
 
 
 
 
 
 

 
 
 
 
 

Analysis of Factors Affecting Potato Gene Expression Levels Under 

Multivariate Conditions 
 
 
 

By 
 
 
 

Xiyou Lin 
B00871553 

 
 
 
 

Supervised by 
Dr. Hong Gu 

 
 
 
 
 

Dalhousie university 
Halifax, Canada 
April 22, 2024 

 
 
 
 

 
 



Abstract 

Potato is one of the world's leading non-cereal staple crops, known for its high 

nutritional value, and is an important food source in many countries. Given the 

importance of potato in the global diet, the present study attempted to find ways in 

which potato production could be maximized. This study hope to investigate how 

variables such as planting environment, fertilization strategy, and time affect the 

expression level of 63 genes during potato cultivation, and to obtain the most suitable 

planting method for potato growth. This study combined 15 growing environments 

(combinations of growing regions and potato varieties) and 11 fertilization strategies 

with two observations per potato plant at different times, utilizing longitudinal analyses, 

multiple linear regression models, and hierarchical cluster analysis.  

The research revealed that the growing environment, potato variety, sampling days, and 

fertilization strategies, as well as the complex interplay between these factors, 

substantially influenced gene expression levels. Among these, genetic determinants 

were identified as the most impactful, closely followed by environmental and temporal 

considerations. Furthermore, this study, while maintaining the same total amount of 

fertilization, adjusted the proportions of the two fertilizations and discovered that 

secondary fertilization significantly enhances the expression levels of various genes in 

potatoes. This indicates that an appropriate strategy for secondary fertilization plays a 

crucial role in promoting gene expression in potato cultivation. And all 63 genes 

showed a strong positive growth trend when the fertilization strategy was 60:180. 

 



Introduction 

Potatoes, as one of the world's primary food crops, not only serve as an essential food 

source but also offer the nutritional benefits of both vegetables and fruits, playing a 

crucial role in the food security of numerous countries. Despite the relative ease of 

potato cultivation, maximizing yield necessitates ongoing research into variety 

selection, planting environments, and other influential factors. It is important that 

changes in gene expression in potatoes are closely linked to their yields, so some advice 

on growing potatoes can be obtained by studying changes in gene expression (Kabir 

2004). For instance, it is known that the amount of fertilization impacts potato growth, 

but excessive fertilization in the initial application can lead to potato death, while too 

much in the second application can contaminate the soil. Thus, by observing the 

changes in potato gene expression level over time and fertilizer application, it is 

possible to find the most appropriate fertilization strategy to improve potato survival 

and yield. This underscores the importance of in-depth exploration into factors affecting 

gene expression. 

This research is dedicated to analyzing various factors influencing potato gene 

expression levels, intending to offer a scientific foundation for potato cultivation. By 

examining potatoes from 15 different varieties and cultivation area combinations, this 

paper employs longitudinal analysis to map the trends of gene expression levels under 

varying fertilization methods over time. Data were then converted to a long format for 

analysis using a multivariate linear regression model, thoroughly examining how 

variables such as planting region, potato variety, fertilization amounts (including first 



and second applications), and sampling days, as well as their interactions, impact the 

expression of 63 different genes. The study concludes with an analysis of residuals to 

reaffirm the primary factors affecting potato gene expression levels. 

 

Data 

This dataset encompasses information such as potato identification numbers, varieties, 

planting locations, fertilization methods, timing, and the expression levels of 63 genes. 

During the data preprocessing stage, an initial data cleaning is conducted. Given that 

there are 15 different combinations of potato varieties and planting locations, these two 

variables were merged into a new variable, named ‘syc’ (All combinations of planting 

areas and potato varieties are shown in Table 1). Additionally, due to the presence of 

six distinct fertilization treatments (trt) and the absence of treatment data in some 

records, the datasets with a total fertilization amount of 106 were categorized as trt3, 

and those with a total of 200 were classified as trt4.  

Considering that the combination of Charlottetown 2014 and Russet Burbank was only 

observed once on the 42nd day, with no further data available to explore changes in 

potato gene expression levels for this variety and land combination over time, this study 

will exclude this combination. Additionally, some potatoes were observed three times, 

with a short interval between the second and third observations. Given that such a brief 

interval is unlikely to result in significant changes in potato gene expression levels, this 

study will disregard parts of the data that include the third observation. 

The research aims to investigate the impact of different fertilization methods and time 



on gene expression levels. Considering that different treatments primarily differentiate 

based on the total amount of fertilizer used, ten distinct fertilization strategies were 

defined by combining the first and second fertilization applications, and these strategies 

were named ‘fertilization_Strategies’. To accommodate the study’s need for long-

format data, the dataset was converted into a long format for subsequent analysis. 

 

 Russet 
Burbank 

Jemseg Shepody Atlantic Classic 
Russet 

Off-Carberry 
2014 

24 0 0 0 0 

On-Carberry 
2014 

24 0 0 0 0 

PŽribonka 
2014 

0 0 0 0 24 

Charlottetown 
2014 

20 0 0 0 0 

Fredericton 
MAT2014 

12 12 12 0 0 

Fredericton 
GE2012 

20 0 20 20 0 

Fredericton 
PK2014 

8 0 4 0 0 

      Table 1: The combinations of planting regions and potato varieties 
 

Mothed 

Multi-linear regression 

Multiple linear regression is a statistical technique that employs multiple explanatory 

variables to predict the outcome of a response variable. The objective of multiple linear 

regression is to model the linear relationship between the independent variables and the 

response variable. The formula is shown below. 

Yi = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜖 



Considering the influence of multiple variables in the dataset on gene expression levels, 

a multiple linear regression model is utilized for analysis. The analysis employs data 

transformed into a long format, with gene expression level as the dependent variable. 

Independent variables include the genes, treatments, block, syc, fertilization strategies 

(fertilization_Strategies), days after leaf sampling (DAP_for_leaf_sampling), and 

interaction terms between fertilization strategies and genes, as well as between genes 

and days after leaf sampling. 

 

Longitudinal Analysis 

Longitudinal studies involve repeatedly observing the same variables over a certain 

period, allowing researchers to continuously examine the same individuals to identify 

any changes that may occur over time. In this study, gene expression levels were 

observed at two distinct time points. Given that changes in gene expression are minimal 

over closely spaced intervals, the data processing categorized observation days into two 

groups: those less than 50 days were classified into one category, and those greater than 

50 days into another. Considering the aim of this study is to explore the effects of 

fertilization and time on gene expression, a longitudinal analysis method was employed 

to examine the data. 

 

Agglomerative Hierarchical Clustering 

Hierarchical clustering is an analytical method that groups objects based on similarity. 

In this method, different clusters form a hierarchical structure and can be visualized 



through dendrograms. Agglomerative hierarchical clustering employs a bottom-up 

approach. Initially, each object forms its own cluster, and then progressively, the most 

similar pairs of clusters are merged until all objects are consolidated into a 

predetermined number of clusters. In this study, the model's residual data were 

analyzed through hierarchical clustering. By calculating the distance matrix between 

genes and performing hierarchical clustering, a dendrogram is generated. By cutting 

the dendrogram, the clustering results for each gene are obtained. This study 

particularly focuses on the smaller clusters at the bottom of the clustering tree. Since 

residuals represent unobserved variability within the model, analyzing them in 

conjunction with the results of the model offers unique insights. If certain genes are 

grouped together in the residual clustering tree and exhibit similar coefficients or 

response patterns in the model output, this suggests that these genes have similar 

responses to various factors. This method reveals whether the patterns of gene 

expression response to different treatments or conditions are similar, thereby aiding in 

the assessment of how each gene performs under specific experimental conditions. 

 

Analysis 

This section will elaborate on how to analyze the data using the aforementioned 

methods and identify the significant factors affecting the variation in potato gene 

expression levels. 

Plot data 

Firstly, for the sake of facilitating data analysis, the data converted into a long format 



is visualized. By plotting line graphs of various genes over time, a preliminary 

classification can be made. In these line graphs, the horizontal axis represents time, 

while the vertical axis indicates the gene expression levels, and different colored lines 

represent combinations of fertilization methods (trt) and areas (block), that is, an 

experimental unit (plot). In the first type of graph, all lines show a downward trend over 

time, indicating that regardless of the fertilization method, the expression levels of these 

genes decrease with time. The lines in the second type of graph all show an upward 

trend, suggesting that regardless of the fertilization method, the expression levels of 

these genes increase over time. The third type of graph shows lines without a clear trend, 

indicating that the expression levels of these genes fluctuate over time, without a clear 

pattern of increase or decrease. The image of gene St.LIP serves as an excellent example 

of the first category, while the image of gene St.Unk1 represents the second category. 

Such visualizations may indicate that time is a significant factor affecting the 

expression levels of these genes, whereas the impact of fertilization strategies on their 

expression levels might be minimal. Conversely, genes like St.MSRB, which are 

categorized under the third type of images, could suggest that different fertilization 

methods significantly affect their expression levels. 



 
Figure 1: The plot of the data 
 

Fitting multi-linear regression model and create the ANOVA table. 

Model 1:  

Y (gene expression) ~ gene + syc + trt + block + fertilization_Strategies + 

DAP_for_leaf_sampling 

This model uses gene expression levels as the dependent variable, with genes, syc (the 

combination of variety and planting location), trt (treatment), block, fertilization 

strategies, and days after leaf sampling (DAP_for_leaf_sampling) as independent 

variables. The results show that time, all genes except for St.CHI and St.ClCh, the 

combination of variety and planting location, and the 240:0 fertilization strategy 

significantly affect changes in gene expression levels, as their p-values are all less than 

0.05. Notably, the coefficient for time is negative, indicating that gene expression levels 

decrease over time. Furthermore, the fertilization strategy fertilization_Strategies240:0 

has a significant positive impact on gene expression, highlighting fertilization strategy 



as a key factor. 

By integrating the results from the ANOVA table with multiple linear regression (figure 

5), a comprehensive understanding of the model and the impact of various variables on 

gene expression levels can be achieved. Thus, an ANOVA table for this model was 

created. Showing that gene, the combination of planting location and variety (syc), 

fertilization treatment (trt), fertilization strategies, and days after leaf sampling 

(DAP_for_leaf_sampling) are significant factors affecting gene expression (p < 0.05). 

Notably, the gene variable has the largest sum of squares (Sum Sq), indicating that gene 

type is the primary factor influencing changes in gene expression levels, while the 

effects of fertilization treatment and days after leaf sampling are comparatively smaller. 

 

  
Figure 2: summary of model 1    Figure 3: summary of model 1 



  
Figure 4: summary of model 1.           Figure 5: ANOVA table of model 1 

 

Model 2:  

Y (gene expression) ~ gene + syc + fertilization_Strategies + DAP_for_leaf_sampling 

+ gene * DAP_for_leaf_sampling + gene * fertilization_Strategies 

Given that the block variable did not show a significant impact on gene expression 

levels in model1, it was decided to exclude the block variable in the development of the 

new model, model2, and to incorporate interaction terms between variables. 

Considering that different fertilization strategies reflect the total amount of fertilization, 

the trt variable was also excluded in the new model. Additionally, since the interaction 

between trt and block did not significantly affect gene expression (figure 4), this 

interaction term was not considered in model2 (the full summary of the model 2 is 

shown in appendix). The analysis of model2 revealed that all genes had a highly 

significant impact, while the effects of the fertilization strategies 60:0, 120:0, 200:0, 

and 240:0 were not significant (figure 6), and other strategies significantly affected gene 

expression. It is important to note that under a p-value threshold of 0.05, only the 



interaction term of gene St.CWP with all the fertilization strategies reached the level of 

significance. Additionally, the interaction of genes St.CHI and St.TRDX with all the 

other fertilization strategies except the 200:0 fertilization strategy showed significance. 

This phenomenon did not occur in the interaction of other genes with fertilization 

strategies. Further investigation of the gene St.CWP shows that the coefficients for its 

interaction with all fertilization strategies involving a non-zero second application are 

positive. This suggests that these interactions have a positive effect on the dependent 

variable, meaning that the expression level of this gene increases when the second 

application of fertilizer is non-zero. These results highlight the potential effects of 

specific fertilization strategies on regulating the expression of this gene. 

The newly generated ANOVA table further confirmed that genes, the combination of 

location and year, fertilization strategies, and sampling time significantly influence 

gene expression levels (figure 7). Particularly noteworthy is that the interactions 

between genes and sampling time, as well as between genes and fertilization strategies, 

have a significant impact on gene expression levels, highlighting the importance of 

considering such interactions in the experimental design phase. 

 
Figure 6: The impact of fertilization strategies in the model 

 
Figure 7: ANOVA table of model 2 



Residuals vs Fitted and QQ plot 

To strengthen the statistical foundation of the model, a logarithmic transformation was 

applied to the original data. The primary purpose of this transformation was to reduce 

the skewness of the data, thus bringing the distribution of residuals closer to a normal 

distribution, which is one of the key assumptions relied upon by most linear regression 

models. After the logarithmic transformation, residual vs. fitted value plots and QQ 

plots were drawn.  

By evaluating the effects of the transformation, the heavy-tailed nature displayed by the 

QQ plot and the outliers observed in the residual plot complement each other, both 

suggesting the possible presence of anomalies or extreme values in the data (figure 8). 

However, the residual plot did not reveal any significant heteroscedasticity or non-

linear trends, implying that although the data may not strictly adhere to a normal 

distribution, the use of a linear model is still an appropriate choice. 

In the scatter plot of residuals versus fitted values, different genes are categorized by 

color, where each color represents a gene (figure 9). Points of different colors (i.e., 

different genes) are concentrated within specific ranges of fitted values. For example, 

most black points are primarily located on the right side of the plot, corresponding to 

fitted values between 6 and 10, while most blue points are on the left side, 

corresponding to fitted values between 0 and 2. This indicates that under certain 

environmental or experimental conditions, some genes exhibit higher expression levels 

(higher fitted values), while others show lower expression levels (lower fitted values). 

Moreover, these variations further demonstrate significant differences in the expression 



levels of different genes under specific experimental conditions. 

 
Figure 8: QQ plot of the model 

 
Figure 9: Residuals vs. Fitted 
 

Hierarchical Clustering 

The model residuals were clustered to form a dendrogram, full dendrogram is presented 

in the appendix. In Model 2 results, the direct impacts of fertilization strategies 60.0, 

120.0, 200.0, and 240.0 are not significant, however, the interactions of certain genes 

with these fertilization strategies are significant. Further analysis reveals that among 

the interactions with the 60:0 fertilization strategy, only St.CHI, St.Clch, St.CWP, and 

St.TRDX show significant interactions; notably, the interaction coefficients for St.CHI 

and St.ClCh are positive, and these two genes are grouped together in a small cluster at 



the bottom of the dendrogram (Figure 12). Similarly, St.CWP and St.TRDX are also 

categorized together in the same small cluster at the bottom of the dendrogram. When 

the number of clusters is set to 7, these four genes will be grouped into the same small 

cluster. This phenomenon is also observed in the interactions of genes with fertilization 

strategies 120:0 and 240:0. Analysis of the genes significantly interacting with the 

120:0 and 240:0 fertilization strategies reveals that some of these genes are grouped 

into the same small cluster at the bottom of the clustering tree. For example, genes 

St.AAT1 and St.Apase, which significantly interact with the 240:0 fertilization strategy, 

have positive coefficients and are classified into the same small cluster (Figure 13). 

Similarly, genes St.DUF506A and St.Unk5 (Figure 11), St.GluDC, St.MSF5B and 

St.Pyrk (Figure 10), St.CWP, St.GR3 and St.TRDX also exhibit the same clustering 

pattern.  

These genes exhibited consistent responses to environmental changes, with their 

residuals also being grouped into the same small cluster at the bottom of the 

dendrogram. This further suggests that these genes have similar response patterns to 

environmental variables, which typically implies that they may have related functions 

or participate in similar biological processes. Such findings help to deepen the 

understanding of their roles in cellular mechanisms and physiological responses. 



                
Figure 10: Small cluster of genes St.GluDC, St.MSF5B and St.Pyrk   Figure 11: Small cluster of genes St.DUF506A and St.Unk5 

               
Figure 12: Small cluster of genes St.CHI and St.Clch   Figure 13: Small cluster of genes St.AAT1 and St.Apase 

 

Conclusion 

In this study, various factors affecting gene expression levels were analyzed in depth 

using multiple linear regression models. Preliminary statistical tests, including QQ 

plots, plots of residuals and fitted values, verified the applicability of the model and 

the normal distribution of the residuals, ensuring the accuracy of the subsequent 

analysis. In addition, by clustering the model residuals, this study successfully 

revealed potential population patterns in gene expression. The similar response 

patterns of genes under specific environmental conditions were indicated by the 

analysis of small clusters at the bottom of the clustered dendrogram, which provided 

new insights into the environmental sensitivity of gene expression. 

Overall, the planting environment, fertilization strategies, sampling days, and their 



interactions (gene and fertilization strategies, gene and sampling days), significantly 

affect the variation in gene expression levels. In this model, the coefficient for time 

(DAP_for_leaf_sampling) is positive, but the coefficients for the interaction between 

time and individual genes are negative. This indicates that although there is a general 

trend of increasing gene expression levels over time when no fertilization is applied, 

this growth trend does not apply to all genes. Specifically, the expression levels of 

most genes actually decrease over time. From the analysis of planting regions and 

potato varieties, although all combinations positively influence gene expression, the 

Shepody variety planted in the Fredericton PK2014 area shows the most significant 

positive impact. Following closely is the Atlantic variety planted in the Fredericton 

GE2012 area, which also exhibits a strong positive effect. 

Further investigation of fertilization strategies reveals that in scenarios of a single 

application, fertilization amounts of 106 and 180 significantly impact gene expression 

levels, with all genes except St.ClCh showing positive coefficients in interaction with 

these fertilization strategies. This implies that if only one fertilization can be applied, 

keeping the total amount at 106 or 180 might maximize growth indicators in potatoes. 

If applying fertilization twice, the first application should be kept at 60, with total 

amounts controlled at 120, 180, or 240, to maximize positive expression across all 

genes. Notably, when the fertilization strategies are set at 60:60 and 60:180, the 

interaction coefficients for all genes, including St.ClCh, are positive, indicating that 

these two fertilization methods should be prioritized in the potato cultivation process. 

From another perspective, by comparing the effects of single and multiple 



fertilizations, this study also provides some practical recommendations for potato 

fertilization strategies. St.CWP, which stands for Cell Wall Protein, plays a crucial 

role in plant growth and development (Parenteau 2020). Research indicates that 

St.CWP is not only involved in the formation of cell walls and the elongation of cells 

but also significantly impacts resilience to adverse conditions. Specifically, this gene 

inhibits cell elongation, thereby reducing stem internode length and plant height, 

which enhances the plant's lodging resistance. Additionally, it promotes the synthesis 

of cellulose and the thickening of secondary walls. The increased thickness of cell 

walls and higher cellulose content further enhance the plant's resistance to diseases 

and pests, potentially leading to increased seed and biomass yields (Fan 2018). This 

study found that although the interaction coefficient of this gene with the fertilization 

strategy of 120:0 is negative, it is positive with the 60:60 strategy. This indicates that, 

given the same total amount of fertilization, a second application significantly boosts 

the expression level of this gene. A similar effect was observed in other genes such as 

St.AOX, St.CLH, St_NT2, St.FT, St.LIP, and St.MtN21. These genes are Primary 

amine oxidase, Chlorophyllase, Low-affinity nitrate transporter, Flowering locus T 

protein, Chloroplast lipocalin, and Nodulin MtN21 family protein. The increased 

expression levels of these genes play a positive role in the growth process of potatoes 

(Parenteau 2020). In these cases, interaction coefficients with strategies involving a 

nonzero second fertilization are positive, while those with a zero second application 

are negative, demonstrating that compared to a single application, a second 

fertilization positively influences the growth and health of potatoes. Therefore, the 



fertilization strategy most recommended by this study is 60:60, followed by 60:180. 

Both of these fertilization methods can significantly enhance the gene expression 

levels in potatoes. Meanwhile, the use of a 200:0 fertilization strategy is not 

recommended, as this approach leads to a significant decrease in the expression of 

most genes. 

To further investigate, these methods can be used to explore the relationships between 

fertilization methods, planting environments, and potato varieties. Instead of simply 

combining planting regions and potato varieties, a more comprehensive model could 

be fitted to determine the most suitable planting regions and fertilization methods for 

each potato variety. 
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Appendix 

R code 

Since some of the data cleaning was not done in R Studio, the data was imported 

directly from the pre-processed ‘data_clean’ dataset. Additionally, this code can also 

be applied to other response variables with only minor modifications required. 

Therefore, the detailed steps for fitting model 1 are not shown below. If necessary, 

only the code for fitting model 2 needs to be adjusted. 

1. Convert data formats and data cleaning： 

```{r} 
library(tidyr) 

https://onlinelibrary.wiley.com/doi/abs/10.1002/ts.124
https://www.mdpi.com/2073-4395/10/10/1617
https://www.semanticscholar.org/paper/An-Introduction-to-Statistical-Learning%3A-with-in-R-Witten/b5e5a7eee59dd740897c0c3d1ada96c2e2a7e0a7
https://www.semanticscholar.org/paper/An-Introduction-to-Statistical-Learning%3A-with-in-R-Witten/b5e5a7eee59dd740897c0c3d1ada96c2e2a7e0a7


library(dplyr) 
data <- read.csv('~/Desktop/data_clean.csv', header = 

TRUE) 
gene_cols <- grep("^St[._]", names(data), value = TRUE) 
 
data_long <- pivot_longer(data,  
                          cols = all_of(gene_cols),  
                          names_to = "gene",  
                          values_to = "expression") 
 
 
data_long <- data_long %>% 
  select(gene, everything()) %>% 
  arrange(gene, sample.ID)  
 
data_long <- data_long %>% 
  select(gene, expression, everything()) 
 
#Export the data converted to long format 
write.csv(data_long, 

"/Users/linxiyou/Documents/datalong.csv", row.names = 
FALSE) 

``` 
 

2. Preprocess variables and build the model： 

```{r} 
# Import the data converted to long format 
data <- 

read.csv("/Users/linxiyou/Documents/datalong.csv", 
header = TRUE) 

 
# Preprocess each variable 
data$syc <- paste(data$Site.year, data$cultivar, sep = 

"_") 
data$syc <- as.factor(data$syc) 
data$first <- as.factor(data$N.source.at.planting.kg.ha) 
data$second <- as.factor(data$N.source.2nd.appl..kg.ha) 
data$fertilization_Strategies <- interaction(data$first, 

data$second) 
data$DAP_for_leaf_sampling <- 

ifelse(data$DAP.for.leaf.sampling < 50, "0", "1") 
data$DAP_for_leaf_sampling <- 

as.factor(data$DAP_for_leaf_sampling) 



data$gene <- as.factor(data$gene) 
data$trt <- as.factor(data$trt..) 
data$block <- as.factor(data$block) 
 
# Since the interaction between trt and block was not 

significant, the new model omitted these two 
variables. 

model <- lm(expression ~ gene + syc + 
fertilization_Strategies + DAP_for_leaf_sampling +  

              gene * DAP_for_leaf_sampling + gene * 
fertilization_Strategies, data = data) 

 
# Due to the length of the output, the model fitting 

results were saved into a txt document. 
sink("model.txt") 
print(model) 
sink() 
#create the ANOVA table of the model 1 
model_anova <- anova(model) 
print(model_anova) 
``` 
 

3. Create the Residuals vs Fitted plot and QQ plot 

```{r} 
# Perform logarithmic transformation on the original data 
data$expression_log <- log(data$expression) 
model_log <- lm(expression_log ~ gene + syc + 
fertilization_Strategies + DAP_for_leaf_sampling 
                + 
gene*DAP_for_leaf_sampling+gene*fertilization_Strategies, 
data = data) 
model_log_anova<-anova(model_log) 
print(model_log_anova) 
 
#plot of the residual 
par(mar=c(4, 4, 2, 2)) 
plot(resid(model_log)) 
 
# Residuals vs Fitted plot and Use different colors for the 
scatter points to distinguish between genes. 
plot(fitted(model_log), resid(model_log), col=data$gene, 
     main="Residuals vs. Fitted", ylab="Standardized 
Residuals", xlab="Fitted Values", pch=19) 



abline(h=0, col="red") 
 
#qq plot 
qqnorm(resid(model_log)) 
qqline(resid(model_log)) 
``` 
 
4. Cluster 
library(pheatmap) 
library(reshape2) 
 
gene_counts <- table(data$gene, data$DAP_for_leaf_sampling) 
residuals_data <- resid(model) 
n <- nrow(gene_counts)   
time_points <- 2 
summary(residuals_data) 
 
# Add the residual of the model to the data 
data$residuals = residuals_data 
aggregate_residuals <- aggregate(residuals ~ gene + 
DAP_for_leaf_sampling, data, mean) 
 
# Calculate distance between genes 
residuals_wide <- dcast(aggregate_residuals, gene ~ 
DAP_for_leaf_sampling, value.var = "residuals") 
 
residuals_dist <- dist(as.matrix(residuals_wide[,-1])) 
hc <- hclust(residuals_dist) 
plot(hc, hang=-1)  
 
# Assume that the number of clusters is set to 3 and view 
the output 
k <- 3 
clusters <- cutree(hc, k) 
residuals_wide$cluster <- clusters 
cat("Number of genes in each cluster:\n") 
print(table(residuals_wide$cluster)) 
cat("\nGenes in each cluster:\n") 
for (i in 1:k) { 
  cat(sprintf("Cluster %d:\n", i)) 
  print(residuals_wide$gene[residuals_wide$cluster == i]) 
} 
plot(hc, labels=residuals_wide$gene, cex=0.6, hang=-1, 
main="Cluster Dendrogram") 



Output 

1. The full output of the model 2 

 
Figure 14: Summary of the model 2 (1) 

 

Figure 15: Summary of the model 2 (2) 
 
 



 
Figure 15: Summary of the model 2 (3) 

 

 
Figure 15: Summary of the model 2 (4) 

 
 



 
Figure 15: Summary of the model 2 (5) 

 

 

Figure 15: Summary of the model 2 (6) 
 
 



 
Figure 15: Summary of the model 2 (7) 

 

 
Figure 15: Summary of the model 2 (8) 

 
 



 

Figure 15: Summary of the model 2 (9) 
 

 

Figure 15: Summary of the model 2 (10) 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. The cluster dendrogram 

 

Figure 16: the full cluster dendrogram 
 
 

3. When the number of clusters is set to three, the clustering results for each gene are 
obtained.  

 
The focus of this study is on the smaller clusters at the bottom of the cluster 
dendrogram hence no further analysis is conducted on these results. 

 
Figure 17: the result of the cluster 


