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Introduction 
Nowadays, sensible resource allocation has been the most important topic around the 
world, especially human resource. Rational human resource allocation makes work 
more efficient and flexible. In hospital, if we can arrange proper doctors’ quantity, there 
would be more efficient work. Therefore, we will analyze the quantity of patients in this 
project in order to arrange proper quantity of doctors every day. In this project, there 
are five years’ data about the quantity of patients every day in different four hospital 
sites (CCHC, DGH, HCH, QEII) in Halifax from April 1st, 2011 to March 31st, 2016. We will 
use first four years and six months’ data to fit a model and predict next six months’ data 
in fifth year, then compare the predicted data with the real data. Finally, we can get a 
model that can predict the quantity of patients in the last six months’ data in fifth year, 
which means we can help hospital to manage doctors in order to avoid waste of human 
resource. 

 

Method 
First, we use first four years and six months’ data in one site to do time series plot and 
to check whether there is a trend or periodic signal. We also use the spectra diagram to 
decide the most obvious period. From the plot, there are an increasing trend in every 
year and weekly periodicity. Then, we fit generalized addictive model to smooth the 
data. We assume that the data follow a passion distribution and the mean is λ. 
The gam function is  log(λ) ~ α + β ∗ t + γ ∗ week + s(day),  where s(day) is smooth 
function of variable day and we define week is a categories variable. 
After smooth the data, we get the fitted values and use these to predict the fitted value 
in the last six months in fifth year as predicted variable p1. 
Next, we compute the residuals that are calculates as the real values mins the fitted 
value. Then we fit the Autoregressive Integrated Moving Average model 

 to residuals. The ARIMA(p,q) model is 𝑋𝑡 − ∑ 𝛼𝑖𝑋𝑡−𝑖
𝑝
𝑖=1 = 𝜀𝑡 + ∑ 𝜃𝑗𝑋𝑡−𝑗

𝑞
𝑗=1 . Then we 

use first four years and six months’ residuals to predict first week’s residuals in the last 
six months in fifth year by ARMA. Then combining the first four years and six months’ 
residuals and real first week’s residuals in the last six months in fifth year, we can 
predict the second week’s residuals in the last six months in fifth years. Using this 
circulation, we get the predicted residuals in the last six months in fifth years as 
predicted variable p2. 
We add p1 and p2 as our final predicted values, and choose 5% significant level to build 
up confidence interval. Then we compare our predicted value with the observed values 
in the fifth year. In the last, we calculate the mean squared prediction error and 
standard prediction error. Using the formula:  



𝑀𝑆𝑃𝐸 =
∑ (𝑜𝑏𝑠𝑒𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠)2𝑛

𝑖=1

𝑛
 

 

𝑆𝑆𝑃𝐸 = √
∑ (𝑜𝑏𝑠𝑒𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠)2𝑛

𝑖=1

𝑛
 

Finally, we use the log of data to refit this model. Assume log(data) follow a normal 
distribution and the mean is λ. The gam function is 
  g(λ) ~ α + β ∗ t + γ ∗ week + s(day), where s(day) is smooth function of variable day 
and we define week is a categories variable. We also use ARMA model to fit residuals. 
The process is as same as before. In the last, we also get the predicted values for next 
year and calculate MSPE and SSPE. Compared with these MSPE and SSPE, we need to 
check whether there exists some improvement. 
 

Results 
For CCHC site: 
 

 
Figure 1. Time series plot of observed data 



 
Figure 2. spectra diagram of observed data 

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every 
year. From Figure 2, the peak is at frequency 0.14, we can infer there is a weekly period. 
Therefore, we define week as a categories variable to smooth data. And for days in 
every year, we cannot ensure whether there is linear relation, so we define day is 
smooth function. For the whole data, we use GAM to smooth and remove periodicity. 
Then we fit GAM for observed data. The function is log(λ) ~ α + β ∗ t + γ ∗ week +
s(day).

 
Figure 3. Plot of the smooth components(day) of the fitted GAM.



 

Figure 4. Plot of observed data (black line) versus fitted data (red line). 
 

From Figure 3 and 4, we can see the fitted data versus the original data and check the 
smooth components behaviors. In Figure 3, it shows the pattern in the year. 
 

 



 
 
From ANOVA, there are all significant for variables.  
 
Then we predict the GAM for the next year. Firstly, we consider the fitted values 
prediction for GAM. 
 

 
Figure 5. Prediction plot of observed data (black line) versus predicted data (red line), 

and 95% confidence interval l(grey line). 
 

 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 



 
In the case, the MSPE is 13.18286, and the SSPE is 3.630821. 
 
Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals 
is approximately normal distribution. 

 
Figure 6. Residuals QQ plot. 

 
Then we use ARMA to fit the residuals. In this case, we choose ARIMA(1,0,2). 
The ARIMA(1,0,2) is 𝑋𝑡 − 𝛼1𝑋𝑡−1 = 𝜀𝑡 + 𝜃1𝑋𝑡−1 + 𝜃2𝑋𝑡−2 

 



Then we predict everyday’ residual in next year by circulation. 
 

 
Figure 7. Plot of predicted residuals. 

 
Then we add these two prediction (GAM prediction and residuals prediction), and 
choose 5% significant level. 

 
Figure 8. Plot of observed values (black line) and predicted values(red line), and 95% 

confidence interval(grey line). 
 



From Figure8, we can see all original data are in the confidence interval, and for 
predicted data, the trend is almost the same as the original data. Then we calculate the 
mean squared prediction errors and standard squared prediction errors. 

 
In the case, the MSPE is 13.02059, and the SSPE is 3.608406, which is less than 
prediction only by GAM effect. 
 
Next, we try to use log of data to refit this model. The process is as same as above. 
Hence we get these results.

 
Figure 9. Plot of observed data (black line) versus fitted data (red line). 

 



 
Figure 10. Prediction plot of observed data (black line) versus predicted data (red line). 

 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 

 
From Figure 10, the MSPE is 13.85384, and the SSPE is 3.722075. 



 
Figure 11. Plot of predicted residuals. 

 
Figure 12. Plot of observed values (black line) and predicted values(red line), and 95% 

confidence interval(grey line). 



 
From Figure 12, the prediction results look roughly same as the Figure 8. We also 
calculate mean squared prediction errors and standard squared prediction errors. 

 
In this case, MSPE is 13.40373, and SSPE is 3.661. We found these are more than 
prediction by GAM and ARMA effect, which means that improvement cannot be 
achieved. 
 
 
For DGH site: 

 
 

Figure 1. Time series plot of observed data 



 
Figure 2. spectra diagram of observed data 

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every 
year. From Figure 2, the most obvious peak is at frequency 0.14, we can infer there is a 
weekly period. Therefore, we define week as a categories variable to smooth data. And 
for days in every year, we cannot ensure whether there is linear relation, so we define 
day is smooth function. For the whole data, we use GAM to smooth and remove 
periodicity. Then we fit GAM for observed data. The function is log(λ) ~ α + β ∗ t + γ ∗



week + s(day).

 
Figure 3. Plot of the smooth components(day) of the fitted GAM. 

 
Figure 4. Plot of observed data (black line) versus predicted data (red line). 

 
From Figure 3 and 4, we can see the fitted data versus the original data and check the 
smooth components behaviors. In Figure 3, it shows the pattern in the year. 
From ANOVA, there are all significant for variables.  



 

 
 
From ANOVA, there are all significant for variables.  
 
 
Then we predict the GAM for the next year. Firstly, we consider the fitted values 
prediction for GAM. 



 

 
Figure 5. Prediction plot of observed data (black line) versus predicted data (red line). 

 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 

 
In the case, the MSPE is 13.35875, and the SSPE is 3.654963. 
 
 
Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals 
is approximately normal distribution. 



 
Figure 6. Residuals QQ plot. 

 
Then we use ARMA to fit the residuals. In this case, we choose ARIMA(1,0,2). 
The ARMA(1,0,2) is 𝑋𝑡 − 𝛼1𝑋𝑡−1 = 𝜀𝑡 + 𝜃1𝑋𝑡−1 + 𝜃2𝑋𝑡−2 

 
 
Then we predict everyday’ residual in next year by weekly circulation. 



 
Figure 7. Plot of predicted residuals. 

 
Then we add these two prediction (GAM prediction and residuals prediction), and 
choose 5% significant level. 

 
Figure 8. Plot of observed values (black line) and predicted values(red line), and 95% 

confidence interval(grey line). 



 
From Figure8, we can see all the original data are in the confidence interval, and for 
predicted data, the trend is almost the same as the original data. Then we calculate the 
mean squared prediction errors and standard squared prediction errors. 

 
In the case, the MSPE is 13.16783, and the SSPE is 3.62875, which is less than prediction 
only by GAM effect. 
 
 
Next, we try to use log of data to refit this model. The process is as same as above. 
Hence we get these results. 
 

Figure 9. Plot of observed data (black line) versus fitted data (red line). 



 
Figure 10. Prediction plot of observed data (black line) versus predicted data (red line). 

 
 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 

 
From Figure 10, the MSPE is 13.15831, and the SSPE is 3.627439. 
 



 
Figure 11. Plot of predicted residuals. 

.

 
Figure 12. Plot of observed values(black line) and predicted values(red line), and 95% 

confidence interval(grey line). 



 
From Figure 12, the prediction results look roughly same as the Figure 8. We also 
calculate the calculate the mean squared prediction errors and standard squared 
prediction errors. 

 
In this case, MSPE 13.04858, and SSPE is 3.612282. We found these are less than 
prediction by GAM and ARMA effect, which means that improvement can be achieved. 
 
For HCH site: 

 
Figure 1. Time series plot of observed data 



 
Figure 2. spectra diagram of observed data 

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every 
year. From Figure 2, the peak is at frequency 0.14, we can infer there is a weekly period. 
Therefore, we define week as a categories variable to smooth data. And for days in 
every year, we cannot ensure whether there is linear relation, so we define day is 
smooth function. For the whole data, we use GAM to smooth and remove periodicity. 
Then we fit GAM for observed data. The function is log(λ) ~ α + β ∗ t + γ ∗ week +
s(day). 



Figure 3. Plot of the smooth components(day) of the fitted GAM. 

 
Figure 4. Plot of observed data (black line) versus predicted data (red line). 

 



From Figure 3 and 4, we can see the fitted data versus the original data and check the 
smooth components behaviors. In Figure 3, it shows the pattern in the year. 

 

 
 
From ANOVA, there are all significant for variables.  
 
Then we predict the GAM for the next year. Firstly, we consider the fitted values 
prediction. 



 

 
Figure 5. Prediction plot of observed data (black line) versus predicted data (red line). 

 
 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 

 
In the case, the MSPE is 7.14061, and the SSPE is 2.672192 
 
Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals 
is approximately normal distribution. 



 
Figure 6. Residuals QQ plot. 

 
Then we use ARMA to fit the residuals. In this case, we choose ARIMA(1,1,2). 
The ARIMA(1,1,2) is 𝑋𝑡 − 𝛼1𝑋𝑡−1 = 𝜀𝑡 + 𝜃1𝑋𝑡−1 + 𝜃2𝑋𝑡−2 
 

 



Then we predict everyday’ residual in next year by weekly circulation. 

 
Figure 7. Plot of predicted residuals. 

 
Then we add these two prediction (GAM prediction and residuals prediction), and 
choose 5% significant level. 



 
Figure 8. Plot of observed values(black line) and predicted values(red line), and 95% 

confidence interval(grey line). 
 
From Figure8, we can see all the original data are in the confidence interval, and for 
predicted data, the trend is almost the same as the original data. Then we calculate the 
mean squared prediction error and standard squared prediction error.

 
 
In the case, the MSPE is 5.442622, and the SSPE is 2.332943, which is less than 
prediction only by GAM effect. 
 
 
Next, we try to use log of data to refit this model. The process is as same as above. 
Hence we get these results. 
 



Figure 9. Plot of observed data (black line) versus fitted data (red line).

 
Figure 10. Prediction plot of observed data (black line) versus predicted data (red line).  
 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 



 
From Figure 10, the MSPE is 7.856697, and the SSPE is 2.80298. 

 

 
Figure 11. Plot of predicted residuals. 



 
Figure 12. Plot of observed values(black line) and predicted values(red line), and 95% 

confidence interval(grey line). 
 
From Figure 12, the prediction results look roughly same as the Figure 8. We also 
calculate the calculate the mean squared prediction errors and standard squared 
prediction errors. 

 
In this case, MSPE is 5.455912 and SSPE is 2.335789. We found these are more than 
prediction by GAM and ARMA effect, which means that improvement cannot be 
achieved. 
 
For QEII site: 



 
Figure 1. Time series plot of observed data 

 
Figure 2. spectra diagram of observed data 

From Figure 1, we can see there is periodic signal, and a slightly increasing trend in every 
year. From Figure 2, the peak is at frequency 0.14, we can infer there is a weekly period. 
Another peak is at frequency 0.28, which means there is 3.5 days’ period (half of a 
week). In this case, we only consider the weekly period due to avoid overfitting. 
Therefore, we define week as a categories variable to smooth data. And for days in 



every year, we cannot ensure whether there is linear relation, so we define day is 
smooth function. For the whole data, we use GAM to smooth and remove periodicity. 
Then we fit GAM for observed data. The function is log(λ) ~ α + β ∗ t + γ ∗ week +
s(day).

 
Figure 3. Plot of the smooth components(day) of the fitted GAM. 



 
Figure 4. Plot of observed data (black line) versus predicted data (red line). 

 
From Figure 3 and 4, we can see the fitted data versus the original data and check the 
smooth components behaviors. In Figure 3, it shows the pattern in the year. 



 

 
From ANOVA, there are all significant for variables.  
 
Then we predict the GAM for the next year. Firstly, we consider the fitted values 
prediction for GAM. 



 

 
Figure 5. Prediction plot of observed data (black line) versus predicted data (red line). 

 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 

 
In the case, the MSPE is 34.41511, and the SSPE is 5.866439. 
 
Secondly, we consider the residuals prediction. From Figure 6, we can see the residuals 
is approximately normal distribution. 



 
Figure 6. Residuals QQ plot. 

 
Then we use ARMA to fit the residuals. In this case, we choose ARIMA(2,0,2). 
The ARIMA(2,0,2) is 𝑋𝑡 − 𝛼1𝑋𝑡−1 − 𝛼2𝑋𝑡−2 = 𝜀𝑡 + 𝜃1𝑋𝑡−1 + 𝜃2𝑋𝑡−2 
 

 
Then we predict everyday’ residual in next year by weekly circulation. 



 
Figure 7. Plot of predicted residuals. 

 
Then we add these two prediction (GAM prediction and residuals prediction), and 
choose 5% significant level.

 
Figure 8. Plot of observed values (black line) and predicted values(red line), and 95% 

confidence interval(grey line). 



 
From Figure8, we can see all the original data are in the confidence interval, and for 
predicted data, the trend is almost the same as the original data. Then we calculate the 
mean squared prediction errors and standard squared prediction errors. 

 
 
In the case, the MSPE 33.89573, and the SSPE is 5.822004. 
 
Next, we try to use log of data to refit this model. The process is as same as above. 
Hence we get these results. 

 
Figure 9. Plot of observed data (black line) versus fitted data (red line). 



 
Figure 10. Prediction plot of observed data (black line) versus predicted data (red line).  
 
If we only consider GAM effect prediction, we can calculate mean squared prediction 
error and standard squared prediction error. 

 
From Figure 10, the MSPE is 38.16755, and the SSPE is 6.177989. 



 
Figure 11. Plot of predicted residuals. 

 

 
Figure 12. Plot of observed values(black line) and predicted values(red line), and 95% 

confidence interval(grey line). 



 
From Figure 12, the prediction results look roughly same as the Figure 8. We also 
calculate the calculate the mean squared prediction errors and standard squared 
prediction errors. 

 
In this case, MSPE 35.48498, and SSPE is 5.956927. We found these are more than 
prediction by GAM and ARMA effect, which means that improvement cannot be 
achieved. 
 

Conclusion 
From the results, we can get this table. 
 

Prediction 
error 

CCHC DGH HCH QEII 

SSPE only by 
GAM 

3.630821 3.654963 2.672192 5.866439 

SSPE by GAM 
and ARMA 

3.608406 3.62875 2.332943 5.822004 

SSPE by log of 
data 

3.66111 3.612282 2.335789 5.956927 

 
From the table, we can find that using GAM and ARMA to predict data gets less 
prediction error. Only in the DGH site, we use log of data to predict data, improvement 
can be achieved. 
In this project, prediction error of QEII is slightly large, we can find more information 
about QEII to fit other proper model to make prediction error smaller in the future 
work. 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 



hosp=read.csv("/Users/zhangxinyue/Desktop/hospital.csv",header=T) 

library(nlme) 

library(mgcv) 

library(forecast) 

cchc=hosp$CCHC[1:1644]  

check=spec.pgram(cchc,spans=11,log="no") 

plot.ts(cchc,type="l") 

n=length(cchc) 

t=1:n 

week=as.factor(c((5:7),rep(c(1:7),234),(1:3))) 

day=c((1:366),rep(c(1:365),3),(1:183)) 

a=data.frame(cchc,t,week,day) 

b=gam(cchc~t+week+s(day),family=poisson(link="log"),method="GCV.C

p",data=a) 

plot(b,pages=1,seWithMean=TRUE) 

plot(t, a$cchc,ylab="CCHC",type="l") 

lines(t, b$fitted, col="red") 

summary(b) 

ANOVA(b) 

t=1645:1827 

week=as.factor(c((4:7),rep(c(1:7),25),(1:4))) 

day=c((184:366)) 

new=data.frame(t,week,day) 

p=predict.gam(b,new,type="response",se=TRUE) 

pred=p$fit 

se1=p$se 

d=hosp$CCHC[1645:1827] 

plot(t, d,ylab="CCHC",type="l") 

lines(t, pred, col="red") 

pred1=matrix(pred,nrow=183,ncol=1) 

se1=matrix(se1,nrow=183,ncol=1) 

r=residuals(b,type="response") 

qqnorm(r) 

arimal=auto.arima(r,trace=T) 

fit=arima(r,order=c(1,0,2)) 

predicted=matrix(nrow=189,ncol=1) 

i=1 

while(i<=183){ 

 pred2=predict(fit,n.ahead=7) 

 predicted[i]=pred2$pred[1] 

 predicted[i+1]=pred2$pred[2] 

 predicted[i+2]=pred2$pred[3] 

 predicted[i+3]=pred2$pred[4] 

 predicted[i+4]=pred2$pred[5] 

 predicted[i+5]=pred2$pred[6] 

 predicted[i+6]=pred2$pred[7] 

 r=c(r,hosp$CCHC[i+1644]-pred[i],hosp$CCHC[i+1645]-

pred[i+1],hosp$CCHC[i+1646]-pred[i+2],hosp$CCHC[i+1647]-

pred[i+3],hosp$CCHC[i+1648]-pred[i+4],hosp$CCHC[i+1649]-

pred[i+5],hosp$CCHC[i+1650]-pred[i+6]) 

 fit=arima(r,order=c(1,0,2)) 

 i=i+7 



} 

predicted=predicted[1:183] 

plot(t,predicted,type="l",col="red") 

pp=pred1+predicted 

r2=residuals(b,type="response") 

fit2=arima(r2,order=c(1,0,2)) 

se2=matrix(nrow=189,ncol=1) 

i=1 

while(i<=183){ 

 pred2=predict(fit,n.ahead=7) 

 se2[i]=pred2$se[1] 

 se2[i+1]=pred2$se[2] 

 se2[i+2]=pred2$se[3] 

 se2[i+3]=pred2$se[4] 

 se2[i+4]=pred2$se[5] 

 se2[i+5]=pred2$se[6] 

 se2[i+6]=pred2$se[7] 

 r2=c(r,hosp$CCHC[i+1644]-pred[i],hosp$CCHC[i+1645]-

pred[i+1],hosp$CCHC[i+1646]-pred[i+2],hosp$CCHC[i+1647]-

pred[i+3],hosp$CCHC[i+1648]-pred[i+4],hosp$CCHC[i+1649]-

pred[i+5],hosp$CCHC[i+1650]-pred[i+6]) 

 fit2=arima(r,order=c(1,0,2)) 

 i=i+7 

} 

se2=se2[1:183] 

se=se1+se2 

up=pp+1.96*se 

low=pp-1.96*se 

plot(t, d,type="l",ylab="CCHC") 

lines(t,pp,col="red") 

lines(t,up,col="grey") 

lines(t,low,col="grey") 

sum(((d-pp)^2)/n) 

sqrt(sum(((d-pp)^2)/n)) 

sum(((d-pred)^2)/n) 

sqrt(sum(((d-pred)^2)/n)) 

 

 

#use log of data # 

hosp=read.csv("/Users/zhangxinyue/Desktop/hospital.csv",header=T) 

library(nlme) 

library(mgcv) 

library(forecast) 

cchc=hosp$CCHC[1:1644]  

n=length(cchc) 

t=1:n 

week=as.factor(c((5:7),rep(c(1:7),234),(1:3))) 

day=c((1:366),rep(c(1:365),3),(1:183)) 

a=data.frame(cchc,t,week,day) 

b=gam(log(cchc)~t+week+s(day),family=poisson(link="log"),method="

GCV.Cp",data=a) 

plot(b,pages=1,seWithMean=TRUE) 



plot(t, a$cchc,ylab="CCHC",type="l") 

lines(t, exp(b$fitted), col="red") 

summary(b) 

anova(b) 

t=1645:1827 

week=as.factor(c((4:7),rep(c(1:7),25),(1:4))) 

day=c((184:366)) 

new=data.frame(t,week,day) 

p=predict.gam(b,new,type="response",se=TRUE) 

pred=exp(p$fit) 

se1=exp(p$se) 

d=hosp$CCHC[1645:1827] 

plot(t, d,ylab="CCHC",type="l") 

lines(t, pred, col="red") 

pred1=matrix(pred,nrow=183,ncol=1) 

se1=matrix(se1,nrow=183,ncol=1) 

r=cchc-exp(b$fitted) 

qqnorm(r) 

arimal=auto.arima(r,trace=T) 

fit=arima(r,order=c(1,0,2)) 

predicted=matrix(nrow=189,ncol=1) 

i=1 

while(i<=183){ 

 pred2=predict(fit,n.ahead=7) 

 predicted[i]=pred2$pred[1] 

 predicted[i+1]=pred2$pred[2] 

 predicted[i+2]=pred2$pred[3] 

 predicted[i+3]=pred2$pred[4] 

 predicted[i+4]=pred2$pred[5] 

 predicted[i+5]=pred2$pred[6] 

 predicted[i+6]=pred2$pred[7] 

 r=c(r,hosp$CCHC[i+1644]-pred[i],hosp$CCHC[i+1645]-

pred[i+1],hosp$CCHC[i+1646]-pred[i+2],hosp$CCHC[i+1647]-

pred[i+3],hosp$CCHC[i+1648]-pred[i+4],hosp$CCHC[i+1649]-

pred[i+5],hosp$CCHC[i+1650]-pred[i+6]) 

 fit=arima(r,order=c(1,0,2)) 

 i=i+7 

} 

predicted=predicted[1:183] 

plot(t,predicted,type="l",col="red") 

pp=pred1+predicted 

r2=cchc-exp(b$fitted) 

fit2=arima(r2,order=c(1,0,2)) 

se2=matrix(nrow=189,ncol=1) 

i=1 

while(i<=183){ 

 pred2=predict(fit,n.ahead=7) 

 se2[i]=pred2$se[1] 

 se2[i+1]=pred2$se[2] 

 se2[i+2]=pred2$se[3] 

 se2[i+3]=pred2$se[4] 

 se2[i+4]=pred2$se[5] 



 se2[i+5]=pred2$se[6] 

 se2[i+6]=pred2$se[7] 

 r2=c(r,hosp$CCHC[i+1644]-pred[i],hosp$CCHC[i+1645]-

pred[i+1],hosp$CCHC[i+1646]-pred[i+2],hosp$CCHC[i+1647]-

pred[i+3],hosp$CCHC[i+1648]-pred[i+4],hosp$CCHC[i+1649]-

pred[i+5],hosp$CCHC[i+1650]-pred[i+6]) 

 fit2=arima(r,order=c(1,0,2)) 

 i=i+7 

} 

se2=se2[1:183] 

se=se1+se2 

up=pp+1.96*se 

low=pp-1.96*se 

plot(t, d,type="l",ylab="CCHC") 

lines(t,pp,col="red") 

lines(t,up,col="grey") 

lines(t,low,col="grey") 

sum(((d-pp)^2)/n) 

sqrt(sum(((d-pp)^2)/n)) 

sum(((d-pred)^2)/n) 

sqrt(sum(((d-pred)^2)/n)) 

 

 


