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Introduction

Nowadays, sensible resource allocation has been the most important topic around the
world, especially human resource. Rational human resource allocation makes work
more efficient and flexible. In hospital, if we can arrange proper doctors’ quantity, there
would be more efficient work. Therefore, we will analyze the quantity of patients in this
project in order to arrange proper quantity of doctors every day. In this project, there
are five years’ data about the quantity of patients every day in different four hospital
sites (CCHC, DGH, HCH, QEIl) in Halifax from April 15, 2011 to March 31%, 2016. We will
use first four years and six months’ data to fit a model and predict next six months’ data
in fifth year, then compare the predicted data with the real data. Finally, we can get a
model that can predict the quantity of patients in the last six months’ data in fifth year,
which means we can help hospital to manage doctors in order to avoid waste of human
resource.

Method

First, we use first four years and six months’ data in one site to do time series plot and
to check whether there is a trend or periodic signal. We also use the spectra diagram to
decide the most obvious period. From the plot, there are an increasing trend in every
year and weekly periodicity. Then, we fit generalized addictive model to smooth the
data. We assume that the data follow a passion distribution and the mean is A.

The gam function is log(A) ~ a + B * t + y * week + s(day), where s(day) is smooth
function of variable day and we define week is a categories variable.

After smooth the data, we get the fitted values and use these to predict the fitted value
in the last six months in fifth year as predicted variable p1.

Next, we compute the residuals that are calculates as the real values mins the fitted
value. Then we fit the Autoregressive Integrated Moving Average model

to residuals. The ARIMA(p,q) model is X, — X0_, a;X,; = & + Z?zl 0;X;_;. Then we
use first four years and six months’ residuals to predict first week’s residuals in the last
six months in fifth year by ARMA. Then combining the first four years and six months’
residuals and real first week’s residuals in the last six months in fifth year, we can
predict the second week’s residuals in the last six months in fifth years. Using this
circulation, we get the predicted residuals in the last six months in fifth years as
predicted variable p2.

We add p1 and p2 as our final predicted values, and choose 5% significant level to build
up confidence interval. Then we compare our predicted value with the observed values
in the fifth year. In the last, we calculate the mean squared prediction error and
standard prediction error. Using the formula:



™ .(obseved values — predicted values)?

MSPE =
n

SSPE — * ,(obseved values — predicted values)?
B n

Finally, we use the log of data to refit this model. Assume log(data) follow a normal
distribution and the mean is A. The gam function is

g(A) ~ a + B *t+y*week + s(day), where s(day) is smooth function of variable day
and we define week is a categories variable. We also use ARMA model to fit residuals.
The process is as same as before. In the last, we also get the predicted values for next
year and calculate MSPE and SSPE. Compared with these MSPE and SSPE, we need to
check whether there exists some improvement.

Results
For CCHC site:

100 120 140
1 1 I

cche

80
1

0 500 1000 1500

Time

Figure 1. Time series plot of observed data
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Figure 2. spectra diagram of observed data

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every
year. From Figure 2, the peak is at frequency 0.14, we can infer there is a weekly period.
Therefore, we define week as a categories variable to smooth data. And for days in
every year, we cannot ensure whether there is linear relation, so we define day is
smooth function. For the whole data, we use GAM to smooth and remove periodicity.
Then we fit GAM for observed data. The function is log(A) ~ a + B * t + y * week +

s(day).
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Figure 3. Plot of the smooth components(day) of the fitted GAM.
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Figure 4. Plot of observed data (black line) versus fitted data (red line).

From Figure 3 and 4, we can see the fitted data versus the original data and check the
smooth components behaviors. In Figure 3, it shows the pattern in the year.

> summary(b)

Family: poisson
Link function: log

Formula:
cche ~ t + week + s(day)

Parametric coefficients:

Estimate Std. Error z walue Pr(=lzl)
(Intercept) 4.517e+00 7.806e-83 578.646 <« Ze-1b **+
t

1.882e-84 5.313e-86 33.913 < 2e-16 ***
week? -1.833e-81 9.173e-83 -11.264 < Z2e-1b **+
week3 -1.266e-81 9.229-83 -13.721 < Ze-16 **+
weekd -1.485e-81 9.295e-83 -15.976 < 2e-16 ***
weeks -1.527e-81 9.296e-83 -16.426 < 2e-1b **+
weeko =1.194e-81 9.213e-83 -12.961 < Ze-1b **+
week? -3.97%-82 9.024e-83 -4.409 1.04e-05 **+

Signif. codes: @ ‘***’ @.@@1 ‘**' @.€1 ‘*’ @.05 . 0.1 * " 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(day) 8.293 B8.862 86.42 7.89%e-15 ***

Signif. codes: @ ‘**+° @.901 ‘**’ @.01 ‘*’ 8.5 *.” 8.1 * " 1

R-sq.(adj) = ©.586 Deviance explained
UBRE = @.@7@88 Scale est. =1 n

50.3%
1644



> anova(b)

Family: poisson
Link function: log

Formula:
cchc ~ t + week + s(day)

Parametric Terms:

df Chi.sg p-value
t 1 1158.1 <2e-16
week 6 469.5 <Ze-16

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value
S(Fayj B.293 B.862 86.472 7.@9%e-15

From ANOVA, there are all significant for variables.

Then we predict the GAM for the next year. Firstly, we consider the fitted values
prediction for GAM.
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Figure 5. Prediction plot of observed data (black line) versus predicted data (red line),
and 95% confidence interval I(grey line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.



> sum{((d-pred)~Z2)/n)

[1] 13.18286

> sqri(sum({{d-pred)A2)/n))
[1] 3.630821

In the case, the MSPE is 13.18286, and the SSPE is 3.630821.

Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals
is approximately normal distribution.
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Figure 6. Residuals QQ plot.

Then we use ARMA to fit the residuals. In this case, we choose ARIMA(1,0,2).
The ARIMA(].,O,Z) is Xt_ - al_Xt_l =& + 91Xt_1 + 92Xt—2

> arimal=auto.arima(r,trace=T)

ARIMA(CZ,8,2) with non-zero mean : 12164.83
ARIMA(D,8,8) with non-zero mean : 12237.39
ARIMA(C1,8,8) with non-zero mean : 12186.21
ARIMA(D,8,1) with non-zero mean : 12188

ARIMA(D,8,8) with zero mean : 12235.39
ARIMA(C1,@,2) with non-zero mean : 12164.67
ARIMA(1,@,1) with non-zero mean : 12166.81
ARIMA(C1,@,3) with non-zero mean : 12165.75
ARIMA(CZ,@,3) with non-zero mean : 12165.83

ARIMA(CL,8,2) with zero mean : 12162.66
ARIMA(D,0,2) with zero mean : 12174 .88
ARIMACZ,3,2) with zero mean : 12163.83
ARIMACL1,@,1) with zero mean » 12164

ARIMACL1,@,3) with zero mean : 12163.74
ARIMA(CD,B,1) with zero mean : 12185.99
ARIMA(CZ,8,3) with zero mean : 12165.46

Best model: ARIMACL,®,2) with zero mean



Then we predict everyday’ residual in next year by circulation.
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Figure 7. Plot of predicted residuals.

Then we add these two prediction (GAM prediction and residuals prediction), and
choose 5% significant level.
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Figure 8. Plot of observed values (black line) and predicted values(red line), and 95%
confidence interval(grey line).



From Figure8, we can see all original data are in the confidence interval, and for
predicted data, the trend is almost the same as the original data. Then we calculate the
mean squared prediction errors and standard squared prediction errors.

> sum{((d-pp)*2)/n)

[1] 13.82859

> sqri(sum({(d-pp)22)/n))
[1] 3.688406

In the case, the MSPE is 13.02059, and the SSPE is 3.608406, which is less than
prediction only by GAM effect.

Next, we try to use log of data to refit this model. The process is as same as above.
Hence we get these results.
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Figure 9. Plot of observed data (black line) versus fitted data (red line).
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Figure 10. Prediction plot of observed data (black line) versus predicted data (red line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.

> sum{({(d-pred)}*Z2)/n)

[1] 13.85384

> sgri(sum{{{d-pred)*2}/n))

[1|] 3.722@75

From Figure 10, the MSPE is 13.85384, and the SSPE is 3.722075.
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Figure 11. Plot of predicted residuals.
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Figure 12. Plot of observed values (black line) and predicted values(red line), and 95%
confidence interval(grey line).



From Figure 12, the prediction results look roughly same as the Figure 8. We also

calculate mean squared prediction errors and standard squared prediction errors.
= sum{((d-ppl*2l/n)
[1] 13.48373
> sqre(sum((Cd-ppl)n2)/n))
[1] 3.e6111

In this case, MSPE is 13.40373, and SSPE is 3.661. We found these are more than
prediction by GAM and ARMA effect, which means that improvement cannot be
achieved.

For DGH site:
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Figure 1. Time series plot of observed data
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Figure 2. spectra diagram of observed data

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every
year. From Figure 2, the most obvious peak is at frequency 0.14, we can infer there is a
weekly period. Therefore, we define week as a categories variable to smooth data. And
for days in every year, we cannot ensure whether there is linear relation, so we define
day is smooth function. For the whole data, we use GAM to smooth and remove
periodicity. Then we fit GAM for observed data. The function is log(A) ~a + B *t + y *



week + s(day).
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Figure 3. Plot of the smooth components(day) of the fitted GAM.
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Figure 4. Plot of observed data (black line) versus predicted data (red line).

From Figure 3 and 4, we can see the fitted data versus the original data and check the
smooth components behaviors. In Figure 3, it shows the pattern in the year.
From ANOVA, there are all significant for variables.



> summaﬁy{b)

Family: poisson
Link function: log

Formula:
DGH ~ t + week + s(day)

Parametric coefficients:

Estimate Std. Error z value Pri=lzl)
(Intercept) 4.724e+@@ 7.329e-03 644.589 <« Z2e-16 ***
t

5.363e-05 5.020e-06 10.0682 < 2e-1p **=
week? -6.569e-02 8.645e-03 -7.599 2.98e-14 *+**
week3 -8.953e-02 8.698e-83 -18.293 < Z2e-16 **=*
weekd -1.031e-01 8.739%e-03 -11.800 < Ze-16 ***
week5 -1.191e-81 8.767e-83 -13.585 < Ze-16 ***
weekd =1.470e-01 8.833e-83 -16.044 < Ze-16 ***
week? -8.815e-02 B.696e-83 -10.138 < Z2e-16 *+*=*

Signif. codes: @ “#**’ §.@@1 ***+* 9.1 “*' 8.05 *." 6.1 * " 1

Approximate significance of smooth terms:
edf Ref.df Chi.sg p-value
s(day) 7.879 8.672 55.15 8.7%e-09 **=*

Signif. codes: @ “***' §.@31 “*** @.81 “*' @.05 *." 6.1 * ' 1

R-sq.(ad]j) = ©.236 Deviance explained = 23.9%
UBRE = @.025784 Scale est. =1 n = le44

> anova(bh)

Family: poisson
Link function: log

Formula:
DGH ~ t + week + s{day)

Parametric Terms:

df Chi.sg p-value
t 1 114.1 <2e-16
week © 338.8 <Ze-16

Approximate significance of smooth terms:
edf Ref.df Chi.sgq p-value
5(§ay] 7.879 8.672 55.15 &.7%e-89

From ANOVA, there are all significant for variables.

Then we predict the GAM for the next year. Firstly, we consider the fitted values
prediction for GAM.
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Figure 5. Prediction plot of observed data (black line) versus predicted data (red line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.

> sum{{{d-pred)~23/n)

[1] 13.35875

> sqre(sum({{d-pred)»2)/n))

[1] 3.654963

In the case, the MSPE is 13.35875, and the SSPE is 3.654963.

Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals
is approximately normal distribution.
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Figure 6. Residuals QQ plot.

Then we use ARMA to fit the residuals. In this case, we choose ARIMA(1,0,2).
TheARMA(_l,O,Z) is Xt - 0(1Xt_1 = & + 91Xt_1 + 92Xt—2
> arimal=auto.arimalr,trace=T)

ARIMACZ,8,2) with non-zero mean : 12318.19
ARIMACG,®,@) with non-zero mean : 12352.36
ARIMA(1,8,8) with non-zero mean : 12334.91
ARIMA(®,8,1) with non-zero mean : 12335.9

ARIMACS,B,8) with zero mean » 12358, 36
ARIMACL,8,2) with non-zero mean : 12317.76
ARIMACL,8,1) with non-zero mean : 12328.29
ARIMACL,®,3) with non-zero mean : 12332.08
ARIMACZ,8,3) with non-zero mean : 12319.71

ARIMACL,8,2) with zero mean : 12315.83
ARIMA(S,8,2) with zero mean : 12334.47
ARIMACZ,8,2) with zero mean » 12316.22
ARIMACL,8,1) with zero mean » 12318.31
ARIMACL,8,3) with zero mean : 12338.86
ARIMACS,®,1) with zero mean : 12333.89
ARIMACZ,8,3) with zero mean » 12317.76

Best model: ARIMA(L,8,2) with zero mean

Then we predict everyday’ residual in next year by weekly circulation.
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Figure 7. Plot of predicted residuals.

Then we add these two prediction (GAM prediction and residuals prediction), and
choose 5% significant level.
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Figure 8. Plot of observed values (black line) and predicted values(red line), and 95%
confidence interval(grey line).



From Figure8, we can see all the original data are in the confidence interval, and for
predicted data, the trend is almost the same as the original data. Then we calculate the
mean squared prediction errors and standard squared prediction errors.

> sum(((d-pp)rZ)/n)

[1] 13.16783

> sqri(sum(((d-pp)Ar2)/n))

[1] 3.62875
In the case, the MSPE is 13.16783, and the SSPE is 3.62875, which is less than prediction
only by GAM effect.

Next, we try to use log of data to refit this model. The process is as same as above.
Hence we get these results.
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Figure 9. Plot of observed data (black line) versus fitted data (red line).
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Figure 10. Prediction plot of observed data (black line) versus predicted data (red line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.

=

> sum{(({d-pred)A2)/n)

[1] 13.15831

> sqri(sum({{d-pred)~23/n))
[1] 3.627439

From Figu-re 10, the MSPE is 13.15831, and the SSPE is 3.627439.
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Figure 11. Plot of predicted residuals.
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Figure 12. Plot of observed values(black line) and predicted values(red line), and 95%
confidence interval(grey line).



From Figure 12, the prediction results look roughly same as the Figure 8. We also
calculate the calculate the mean squared prediction errors and standard squared
prediction errors. )

> sum{((d-pp)*2)/n)

[1] 13.@4858

> sqre(sum({(d-pp)*r2)/n))

[1] 3.612282

In this case, MSPE 13.04858, and SSPE is 3.612282. We found these are less than
prediction by GAM and ARMA effect, which means that improvement can be achieved.

For HCH site:
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Figure 1. Time series plot of observed data
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Figure 2. spectra diagram of observed data

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every
year. From Figure 2, the peak is at frequency 0.14, we can infer there is a weekly period.
Therefore, we define week as a categories variable to smooth data. And for days in
every year, we cannot ensure whether there is linear relation, so we define day is
smooth function. For the whole data, we use GAM to smooth and remove periodicity.
Then we fit GAM for observed data. The function is log(A) ~ a + B * t + y * week +

s(day).
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Figure 3. Plot of the smooth components(day) of the fitted GAM.
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Figure 4. Plot of observed data (black line) versus predicted data (red line).



From Figure 3 and 4, we can see the fitted data versus the original data and check the

smooth components behaviors. In Figure 3, it shows the pattern in the year.
> summary(b)

Family: poisson
Link function: log

Formula:
HCH ~ t + week + s(day)

Parametric coefficients:

Estimate Std. Error z value Pr{=lzl)
(Intercept) 3.936e+0@ 1.136e-82 346.593 < Ze-1f *#*=
t

-8.302e-05 7.874e-06 -10.543 < Ze-1g ***
week? -1.331e-81 1.380e-82 -9.65@0 < Ze-1f **=
week3 =1.621e-@1 1.399e-82 -11.657 < Ze-1f ***
weekd -1.375e-81 1.383e-82 -9.945 < Ze-1f *+**
weeks -0 B@5e-82 1.367e-082 -7.175 7.24g-13 **=
weekt =5.210e-82 1.351e-82 -3.858 0.00Q114 ***
week? -4.951e-@2 1.35Q0e-02 -3.068 0.000244 **=

Signif. codes: @ °“***’ @.@@81 “**' @.81 “*’ 8.5 ‘." 8.1 * "' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sg p-value
s(day) 8.1@02 §.782 188 <2e-1p **=

Signif. codes: @ “***’ @.@81 "**’ @.81 "+’ 8.85 *." 8.1 * " 1

R-sg.(adj) = ©.185 Deviance explained = 18.7%
UEFE = B.17522 GScale est. =1 n = 1644
> anovalb)

Family: poisson
Link function: log

Formula:
HCH ~ t + week + s(day)

Parametric Terms:

df Chi.sg p-value
t 1 111.2 <2e-16
week 6 214.3 <Ze-16

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value
s(day) B8.102 8.782 188 <2e-16

From ANOVA, there are all significant for variables.

Then we predict the GAM for the next year. Firstly, we consider the fitted values
prediction.
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Figure 5. Prediction plot of observed data (black line) versus predicted data (red line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.

> sum{({d=-pred}~Z2)/n)

[1] 7.14861

> sqrie(sum{{{d-pred)*23/n)

[%] 2.672192

In the case, the MSPE is 7.14061, and the SSPE is 2.672192

Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals
is approximately normal distribution.
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Figure 6. Residuals QQ plot.

Then we use ARMA to fit the residuals. In this case, we choose ARIMA(1,1,2).
The ARIMA(].,].,Z) is Xt - Olet_l = & + 61Xt_1 + 92Xt—2

> arimal=auto.arimalr, trace=T)

ARIMA(Z,1,2) with drift : 19986.18
ARIMA(®,1,@) with drift : 11932.95
ARIMA(1,1,@) with drift : 115087

ARIMA(®,1,1) with drift : 11813.77
ARIMA(S,1,8) : 11939.95
ARIMA(1,1,2) with drift : 18980.82
ARIMA(1,1,1) with drift : 18998.68
ARIMA(1,1,3) with drift : 19982.48
ARIMA(Z,1,3) with drift : 19987.4
ARIMAC1,1,2) : 18978.91
ARIMA(B,1,2) : 118@3.36
ARIMA(CZ,1,2) : 18984.29
ARIMA(1,1,1) : 18996.73
ARIMACL,1,3) : 18980.56
ARIMA(®,1,1) : 11811.84
ARIMA(CZ,1,3) : 18985.52

Best model: ARIMACL,1,2)



Then we predict everyday’ residual in next year by weekly circulation.
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Figure 7. Plot of predicted residuals.

Then we add these two prediction (GAM prediction and residuals prediction), and
choose 5% significant level.
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Figure 8. Plot of observed values(black line) and predicted values(red line), and 95%
confidence interval(grey line).

From Figure8, we can see all the original data are in the confidence interval, and for
predicted data, the trend is almost the same as the original data. Then we calculate the
mean squared prediction error and standard squared prediction error.

> sum(((d-pp)*2)/n)

[1] 5.442622

> sqri(sum(((d-pp)A2)/n))

[1] 2.332943
In the case, the MSPE is 5.442622, and the SSPE is 2.332943, which is less than
prediction only by GAM effect.

Next, we try to use log of data to refit this model. The process is as same as above.
Hence we get these results.
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Figure 9. Plot of observed data (black line) versus fitted data (red line).
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Figure 10. Prediction plot of observed data (black line) versus predicted data (red line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.



> sum{{{d-pred}~23/n)

[1] 7.856697

> sqrie(sum(((d-pred)a2)/n))
[1] 2.88298

From Figure 10, the MSPE is 7.856697, and the SSPE is 2.80298.
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Figure 11. Plot of predicted residuals.
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Figure 12. Plot of observed values(black line) and predicted values(red line), and 95%
confidence interval(grey line).

From Figure 12, the prediction results look roughly same as the Figure 8. We also
calculate the calculate the mean squared prediction errors and standard squared
prediction errors.

> sum(((d-pp)*2)/n}

[1] 5.455917

> sqre(sum(((d-pp)*r2)/n))

[1] 2.335789

e | L T e e S

In this case, MSPE is 5.455912 and SSPE is 2.335789. We found these are more than
prediction by GAM and ARMA effect, which means that improvement cannot be
achieved.

For QEll site:
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Figure 2. spectra diagram of observed data

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every
year. From Figure 2, the peak is at frequency 0.14, we can infer there is a weekly period.
Another peak is at frequency 0.28, which means there is 3.5 days’ period (half of a
week). In this case, we only consider the weekly period due to avoid overfitting.
Therefore, we define week as a categories variable to smooth data. And for days in



every year, we cannot ensure whether there is linear relation, so we define day is
smooth function. For the whole data, we use GAM to smooth and remove periodicity.
Then we fit GAM for observed data. The function is log(A) ~ o + B * t + y * week +

s(day).
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Figure 3. Plot of the smooth components(day) of the fitted GAM.
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Figure 4. Plot of observed data (black line) versus predicted data (red line).

From Figure 3 and 4, we can see the fitted data versus the original data and check the
smooth components behaviors. In Figure 3, it shows the pattern in the year.



> summary({b)

Family: poisson
Link function: log

Formula:
QEII ~ t + week + s(day)

Parametric coefficients:
Estimate Std. Error z value Pr{=lzl)

(Intercept) 5.796e+0@ 5.5052-03 961.954  <le-1p ***
t 4. 806e-85 3.75%e-86 12.785 <le-1f **=*
week? -5.825e-82 6.49%e-83 -8.967 <le-1H %%+
week3 -9, 300e-82 6.555e-03 -14.189 <le-1H **+
weekd -8.5452-82 6.549e-83 -13.047 <le-1p ***
weeks -7.96%e-82 ©.532e-83 -12.199 <le-1lp ***
weeks -1.300e-81 6.619e-83 -19.638 <le-1p **+
week? -8.996e-82 6.549e-83 -13.736 <le-1p **+

Signif. codes: @ "***’ @.@81 ***' .81 **' 8.5 *." 8.1 * ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sg p-value
s{day) 7.845 B8.653 313.4 <le-1p ***

Signif. codes: @ ****’ @.@@l “**’ @.81 **’ @.@5 *." 0.1 * " 1

31.8%
1644

R-sgq.(adj) = ©@.318 Dewviance explained
UBRE = @.26951 Scale est. =1 n

> anova(b)

Family: poisson
Link function: log

Formula:
QEII ~ t + week + s(day)

Parametric Terms:

df Chi.sq p-value
t 1 163.5 <=Ze-16
week & 447.4 <Ze-16

Approximate significance of smooth terms:
edf Ref.df Chi.sg p-value
s(day) 7.845 8.653 313.4 <Ze-16

From ANOVA, there are all significant for variables.

Then we predict the GAM for the next year. Firstly, we consider the fitted values
prediction for GAM.
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Figure 5. Prediction plot of observed data (black line) versus predicted data (red line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.

> sum{ {({d-pred)}*2)/n)

[1] 34.41511

> sqri(sum{{{d-predd*23/n))

[19 5. 866439

In‘the case, the MSPE is 34.41511, and the SSPE is 5.866439.

Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals
is approximately normal distribution.
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Figure 6. Residuals QQ plot.

Then we use ARMA to fit the residuals. In this case, we choose ARIMA(2,0,2).
The ARIMA(Z,O,Z) is Xt - alXt_l - 0(2Xt_2 = & + 61Xt_1 + 92Xt—2

> arimal=auto.arimalr,trace=T)

ARIMACZ,8,2) with non-zero mean : 13618.47
ARIMACS®,8,8) with non-zero mean @ 13653.87
ARIMAC1,8,8) with non-zero mean @ 13626.52
ARIMAC®,8,1) with non-zero mean : 13628.46
ARIMACS®,8,8) with zero mean : 13651.687
ARIMAC1,8,2) with non-zero mean @ 13617.19
ARIMAC3,®,2) with non-zero mean : 13615.8
ARIMACZ,8,1) with non-zero mean @ 13616.15
ARIMACZ,8,3) with non-zero mean @ 13615.85
ARIMAC1,8,1) with non-zero mean @ 13615.31
ARIMAC3,8®,3) with non-zero mean @ 13616.96

ARIMACZ,8,2) with zero mean : 13608.45
ARIMAC1,@,2) with zero mean : 13615.18
ARIMAC3,8,2) with zero mean : 13613.78
ARIMACZ,8,1) with zero mean ¢ 13614.14
ARIMACZ,8,3) with zero mean : 13613.84
ARIMAC1,8,1) with zero mean : 13613.3
ARIMAC3,8®,3) with zero mean : 13614.94

Best model: ARIMA(Z,8,2) with zero mean

Then we predict everyday’ residual in next year by weekly circulation.
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Figure 7. Plot of predicted residuals.

Then we add these two prediction (GAM prediction and residuals prediction), and
choose 5% significant level.
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Figure 8. Plot of observed values (black line) and predicted values(red line), and 95%
confidence interval(grey line).



From Figure8, we can see all the original data are in the confidence interval, and for
predicted data, the trend is almost the same as the original data. Then we calculate the

mean squared predlctlon errors and standard squared prediction errors.
- e ann g, ey many i

> sum{(({d- pn}*E}fn}

[1] 33.89573

> sqri(sum({(d-pplArdl/n))
[1] 5.822004

In the case, the MSPE 33.89573, and the SSPE is 5.822004.

Next, we try to use log of data to refit this model. The process is as same as above.
Hence we get these results.
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Figure 9. Plot of observed data (black line) versus fitted data (red line).



240
|

220
|

180
|
et

QEll
200
|
——
<:::::;’::T§§;;i::
—
—

160
|

1650 1700 1750 1800

t

Figure 10. Prediction plot of observed data (black line) versus predicted data (red line).

If we only consider GAM effect prediction, we can calculate mean squared prediction
error and standard squared prediction error.

> sum{{{d-pred)»2)/n)

[1] 38.16755

> sqrie(sum{{{d-pred)*23/n))

[1] 6.177989

From Figure 10, the MSPE is 38.16755, and the SSPE is 6.177989.
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Figure 11. Plot of predicted residuals.
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Figure 12. Plot of observed values(black line) and predicted values(red line), and 95%
confidence interval(grey line).



From Figure 12, the prediction results look roughly same as the Figure 8. We also
calculate the calculate the mean squared prediction errors and standard squared
prediction errors. ~

> sum{(Cd-ppl)~dls/n)

[1] 35.48498

> sgri(sum(((d-pp)*2)/n))

[1] 5.956927

In this case, MSPE 35.48498, and SSPE is 5.956927. We found these are more than
prediction by GAM and ARMA effect, which means that improvement cannot be
achieved.

Conclusion
From the results, we can get this table.

Prediction CCHC DGH HCH QEll
error
SSPE only by 3.630821 3.654963 2.672192 5.866439
GAM
SSPE by GAM 3.608406 3.62875 2.332943 5.822004
and ARMA
SSPE by log of 3.66111 3.612282 2.335789 5.956927
data

From the table, we can find that using GAM and ARMA to predict data gets less
prediction error. Only in the DGH site, we use log of data to predict data, improvement
can be achieved.

In this project, prediction error of QEll is slightly large, we can find more information
about QEll to fit other proper model to make prediction error smaller in the future
work.

Appendix



hosp=read.csv ("/Users/zhangxinyue/Desktop/hospital.csv", header=T)
library (nlme)
library (mgcv)
library (forecast)
cchc=hosp$SCCHC[1:1644]
check=spec.pgram(cchc, spans=11, log="no")
plot.ts (cchc, type="1")
n=length (cchc)
t=1:n
week=as.factor (c((5:7),rep(c(1:7),234), (1:3)))
day=c((1:366),rep(c(1:365),3), (1:183))
a=data.frame (cchc, t,week,day)
b=gam (cchc~t+week+s (day), family=poisson (link="1og"),method="GCV.C
p",data=a)
plot (b, pages=1, seWithMean=TRUE)
plot (t, aScchc,ylab="CCHC", type="1")
lines (t, b$fitted, col="red")
summary (b)
ANOVA (b)
t=1645:1827
week=as.factor(c((4:7),rep(c(l:7),25), (1:4)))
day=c ((184:366))
new=data.frame (t, week, day)
p=predict.gam (b, new, type="response", se=TRUE)
pred=ps$fit
sel=pSse
d=hosp$CCHC[1645:1827]
plot(t, d,ylab="CCHC", type="1")
lines (t, pred, col="red")
predl=matrix (pred,nrow=183,ncol=1)
sel=matrix (sel,nrow=183,ncol=1)
r=residuals (b, type="response")
ggnorm(r)
arimal=auto.arima (r, trace=T)
fit=arima (r,order=c(1,0,2))
predicted=matrix (nrow=189,ncol=1)
i=1
while (1<=183) {
pred2=predict (fit,n.ahead=7)
predicted[i]=pred2Spred[1]

predicted[i+1l]=pred2Spred[2]
predicted[i+2]=pred2$pred[3]
predicted[i+3]=pred2Spred[4]
predicted[i+4]=pred2Spred[5]
predicted[i+5]=pred2Spred[6]
predicted[i+6]=pred2Spred[7]

r=c(r,hospSCCHC[i+1644]-pred[i], hosp$SCCHC[i+1645]~-
pred[i+1],hospSCCHC[1+1646]-pred[i+2],hosp$SCCHC[i+1647]~-
pred[i+3],hospSCCHC[1+1648] -pred[i+4],hospSCCHC[i+1649]-
pred[i+5], hospSCCHC[1i+1650] -pred[i+6])

fit=arima (r,order=c(1,0,2))

i=1i+7



}
predicted=predicted[1:183]
plot (t,predicted, type="1",col="red")
pp=predl+predicted
r2=residuals (b, type="response")
fit2=arima(r2,order=c(1,0,2))
se2=matrix (nrow=189,ncol=1)
i=1
while (1<=183) {
pred2=predict (fit,n.ahead=7)
se2[i]=pred2$se[1]

se2[i+l]=pred2$se[2]
se2[i+2]=pred2$se[3]
se2[i+3]=pred2$se[4]
se2[i+4]=pred2$se[5]
se2[i+5]=pred2Sse[6]
se2[i+6]=pred2Sse[7]

r2=c(r,hosp$SCCHC[i+1644] -pred[i], hospS$SCCHC[i+1645] -
pred[i+1],hospSCCHC[1+1646]-pred[i+2],hospSCCHC[i+1647]-
pred[i+3],hospSCCHC[1+1648] -pred[i+4],hospSCCHC[i+1649]-
pred[i+5], hospSCCHC[1+1650] -pred[i+6])
fit2=arima (r,order=c(1,0,2))
i=1i+7
}
se2=se2[1:183]
se=sel+se?
up=pp+l.96*se
low=pp-1.96*se
plot(t, d,type="1",ylab="CCHC")
lines (t,pp,col="red")
lines (t,up,col="grey")
lines (t,low,col="grey")
sum ( ( (d-pp) *2) /n)
sgrt (sum( ( (d-pp) *2) /n))
sum( ( (d-pred) *2) /n)
sgrt (sum( ( (d-pred) *2) /n))

#use log of data #

hosp=read.csv ("/Users/zhangxinyue/Desktop/hospital.csv", header=T)
library (nlme)

library (mgcv)

library (forecast)

cchc=hospS$SCCHC[1:1644]

n=length (cchc)

t=1:n

week=as.factor(c((5:7),rep(c(1l:7),234),(1:3)))
day=c((1:366),rep(c(1:365),3), (1:183))
a=data.frame (cchc, t,week,day)

b=gam (log (cchc) ~t+week+s (day), family=poisson (link="1og"),method="
GCV.Cp",data=a)

plot (b, pages=1, seWithMean=TRUE)



plot (t, a$Scchc,ylab="CCHC", type="1")
lines (t, exp(b$fitted), col="red")
summary (b)

anova (b)

t=1645:1827
week=as.factor(c((4:7),rep(c(l:7),25), (1:4)))
day=c ((184:360))
new=data.frame (t, week,day)
p=predict.gam (b, new, type="response", se=TRUE)
pred=exp (pS$fit)

sel=exp (pSse)

d=hosp$CCHC[1645:1827]

plot(t, d,ylab="CCHC", type="1")
lines (t, pred, col="red")
predl=matrix (pred,nrow=183,ncol=1)
sel=matrix(sel,nrow=183,ncol=1)
r=cchc-exp (bSfitted)

ggnorm (r)
arimal=auto.arima (r, trace=T)
fit=arima (r,order=c(1,0,2))
predicted=matrix (nrow=189,ncol=1)
i=1

while (1<=183) {

pred2=predict (fit,n.ahead=7)
predicted[i]=pred2Spred[1]

predicted[i+1l]=pred2Spred[2]
predicted[i+2]=pred2Spred[3]
predicted[i+3]=pred2Spred[4]
predicted[i+4]=pred2Spred[5]
predicted[i+5]=pred2Spred[6]
predicted[i+6]=pred2Spred[7]

r=c(r,hospS$SCCHC[i+1644]-pred[i], hosp$CCHC[i+1645]~-
pred[i+1],hospSCCHC[1+1646]-pred[i+2],hosp$SCCHC[i+1647]~-
pred[i+3],hospSCCHC[1+1648] -pred[i+4], hosp$SCCHC[i+1649] -
pred[i+5],hospSCCHC[1+1650] -pred[i+6])
fit=arima (r,order=c(1,0,2))
i=1i+7
}
predicted=predicted[1:183]
plot (t,predicted, type="1",col="red")
pp=predl+predicted
r2=cchc-exp (b$fitted)
fit2=arima(r2,order=c(1,0,2))
seZ2=matrix (nrow=189,ncol=1)
i=1
while (1<=183) {
pred2=predict (fit,n.ahead=7)
se2[i]=pred2$se[1]
se2[i+1]=pred2S$se
se2[i+2]=pred2S$se
se2[i+3]=pred2Sse
[ ]

2
3
4
se2[i+4]=pred2Sse[5

—/ o/ /o

]
]
]
]



se2[1i+5]=pred2S$se[6]
se2[i+6]=pred2$se[7]
r2=c(r,hosp$CCHC[i+1644]-pred[i], hosp$SCCHC[1i+1645]~-
pred[i+1],hospSCCHC[1+1646]-pred[i+2], hosp$SCCHC[i+1647]-
pred[i+3],hospSCCHC[1+1648] -pred[i+4],hospSCCHC[i+1649]-
pred[i+5], hospSCCHC[1+1650] -pred[i+6])
fit2=arima(r,order=c(1,0,2))
i=1i+7
}
se2=se2[1:183]
se=sel+se?2
up=pp+l.96*se
low=pp-1.96*se
plot (t, d,type="1",ylab="CCHC")
lines (t,pp,col="red")
lines (t,up,col="grey")
lines (t, low,col="grey")
sum ( ( (d-pp) *2) /n)
sqgrt (sum( ( (d-pp) *2)/n))
sum ( ( (d-pred) *2) /n)
sqgrt (sum( ( (d-pred) *2) /n))



