number of steps of interest and constructing T and pn ac-
cordingly. It should be noted, however, that these computations problem can also
be avoided if pn is calculated using convolution.

In most cases however, random walks are not unbounded and are in fact lim-
ited to a finite state space of size K. Thus, when a random walk is bounded, the
asymptotic properties of the walk depend on the boundary conditions of the walk,
specifically whether the particle is reflected or absorbed at the boundary.

If an random walk has “reflecting boundaries”, particles are unable to move past
certain states and if they are forced against the boundary they are bounced back to
a state that they have already visited. For an example, consider the diagram below
where the black circles represent accessible states and the vertical line represents the
boundary. If there is a particle that is located at the leftmost black dot that tries
to move to the state represented by the open circle, it will be bounced back by the
boundary and end up at the black circle on the right.

◦ • •

For random walks with “reflecting boundaries”, the boundary transition probability
of a particle staying in its current state stays the same, but the probability of the
particle moving away from the boundary is equal to the original probability of the
particle moving away from the boundary plus the probability of the particle moving
towards the boundary. The transition matrix for random walks with “reflecting
boundaries” is therefore of the form

T =



ts tl . . . . . . 0 . . . . . . 0 0

tr + tl ts
...

...
...

0 tr
. . . 0

0 0
. . . tl

...
... ts

...
...

tr
. . . 0 0

0
. . . tl 0

...
...

... ts tl + tr
0 0 . . . . . . 0 . . . . . . tr ts



.
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As the number of steps of such random walks → ∞ the probability of a particle
being located a particular state becomes uniformly distributed over all of the states.
This is show in Figure 3.
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Figure 3: The evolution of the pmf of a random walk in one dimension with “reflecting
boundaries”.

If a random walk has “absorbing boundaries” any particles that reach the bound-
ary get stuck there and do not move at subsequent time steps. This is indicated in the
transition matrix of a random walk by setting the transition probabilities of points
at the boundary equal to one, and setting the transition probability of a particle
moving away from the boundary equal to zero. The transition matrix for a random
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walk with “absorbing boundaries” is therefore of the form

T =



1 tl . . . . . . 0 . . . . . . 0 0

0 ts
...

...
...

0 tr
. . . 0

0 0
. . . tl

...
... ts

...
...

tr
. . . 0 0

0
. . . tl 0

...
...

... ts 0
0 0 . . . . . . 0 . . . . . . tr 1



.

As n → ∞ for random walks with “absorbing boundaries”, all of the particles end
up at the boundary points. For an unbiased walk, such as the walk presented in
Section 2, all of the particles end up split between the two boundary points. This
is shown in Figure 4. However, if a random walk has “absorbing boundaries” and is
biased, the particles will be split at each boundary point proportionally to the bias
of the walk.

For any type of random walk, it is also possible to have absorbing states that are
not located at the boundaries of the state space. This can be achieved by chang-
ing some of the transition probabilities in the transition matrix, but ensuring that
they satisfy the conditions mentioned above. If a random walk is bounded, and the
propensity for a non-boundary absorbing state to absorb a particle is large enough,
then any particles that follow the random walk will eventually come to be located
at these absorbing states. An example of this is show in Figure 5.
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Figure 4: The evolution of the pmf of a random walk in one dimension with “ab-
sorbing boundaries”.
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Figure 5: The evolution of the pmf of a random walk in one dimension with “reflecting
boundaries” and an absorbing point to the right of the origin.
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3.1 The Evolution of a Random Walk in Two Dimensions

Each of the results presented above can be generalized into 2 or more dimensions.
To show this consider a discrete-time, discrete-space random walk in 2 dimensions
where a particle has an equal probability of staying where it is or moving one step
up, down, left or right at every time step. The probability of the particle moving to
a neighbouring state can be represented with the following diagram

tu
•

tl ts tr
• • •

td
•

where the centre point indicates the position of the particle at time n and ts, tr, td, tl, tu
represent the probability of the particle staying in its current state or moving to the
corresponding neighbouring state. Note that tr + td + tl + tu = 1− ps and to begin
let ts = tr = td = tl = tu = 1/5.

Initially, it is assumed that the position of the particle is known to be at the
origina with probability 1. This can be represented by the K2 x 1 state prob-
ability vector pn which, indicates the probability of the particle being at state
si,j. It should be noted that the state probability vector, pn is formed by stack-
ing the columns of the KxK state probability matrix Pn, whose elements p(si,j), i =
−bK/2c, . . . , 0, . . . , bK/2c, j = −bK/2c, . . . , 0, . . . , bK/2c, represent the probability
of a particle being in any of the possible two dimensional states. Here i indexes the
x coordinate of the current state and j indexes the y coordinate of the current state
and i′ and j′ index the coordinates of the subsequent state.
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P =



0−bK/2c,bK/2c . . . 00,bK/2c . . . 0bK/2c,bK/2c
. . .

...
00,1

... 10,0
...

00,−1
...

. . .

0−bK/2c,−bK/2c . . . 00,−bK/2c . . . 0bK/2c,−bK/2c


, p =



0−bK/2c,bK/2c
...

0−bK/2c,−bK/2c
−

00,bK/2c
...

00,1

10,0

00,−1
...

00,−bK/2c
−

0bK/2c,bK/2c
...

0bK/2c,−bK/2c


The evolution of the random walk can be described by the K2xK2 transition

matrix T, whose elements, ti,j→i′,j′ contain the conditional probabilities of moving to
state i′, j′ at time n + 1 given that the particle is at state i, j at time n. As before,
the elements of T must satisfy the following conditions

0 ≤ ti,j→i′,j′ ≤ 1
∑

j

ti,j→i′,j′ = 1.

If a two dimensional random walk has “reflecting boundaries”, a particle that is
located at the upper right state has a transitional probability of moving down one
step that is equal to its normal transitional probability of moving down one step plus
the normal transitional probability of moving up one step. Similarly, the transitional
probability of the particle moving to the right would equal the normal transitional
probability of moving right plus the normal transitional probability of moving left.
Therefore, the transition matrix, in the simplest case where k=3, is as follows
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T =



ts tu 0 tl 0 0 0 0 0
td + tu ts tu + td 0 tl 0 0 0 0

0 td ts 0 0 tl 0 0 0
tr + tl 0 0 ts tu 0 tl + tr 0 0

0 tr + tl 0 td + tu ts tu + td 0 tl + tr 0
0 0 tr + tl 0 td ts 0 0 tl + tr
0 0 0 tr 0 0 ts tu 0
0 0 0 0 tr 0 td + tu ts tu + td
0 0 0 0 0 tr 0 td ts


As in the one dimensional case, the probability of a particle being located at any
given state become uniformly distributed over all the states as n→∞. An example
of the evolution of the pmf for two dimensional walk with “reflecting boundaries” is
show in Figure 6.

Figure 6: Evolution of the two dimensional pmf of a random walk with “reflecting
boundaries”.

If it is the case that a two dimensional walk has “absorbing boundaries” then
the transitional probability of a particle staying at the boundary points is equal to
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one, and the transitional probability of a particle moving away from the boundary
is equal to zero. The transition matrix for such a walk would be of the form

T =



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 tl 0 0 0 0 0 0
0 0 1 0 0 0 tl 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 tu 0 0 0 0 0 0
0 0 0 0 0 ts tu 0 0 0 0 0
0 0 0 0 0 td ts 0 0 0 0 0
0 0 0 0 0 0 td 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 tr 0 0 0 1 0 0
0 0 0 0 0 0 tr 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


Again, as with a one dimensional random walk with “absorbing boundaries”, as
n → ∞ the probability of a particle that follows a two dimensional walk with “ab-
sorbing boundaries” being in a certain state gets distributed among the boundary
points, depending on the bias of the walk. An example of this evolution, for an
unbiased random walk, is shown in Figure 7.

In general, the transition matrix of a two dimensional random walk can be ex-
pressed as an K2 x K2 partitioned block matrix

T =



N L 0 0 0 . . . 0 0 0 0 0
RLB N L 0 0 . . . 0 0 0 0 0

0 R N L 0 . . . 0 0 0 0 0
0 0 R N L . . . 0 0 0 0 0
...

. . .
...

...
. . .

...
...

. . .
...

0 0 0 0 0 . . . R N L 0 0
0 0 0 0 0 . . . 0 R N L 0
0 0 0 0 0 . . . 0 0 R N LRB
0 0 0 0 0 . . . 0 0 0 R N


where N,R,L,RLB,LRB and 0 are each KxK matrices. Here N is a tri-diagonal
matrix that contains the ‘normal’ transition probabilities for a particle, R and L
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Figure 7: Evolution of the two dimensional pmf of a random walk with “absorbing
boundaries”.

are diagonal matrices that contain the transition probabilities of a particle moving
right and left respectively, and RLB and LRB are diagonal matrices that contain
the transition probabilities of a particle moving right and left, respectively, at the
left and right boundaries. Figure 8 shows the evolution of the pmf of a random walk
with “reflecting boundaries” that is biased to the right.
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Figure 8: Evolution of the two dimensional pmf of a random walk with “reflecting
boundaries” that is biased to the right
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4 Discrete Time and Continuous Space: State Space

Models

It was shown in Section 2 that the state of the random walk at time n could be
expressed as

Sn = Sn−1 +Dn.

This, however, is just a special case of a stochastic difference equation of the form

Sn = f(Sn−1) + g(Sn−1)Dn

where f is a function that describes the deterministic displacement of the particle
between time n− 1 and time n and g is a function that determines the influence of
the stochastic term, Dn on the displacement of the particle over the same interval.
In general, both f and g can be linear or non-linear, Dn can be described by any
type of distribution and it is assumed that n is discrete and S is continuous.

In the case that f and g are linear, and Dn is normally distributed, the proba-
bility density function of S at any time n is normally distributed because because it
can be expressed as a linear combination D and any linear combination of normally
distributed random variables is also normally distributed. Since the first two mo-
ments of the normal distribution, the mean and the variance, are sufficient statistics
for the normal distribution, the statistical characteristics of the pdf of S and time n
can be described completely by calculating its mean and variance from the previous
Dn.

In the alternate case, where one of either f or g are not linear, or Dn is not
normally distributed, the probability density function of S at time n is much more
difficult to compute. It cannot normally be summarized by one or two moments and
instead has to be described by a pdf (Shumway, 2006). The Self Advecting Vortex
Model presented in the next section provides an excellent example of what happens
to the pdf of S in such a case.

4.1 The Self Advecting Vortex Model

The Self Advecting Vortex Model (SAVM) is a highly idealized model for ocean
circulation that can be used to explain the advection and diffusion of particles in
two-dimensional space. It is a special case of a Blinking Vortex Model (BVM),
which is a classification for any type of model that involve vortices (generally two or
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Figure 9: A diagram representing the Self Advecting Vortex Model (SAVM) consid-
ered in this paper. The centre of the two vortices are located at -d and d respectively.
Assume that the point of reference rotates with the vortices so that the two vortices
always appear as though they lie on the x-axis at a distance of 2d from one another.

more) that alternate between being on and off and hence ‘blink’.

This paper considers a SAVM that consists of two vortices that rotate in a counter
clockwise direction and are separated by a distance of 2d. A diagram that repre-
sents the SAVM used in this paper is shown in Figure 9. According to this model,
each vortex spins alternately and as each vortex spins it creates a vector field in
its surrounding environment that causes any particles in that environment to rotate
around the vortex. A figure that shows the vector field that is created by the two
vortices can be found in Appendix A. Over time this vector field develops distinct
trajectories that determine the displacement of any surrounding particles. These
trajectories are grouped together and outlined by special trajectories known as sep-
aratrices, which divide the groups of distinct trajectories from one another and act
as boundaries between them. The presence of separatrices also indicates that the
groups of trajectories are distinct, and that no groups of trajectories feed into each
other. Figure 10 indicates the long run standing trajectories created by the SAVM
used in this paper and Figure 11 indicates the separatrices that divide the different
groups of trajectories.

Since the two vortices in the SAVM alternate between being on and between off,
they are also affected by the vector field they create. That is, when a given vortex
is off it is displaced according to the vector field that is created by the vortex that
is on, and moves in a counter clockwise direction along a trajectory determined by
the vector field. Over time, both vectors are affected by the vector field that they
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Figure 10: Long term trajectories induced in the surrounding environment by the
two vortex SAVM considered in this paper. Note the localized loops near the initial
vortices and the two ghost vortices, the uncrossed figure eight near the caused by
the interaction of the two initial vortices, and the large circular trajectories near the
edges of the grid.

create and rotate in a counter clockwise direction around a circle of radius d, cen-
tered at a given point C, such that the distance between the two vortices remains
constant. For the sake of interpretation, assume that the point of reference rotates
with the vortices so that the vortices can always be considered to lie along the x-axis.

At every time step, the location of the two vortices can be determined from the
location of the centre point C, since the centre of the two vortices are located at
a constant distance of d from C. If the centre point remains fixed then the general
advection and diffusion of a particle can be described by the equation

sn = f(sn−1) + wn, wn ∼ N(0,σ2
d)

where Sn−1 denotes the location of the particle at time n− 1, f is a non-linear func-
tion that describes the advection of the particle around C, and σ2

d is known.

If f was a linear function the probability density function of S could be found at
any time n by updating the mean and the variance of the random error term accord-
ing to f . This is because the mean and variance are sufficient statistics for a normal
distribution and the the probability density of S would be normally distributed since
w is normally distributed and linear combinations of normally distributed random
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Figure 11: The separatrices for the two vortex SAVM model are shown above with
bold lines. Note the location of the distinct trajectory regions (Kuznetsov et al.
2003).

variables are also normally distributed. However, because f is non-linear, the prob-
ability density function of S does not remain normally distributed over time and
it must be described by a pdf at every time. Therefore, for non-linear stochastic
systems such as the SAVM, the pdf of the system can quickly transform from a mul-
tivariate Gaussian distribution to a multivariate non-Gaussian distribution. This is
shown in Figure 12. The red contour lines in the figure represent the 50th, 90th and
95th percentiles of the distribution, estimated by tracking an ensemble of particles
(taken to approximate the pdf).
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Figure 12: The evolution of a two dimensional pdf for the SAVM.
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5 Continuous Space, Continuous Time: Stochas-

tic Differential Equations

As the time between each time step tends to zero, the difference equations that
are used to model the evolution of a stochastic system are replaced by differential
equations. As a result, equations of the form Sn = f(Sn−1) + g(Sn−1)Dn, that are
discussed in Section 4, are replaced by equations of the form ṡ = f(s) + g(s)ε(n),
where the change in the state of the system over a given interval of time, ṡ, can be
expressed as linear combination of a deterministic function that describes the change
in the state of the system, f(s), and a stochastic white noise term, ε, weighted by
g(s). These stochastic differential equations relate the same information as stochas-
tic difference equations except that they assume that both S and n are continuous.

The evolution of the probability density function of a one dimensional stochastic
differential equation

ṡ = f(s) + g(s)ε(n), with initial conditions: s(0)=z

can be described by the second order partial differential equation

∂p

∂n
= − ∂

∂s
(f(s)p) +

1

2

∂2

∂s2
(g2(s)p)

which known as the Fokker-Plank Equation, where p(s, n) is the probability density
function of S and p(s, 0) = δ(s − z) gives the initial conditions (Zwillinger, 1989).
The solution of the Fokker-Plank equation is the probability density function of s
and as a result the Fokker-Plank equation describes the continuous time, continuous
space advection and diffusion of particles governed by the original stochastic differ-
ential equation. In the original stochastic differential equation, the function f(s) is
often referred to as the advection term, and the function g(s) is often referred to as
the diffusion term, and the relationship between the two determines the extent to
which the system they describe is influenced by random displacements. If g(s) is sig-
nificantly larger than f(s), the diffusion of the pdf of S overpowers its displacement
but if f(s) is significantly larger than g(s) then the reverse is true.

In a more general form, the Fokker-Plank is motivated by the m dimensional
linear system

d

ds
s(n) = b(s, n) + σ(s, n)ε(n)
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where σ(s, n) is an M × n matrix and ε(s) is a vector of n independent white noise
terms that satisfy E[εi(n)] = 0 and E[εi(n)εj(n + ν)] = δijδ(ν), where δij is the
Kronecker delta and δ(n) is the regular delta function. The Kroenecker delta serves
as an indicator function and is defined as

δij =

{
1 if i = j
0 if i 6= j

The corresponding Fokker-Plank equation is

∂p

∂n
= −

M∑
i=1

∂

∂si

(bip) +
1

2

M∑
i=1

M∑
j=1

∂2

∂si∂sj

(aijp)

where p = p(s, n) and (aij) is an element of the matrix A where A is defined as
A(s, n) = σ(s, n)σT (s, n) (Zwillinger, 1989). The initial conditions for the Fokker-
Plank equations are related to the initial conditions for the original linear system, so
if the initial conditions for the original linear system are s(n0) = z then then initial
conditions for the corresponding Fokker-Plank equation are p(s, n0) =

∏M
i=1 δ(si−zi).

It should be noted although the Fokker-Plank equation if often hard to solve, and
its solution must commonly be approximately numerically, it is particularly useful
because its solution, the pdf of S, describes the statistical characteristics of the pro-
cess completely.

Although the Fokker-Plank equation was introduced specifically to study the
evolution of the pdf of a non-linear differential equation it should be noted that it
can be used to study the advection and diffusion of the pdf of systems in general.
For example, if the stochastic differential equation that motivates the Fokker-Plank
equation has no deterministic term, the corresponding Fokker-Plank equation

∂p

∂n
=

1

2

∂2

∂s2
(g2(s)p)

describes the evolution of the pdf of the initial stochastic differential equation only
in terms its diffusion. In this case the pdf would evolve in a similar way to how the
pmf of the random walk in Section 2 evolved.

Conversely, if the Fokker-Plank is used to study the pdf of a normal differential
equation, without a stochastic term, it will be

∂p

∂n
= − ∂

∂s
(f(s)p)
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and it will describe the pdf of the original differential equation purely in terms of
its advection. In this case, the shape of the pdf would not change over time but
would move along a trajectory described by the initial system, as if it were a particle
released onto one of the trajectories determined by the SAVM.
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6 Conclusion

In this paper the study of the advection and diffusion of uncertainty has been devel-
oped from the context of discrete time and space through to the context of continuous
time and space. In Section 2, the concept of a random walk along a one dimensional
lattice was discussed and the evolution of its probability mass function was explored
in order to introduce idea of the evolution of uncertainty. This idea was further ex-
plored in Section 3 and in that section several examples of the evolution of the pmf
for bounded random walks were given in both one and two dimensions. In Section
4, stochastic difference equations were introduced and the evolution of the pdf of a
non-linear system was demonstrated using the SAVM. In Section 5 the Fokker-Plank
equation was presented as a technique to study the evolution of the pdf of any type
of differential equation in continuous time and continuous space.
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8 Appendix A
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Figure 13: A vector field that represents the displacement over one time step induced
by a SAVM consisting of two vortices that spin in a counterclockwise direction. Note
that the centers of the two vortices are at (-1,0) and (1,0) and the appearance of two
’ghost’ vortices centered at ≈ (-.1,-1.6) and (.1,1.6).
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