
USING SUPERLEARNER TO PREDICT REMISSION FROM
CHILDHOOD EPILEPSY

by

Weifan Yan

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Statistics, Honours

at

Dalhousie University
Halifax, Nova Scotia

May 2023

© Copyright by Weifan Yan, 2023



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Individual Methods . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3 SuperLearner . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



Abstract

This thesis first tries to use several single tree-based classification methods to predict

a group of epileptic patients to see if they were still in treatment at the end of the

study, and then use the SuperLearner algorithm to combine the single algorithms as

an ensemble and to see the performance of the SuperLearner algorithm.

iii



Acknowledgements

I am very grateful for the help I received from my supervisor Professor Smith Bruce,

who helped me choose the topic and data for my thesis based on my interests and

helped me build the structure of my thesis. Through the weekly meetings, Professor

Smith taught me in detail and systematically how to proceed with each step of my

dissertation, and patiently helped me to solve the issues when I was confused and

when I got stuck in a difficult problem. His guidance gave me my first taste of

accomplishment in completing a project and made me want to try academic research

in the future, and I appreciate the guidance and help I received from my supervisor.

In addition, I am also very grateful to my family and friends for always supporting

me and encouraging me.

iv



Chapter 1

Introduction

Approximately half of children with a first unprovoked seizure will have a recur-

rence. Those with a second seizure are at high risk of further seizures, justifying the

diagnosis of epilepsy and daily treatment with antiepileptic drugs. The number of

children who become seizure free with treatment is unclear; however, medication can

often be successfully withdrawn after several years. For those who have a recurrence

after discontinuing medication, the clinical course is largely unknown, and it would

be desirable to be able to predict the outcome of epilepsy at the time of diagnosis.

[Camfield et al., 1993] identified a cohort of children with epilepsy in the Nova

Scotia population, and followed them to determine long-term outcome. Every pe-

diatric electroencephalographic report from 1977 to 1985 was reviewed, identifying

children with a history of one or more possible afebrile seizures. Hospital and pedi-

atric neurology physician charts were then reviewed to limit cases to those with two

or more definite afebrile, unprovoked seizures. From 1987 through 1990, follow-up

information about the clinical course after diagnosis was obtained. The analysis data

set consisted of 504 eligible subjects.

The primary endpoint of the study was whether or not the child was off medication

at the end of follow-up, which was taken as a proxy measure for in remission. Stepwise

1



2

logistic regression and CART were used to develop predictive models of remission at

end of follow up.

A follow up study by [Geelhoed et al., 2005] combined the Nova Scotia cohort

with a second prospective cohort of childhood epilepsy patients from the Netherlands.

and sought to evaluate the accuracy of a prognostic model based on the two studies

combined. Remission was defined as no longer receiving daily medication for any

length of time at the end of follow-up. Classification tree models and stepwise logistic

regression were used to generate predictive models for the combined dataset, and for

the two separate cohorts. The models for each cohort were externally validated on

the opposite cohort.

The classification tree model split the data on epilepsy type and age at first seizure.

Predictors in the logistic regression model were: number of seizures before treatment,

age at first seizure, seizure type, preexisting neurologic signs, and a measure of intel-

ligence. Both classification tree and logistic regression models predicted the outcome

correctly in approximately 70% of subjects, with error rate slightly greater in the

externally validated cohort.

In this thesis, in order to assess whether prediction accuracy could be improved.

several statistical methods have been applied to the Nova Scotia cohort. In order to

simplify the analysis, all cases with any missing data were removed, reducing the data

set to 422 observations, with 12 predictor variables. The data set was then split into

a training data set with 211 observations and a test data set with 211 observations.

In addition to logistic regression, we used boosting, support vector machine, and



3

random forests to predict the binary outcome off medication at end of followup. We

explored the superlearner algorithm, which is an ensemble method that combines

combine several machine learning methods, including cross validation. The algorithm

generates an optimal weighted average of the included models, and has been proven

to be asymptotically as accurate as the best possible prediction algorithm that is

included [Van der Laan et al., 2007].

The remainder of this thesis is as follows. In chapter 2 we describe and apply sev-

eral individual statistical and machine learning methods, including logistic regression,

boosting, support vector machines and random forest. In chapter 3 we introduce and

apply the superlearner algorithm, and chapter 4 finishes with a summary of results

and a few additional comments.



Chapter 2

Individual Methods

This chapter introduces several different methods for predicting a binary outcome,

and applies the methods to the epilepsy data set.

2.1 Logistic Regression

Logistic regression is an appropriate method when the data set is moderately lare

and the dependent variable is dichotomous. It is similar to multiple regression in

that it it dose the same job as other regression analysis do, explains the relationship

between dependent variable and and one or more ordinal, nominal, interval or some

other types of predictor variables. The types of questions that logistic regression

can answer is something like how does the probability of getting lung cancer (yes vs.

no) change for every additional pound a person is overweight and for every pack of

cigarettes smoked per day? Do body weight or age have an influence on the probability

of having a heart attack?

Logistic regression is a reasonable first choice of method to examine the effects of

several predictor variables on a binary outcome variable. As with regular regression,

logistic regression may have problems when assumptions are not met. Logistic regres-

sion has two major assumptions: (1) the outcome varaible should be dichotomous in

4



5

nature, and (2) there should be no high correlations among the predictors. The sec-

ond assumption is quite important and must be carefully asseessed when attempting

a causal analysis.

Logistic regression is the simplest model to solve the binary classification problem.

The logistic function

p(X) =
eβ0+β1X

1 + eβ0+β1X
(2.1)

ensures that the output is between 0 and 1, which is the expected results. After some

manipulations, the logistic function leads to

log
p(X)

1− P (X)
= β0 + β1X (2.2)

where the left hand side is called the log odds, and so the logistic regression model

assumes that the log odds is linear in X. To estimate the regression coefficients,

we choose the maximum likelihood estimators, i.e β0 and β1 which maximize the

likelihood function

l(β0, β1) =
∏
i:yi=1

p(xi)
∏

i′ :y
i
′=0

(1− p(xi′ )) (2.3)

Since we have multiple predictors, use the multiple logistic regression model here.

Generalizing the log odds for the multiple regression from (2.2) we get

log
p(X)

1− p(X)
= β0 + β1X1 + · · ·+ βpXp (2.4)

We again use the maximum likelihood estimators, which are the parameters maxi-

mizing the likelihood. Details of the maximum likelihood estimation, and large sample

properties of the resulting estimators may be found, for example, in [Bickel and Doksum, 2015].



6

Using the monotonicity property of maximum likelihood, the MLE p̂(X) is ob-

tained by substituting the MLE of β in (2.4), and solving. Prediction for an observa-

tion Xtest in the test data set is 1 (”yes”) if p̂(X) ≥ .5, and 0 (”no”) otherwise.

Logistic regression was carried out using the ”glm” function in R. The following

table shows the predictions from the logistic regression when applied to the test data

set, together with error rates.

True
Predicted yes no

yes 27 25
no 49 110

column error rate 0.644737 0.185185

Table 2.1: Test data set performance of logistic regression

The overall error rate is 74/211, or just over 35%. The false negative error rate

≈ 65% (proportion of those on medication at study end who are predicted to be off

medication) is seen to be much higher than the false positive error rate.

It is important to note that without variable selection, the logistic regression model

may include a number of variables which are non-significant. In addition, there may

be issues arising from high correlations among the predictors.

2.2 Random Forests

Random forest is a tree-based method that can be used to improve prediction

accuracy as compared to using a single classification or regression tree. Random

forest produces multiple trees and then combines them to yield a single prediction,

and it is improved from bagging.



7

The purpose of bagging or bootstrap aggregation is to the reduce variance of deci-

sion trees, and a normal way to reduce variance is by averaging a set of observations,

hence for the statistical method, a normal way to reduce variance is taking many

training sets to get different models, using every single model to predict the result,

and then average all of the results. However it is not practical to get many different

training sets, an alternative way is to bootstrap by taking repeated samples from the

single training data set, and generating B different bootstrapped training data sets.

For a given observation, record the results for each of the B trees, and the overall

single prediction is the result most occurred.

Then for the random forest, the difference from the boosting is the number of

choices of predictor when it comes to split in a tree. Random forest decreases the

choice of predictor subset size from p, the number of predictor variables to m, which

is approximately the square root of p, i.e, m ≈ √p. And the reason is to decorrelate

the trees. Since if there is a strong predictor, and every time when it comes to split we

consider the whole predictors, then every time the trees will use the strong predictor

to split so that the trees are highly correlated, in which case the variance could not

be reduced to the largest extend; however if we only consider m predictors instead of

p predictors when it comes to split, then on average the strong predictor will only be

used in (p-m)/p times so that to decrease the variance to the largest extend, then it

could make the average of resulting trees less variable and hence reliable.

The random forest analysis was carried out using the ”randomForest” function in

the R library of the same name, with predictions made using the generic ”predict”



8

function.

The following table gives predicton results using the default settings of random-

Forest.

True
Predicted yes no

yes 36 29
no 40 106

column error rate 0.526316 0.214815

Table 2.2: Test data set performance of randomForest with default settings.

The randomForest algorithm allows for different settings of tuning parameters,

which can be specified using the tuneRF() function in R.

I used tuneRF() the select an optimal value of the mtry parameter, where mtry

is the number of predictor variables to be used at each split in the tree.

For the training data set used, with 211 observations, the the default mtry pa-

rameter is 3, while tuneRF() selects an optimal parameter value of mtry=4. And the

following table shows the test data predictions using the optimal value of mtry, which

results in a slightly lower false negative rate than with the default mtry=3.

True
Predicted yes no

yes 38 29
no 38 106

column error rate 0.5 0.214815

Table 2.3: Test data set performance of tuned randomForest with mtry=4



9

2.3 Boosting

Boosting is another tree-based method that can be used to improve prediction

accuracy from a decision tree.

Boosting works likes bagging, the difference is that bagged trees are independent of

each other, while boosted trees are not. Boosting does not use bootstrap sampling to

generate trees. Rather, each tree fit by the model uses the information from previous

trees, and thus each tree is dependent on prior trees.

The procedure is that given a model, fit a tree using the residual rather than the

outcome so that the tree is relatively small with a few terminal nodes. Then the

second tree corrects the first tree’s error by fitting the first tree’s residual. And the

third tree corrects the error of the first and second by fitting the residual of the second

tree, and so on. By fitting the residual of the preceding tree, we improve the model

slowly in the area where it does not perform well, and the predictions are based on

the whole ensemble of trees.

There are 3 tuning parameters in the boosting.

The first tuning parameter is the number of trees B, which is the total number of

decision trees to create in the ensemble. By increasing the number of trees, we can

potentially get better coverage, with the risk of overfitting, and the training time will

increase. If set the number of trees to 1, it will just create the initial tree without

performing the iteration. The best value of B will be chosen by using cross-validation.

The second tuning parameter is the shrinkage parameter λ, which is a small posi-

tive number between 0 and 1 that controls the step size of learning. If λ is too large,



10

the algorithm might overshoot the optimal solution; however, if the size is too small,

it might take much time to reach the best solution. The best value depends on the

question addressed and the data set, with typical value used being 0.001 and 0.01.

The third tuning parameter is the number of splits in each tree d, which controls

the complexity of the boosted ensemble. By increasing this value, we potentially

increase the size of the tree and may get increased accuracy, at the risk of overfitting

and increasing training time. Often d = 1 works well.

We investigated 2 different settings of shrinkage parameter in this problem.

The following table shows the prediction results with shrinkage parameter set to

0.01

True
Predicted yes no

yes 34 23
no 42 112

column error rate 0.552632 0.170370

Table 2.4: Test data set performance of boosted trees with shrinkage parameter =
.01

and the following table shows the prediction results with shrinkage parameter set

to 0.001

True
Predicted yes no

yes 19 14
no 51 121

column error rate 0.75 0.103704

Table 2.5: Test data set performance of boosted trees with shrinkage parameter =
.001



11

The sensitivity to the tuning parameters is clear, with λ = .001 leading to con-

siderably fewer test observations predicted as ”Yes”, with correspondingly very high

false negative error rate.

2.4 Support Vector Machines

Support vector machine is an approach for classification that is often considered

one of the best ”out of the box” classifiers. The support vector machine is an ex-

tension of the support vector classifier, and the support vector classifier is improved

from the maximal margin classifier. These procedures are described, for example, in

[James et al., 2013], chapter 9.

Start from the hyperplane, which is a p-1 dimensional subspace in the p-dimensional

space. The equation

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0 (2.5)

defines a p-dimensional hyperplane. The hyperplane divides the p-dimensional

space into two halves, we can determine on which side a point lies by simply calcu-

lating whether the left-hand side of equation (2.5) is positive or negative.

Suppose that we have an n*p data matrix X which consists of n training obser-

vations in p-dimensional space, and we want to classify these observations into two

classes -1,1, then a proper separating hyperplane is

β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip > 0 if yi = 1 (2.6)

and

β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip < 0 if yi = −1 (2.7)



12

and we could combine (2.6) and (2.7) in one expression

yi(β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip) > 0 (2.8)

for all i = 1,· · · ,n.

We can use the separating hyperplane to construct a natural classifier, that is we

classify the test observation xi based on the sign of f(xi) = β0 +β1Xi1 +β2Xi2 + · · ·+

βpXip. If f(xi) is positive, then we classify xi to class 1, and otherwise, we classify

xi to class -1. And if f(xi) is far away from zero, which means xi lies far away from

hyperplane, we are more confident with the classification; instead, if f(xi) is close to

zero, which means xi lies closed to the hyperplane, and we are not confident with the

classification.

If our data can be perfectly separated by a hyperplane, there exists an infinite

number of such hyperplanes because we could shift a little or rotate a little of the

hyperplane without contact with any observations. A natural choice of these hyper-

planes is the maximal margin hyperplane, which separates the training observations

farthest from the hyperplane. The margin is the smallest distance among the per-

pendicular distances from all training observations to a given hyperplane, and the

maximal margin hyperplane is the separating hyperplane in which the margin is the

largest. We can then use the maximal margin hyperplane as the maximal margin

classifier to classify the test observations. The maximal margin hyperplane is the

solution to the optimization problem

max
β0,β1,··· ,βp,M

(M) (2.9)



13

subject to

p∑
j=1

(β2
j ) = 1 (2.10)

yi(β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip) ≥M ∀i = 1, · · · , n (2.11)

Constraint (2.11) guarantees that each observation will be on the correct side of the

hyperplane provided that M is positive. Constraint (2.10) adds the meaning to (2.11),

with the constraint of (2.10), the left-hand side of (2.11) gives the perpendicular

distance from ith observation to the hyperplane, so that M represents the margin of

the hyperplane.

But there are some problems with the maximal margin classifier. First of all,

there are cases where there does not exist a perfect separating hyperplane that could

separate the classes perfectly, and so we could allow there to be some misclassification

errors. Secondly, the maximal margin classifier is extremely sensitive which means

that adding an observation could make the separating hyperplane change dramatically

and may cause overfitting of the training data. Hence the support vector classifier

is improved from the maximal margin classifier. Like the maximal margin classifier,

the support vector classifier also classifies a test observation based on which side of a

hyperplane it lies. The difference is that the hyperplane is chosen to correctly separate

most of the training observations, instead of all training observations, into two classes.

The support vector hyperplane is the solution to the optimization problem

max
β0,β1,··· ,βp,ε1,··· ,εn,M

(M) (2.12)

subject to

p∑
j=1

(β2
j ) = 1 (2.13)

yi(β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip) ≥M(1− εi, ) ∀i = 1, · · · , n (2.14)



14

εi ≥ 0,
n∑
i=1

(εj) ≤ C (2.15)

Ifεi = 0 then the ith observation is on the correct side of the margin. If εi > 0 then

the ith observation is on the wrong side of the margin. That is, if εi > 1 then the ith

observation is on the wrong side of the hyperplane.

C is a non-negative tuning parameter which is the sum of εi’s, hence it controls

the severity of the violation to the margin and hyperplane we could tolerate, and it

is chosen by cross-validation.

The support vector machine is an extension of the support vector classifier which

enlarges our feature space using kernels in order to accommodate a non-linear bound-

ary between the classes.

K(xi, xi′ ) (2.16)

is some function referred to as kernel that quantifies the similarity of two observa-

tions. It could turn out that the solution to the support vector classifier problem

involves only the inner products of the observation, where the inner product of two

observations xi, xi′ is given by 〈xi, xi′ 〉 =
∑p

j=1(xijxi′j)

If we take

K(xi, xi′ ) =

p∑
j=1

(xijxi′j) (2.17)

this just gives back the support vector classifier and equation (2.17) is known as

the linear kernel. The support vector machine is the classifier when the support vector

classifier is combined with a non-linear kernel. There are many choices, for example,



15

we could use a polynomial kernel of degree d

K(xi, xi′ ) = (1 +

p∑
j=1

(xijxi′j))
d (2.18)

or radial kernel

K(xi, xi′ ) = exp(−γ ∗
p∑
j=1

(xij − xi′j)2) (2.19)

where γ is a positive constant.

The following is the table of test set predictions using default setting of support

vector machine as implemented in the R function ”svm” of the library ”e1071”. Note

the extreme tendency to predict ”no”, and the associated very high false negative

rate.

True
Predicted yes no

yes 19 9
no 58 125

column error rate 0.753247 0.067164

Table 2.6: Test data set performance of SVM



Chapter 3

SuperLearner

SuperLearner is a machine learning algorithm which is an ensemble with different

kinds of models or the same model with different settings to improve the overall pre-

diction accuracy. In this way, we could then take advantage of the strength of different

kinds of models. The theory behind superlearner is presented in [Van der Laan et al., 2007],

and the R implementation is described in [Polley et al., 2019].

As with the other methods described in chapter 2, we have begun with our divi-

sion of the original data set into a training data set and a hold out data set. The

SuperLearner algorithm fits training data set using multiple base models. Then, it

uses cross-validation to evaluate the performance of each base model on a holdout

set of data. Based on these evaluations, SuperLearner assigns weights to each base

model, with higher weights given to models that perform better on the holdout data

and the overall weight is 1. Finally, SuperLearner combines the base models using

these weights to produce a final ensemble model which used to predict new data.

We used the SuperLearner algorithm as an ensemble of 5 basic single model, which

are logistic regression, default setting of random forest, random forest with modifed

tuning parameter, and 2 different setting of boosting, were the tuning parameters

were set at the values used in chapter 2. Unfortunately, the SVM model in the R

16



17

superlearner implementation is not functional.

After running superlearner, we wound up with the following ensemble, where Risk

is the cross validaated estimate of risk, and coefficient is the weight assigned to the

paricular algorithm.

Algorithm Risk Coefficient
boosting with shrinkage 0.001 0.2283083 0.4463447
randomForest default setting 0.2341913 0.2991023
randomForest tuning parameter 0.2389952 0.0000000
boosting with shrinkage 0.01 0.2297656 0.0000000
logistic regression 0.2373301 0.2545530

The following table is the test data classification results of SuperLearner.

True
Predicted yes no

yes 25 18
no 51 117

column error rate 0.671053 0.133333

Table 3.1: Test data set performance of SuperLearner

We can see that the SuperLearner algorithm only choose one setting of model

between the same model with different settings, in this case it choose the default

random forest setting and the boosting with shrinkage parameter equal to 0.001.

The overall number of misclassification errors, and the false negative and false

positive error rates are not dramatically different from several of the single methods

discussed in chapter 2.



18

We used nested cross-validation to estimate the performance the SuperLearner

algorithm and to compare it to the single methods.

The following table shows the average risks of all algorithms based on the 10-fold

cross-validation, together with standard error, and minimum and maximum estimated

risk.

Algorithm Ave se Min Max
Super Learner 0.2256259 0.011501958 0.1881796 0.2706340
Discrete SL 0.2264714 0.010345281 0.1923071 0.2702207
boosting with shrinkage 0.01 0.2223798 0.009980359 0.1923071 0.2666545
randomForest default setting 0.2286507 0.014948901 0.1782984 0.2951120
randomForest tuning parameter 0.2317188 0.014962817 0.1754516 0.3020568
boosting with shrinkage 0.001 0.2249155 0.009958404 0.1953863 0.2702207
logistic regression 0.2318083 0.013817239 0.2017737 0.2770471

We see that the risks of different individual algorithms are very close, and that

the SuperLearner algorithm does not appear to be much better than any of the other

single algorithms in terms of risk.



Chapter 4

Discussion

In this thesis we explored several individual methods, and the ensemble method super

learner, for predicting a binary outcome variable, with the specific goal of predicting

whether or not a patient with childhood epilepsy will be off of medication at the end

of followup.

The estimated risks the methods, including super learner, were quite similar, all

being within one standard error of the others. In this situation, our choice is to use

logistic regression, given the simplicity of the underlying model and the explicit form

of the prediction. However, there was no variable selection carried out with the logistic

regression, and it is possible that the prediction error rate for that method could be

improved by removing unimportant predictors, perhaps by using AIC, a lasso penalty,

or some stepwise model building procedure. This is a subject for further research.

One issue concerns the complexity of several of the learning methods. It may

be that the size of the training data set (211 cases) is too small to produce reliable

predictions without substantial separation between positive and negative cases.

Another issue is the imbalance in the false positive and false negative error rates

achieved by the methods. All of the procedures considered have a false negative rate

which is much greater than the false positive rate. In this respect, the random forest

19



20

method, tuned or not, balances the two error rates better than logistic regression,

boosted regression, SVM, or superlearner. A different risk measure might be used

in order to balance false negative and false positive rates. This should be done in

conjunction with the medical specialist, as there may be very different consequences

associated with the two types of error.

In trying to better understand the underlying data, it would be useful to identify

that subset of cases which have the same prediction regardless of the method used,

and try to determine the associated features/predictors which identify this subset.

This is a subject for additional work.



Bibliography

[Bickel and Doksum, 2015] Bickel, P. J. and Doksum, K. A. (2015). Mathematical
statistics: basic ideas and selected topics, volume I. CRC Press.

[Camfield et al., 1993] Camfield, C., Camfield, P., Gordon, K., Smith, B., and Doo-
ley, J. (1993). Outcome of childhood epilepsy: a population-based study with a
simple predictive scoring system for those treated with medication. The Journal
of pediatrics, 122(6):861–868.

[Geelhoed et al., 2005] Geelhoed, M., Boerrigter, A. O., Camfield, P., Geerts, A. T.,
Arts, W., Smith, B., and Camfield, C. (2005). The accuracy of outcome prediction
models for childhood-onset epilepsy. Epilepsia, 46(9):1526–1532.

[James et al., 2013] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An
introduction to statistical learning, volume 112. Springer.

[Polley et al., 2019] Polley, E., LeDell, E., Kennedy, C., Lendle, S., and van der Laan,
M. (2019). Package ‘superlearner’. CRAN.

[Van der Laan et al., 2007] Van der Laan, M. J., Polley, E. C., and Hubbard, A. E.
(2007). Super learner. Statistical applications in genetics and molecular biology,
6(1).

21


