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1. Introduction 
 
Proteins are built by amino acids and can be considered as a string of amino acids. The genome 

of a species includes all protein coding genes. These genes are in 1-1 correspondence with the 

proteins they produce. There are 20 standard amino acids with corresponding one-letter codes are 

𝐴, 𝑅,… , 𝑉. The goal of this paper is to predict taxonomic groups from the genome-wide amino 

acid compositions of species and to find the key predictors by using different statistical methods. 

We let 𝑿 denote our predictor vector, giving the amino acid composition for a species. 

Specifically, the entries are the proportions of times each of these amino acids came up in a 

subset of genes for the taxonomic group. Consequently, the sum of the 𝑿 entries always equals 1. 

There are totally 10 taxonomic groups and 765 observation points in our study data set, and the 

majority of the data points are belonging to taxonomic group B (Bacteria candidate phyla), We 

will use the short forms given in the 2nd column of Table 1 to represent taxonomic groups in the 

following analyses for ease of interpretation.  

An alternative set of predictors that we will consider are GARP and FYMINK. These are created 

by summing the specific amino acid frequencies given in their names. The codons, or three-letter 

DNA codes for GARP (glycine, alanine, arginine, and proline) have guanine (G) and cytosine 

(C) in the first two codon positions. The codons for FYMINK (phenylalanine, tyrosine, 

methionine, isoleucine, asparagine, and lysine) have adenine (A) and thymine (T) in the first two 

codon positions. We can use likelihood ratio test or compare the cross-validation errors between 

the full model (predictors: 20 amino acids) and the reduced model (predictors: GARP and 

FYMINK) to check if the reduced model is acceptable for us.  
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Taxonomic group name Short forms used in 
analyses 

Number of 
representatives 

Thermophiles T 37 
Chloroflexi C 28 

Cyanobacteria/Melainabacteria group C/M 40 
Firmicutes F 66 

Actinobacteria X 69 
Bacteria candidate phyla B 363 

PVC group P 57 
Spirochaetes S 11 
FCB group f 84 

Acidobacteria Y 10 
  Total = 765 

 
Table 1: Taxonomic groups in the study and number of representatives of each group 

 

2. Methods 
 

2.1. Tree-Based Method (Classification Tree) 
 
Tree-based method are one of powerful predictive modelling approaches used in statistics, data 

mining and machine learning, we would use it to start our analysis. Whether Regression tree or 

classification tree will be built depends on whether the response variable is continuous or 

categorical. We would like to predict the taxonomic group labels from the amino acid 

compositions. Since our response variable is categorical, a classification tree is desired and will 

be constructed in the following.  

 

2.1.1 Partitioning Method 
 
Recursive binary partitions can be used to grow the tree, as shown in Figure 1, we need to 

choose predictor variable and split-point at each branch so that one split-point can split into two 
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regions in order to achieve best fit. For example, we first split at X1 = t1. Then the region X1 ≤ t1 

is split at X2 = t2 and the region X1 > t1 is split at X1 = t3. Finally, the region X1 > t3 is split at  

X2 = t4. The result of this process is a partition into the five regions 𝑅!, 𝑅"	, ⋯ , 𝑅#	shown in the 

figure. 

 

Figure 1: Simple example of decision tree 

 

We now turn to the question of how to choose the predictor variables and split points. In the 

classification tree, there are 3 node impurity measures to decide the optimal split from a root 

node, and subsequent splits, which are misclassification error, Gini index, and cross-

entropy/deviance. We want the split point to make two separate nodes such that class labels tend 

to differ in the two resulting nodes. Small node impurity measure tends to correspond to well 

separate classes. We minimize the node impurity measure used in each node to grow the optimal 

tree. The cross-entropy formula is  
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−∑ �̂�$%&
%'! 𝑙𝑜𝑔(�̂�$%), 

where �̂�$% 	is the proportion of class 𝑘 observations in node 𝑚 (i.e., included both internal nodes 

and terminal nodes). 

In this paper, we choose cross-entropy as our impurity measure, since it is more related 

likelihood ratio test, based on the equation above, minimizing cross-entropy is equivalent to 

maximizing the likelihood statistics for a test with null hypothesis is two sister nodes are 

homogeneous. Large likelihood ratio suggests the two nodes are very different.  

 

2.1.2 Pruning the Tree 
 
Using the partitioning method alone usually results in larger and difficult to interpret trees. It 

usually fits the training set too well and reduces accuracy in the test subset. To avoid overfitting, 

Breiman et al. (1984) developed the methodology, called cost-complexity pruning to cut size of 

trees. Suppose 𝛼 ≥ 0 be a real number called the complexity parameter (cp). Let 𝑅 be a criterion 

value for the tree, such as the sum of cross-entropy in each terminal node and let size of tree be 

the number of leaves (terminal nodes). Then Breiman et al. define   

𝑅( = 𝑅 + 𝛼 ∙ 𝑠𝑖𝑧𝑒 

to be cost of the tree and minimize this cost-complexity measure. Small 𝛼 results in larger trees 

and potential overfitting, large 𝛼 in small trees and potential underfitting. We need a way to 

choose the optimal 𝛼. If a separate validation set exists, we can use it as the test set and compute 

the deviance versus 𝛼 for the pruned tress. Then, this will have the considered range of trees and 

we can choose the smallest tree whose deviance is close to the lower bound of the range.  
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Otherwise, cross-validation can be used, this is what we do in the study. Suppose we randomly 

split our data into 10 equally sized subsets, then use 9 subsets to train and the rest of one to test, 

this can be done by 10 ways, finally average the 10 performance measures (i.e., cross-entropy). 

The 𝛼 is the one that minimizes the cross-validation error. This process called 10-fold cross-

validation.  

 

2.1.3 Implementation in rpart 
 
The rpart algorithm (Terry & Beth, 2019) that we used to fit classification trees is part of the 

base R implementation, and it works by splitting the dataset recursively to grow a tree until a 

predetermined criterion reached. In the classification tree, rpart function offers Gini index 

(default impurity criterion) and entropy index methods as choices, entropy index can be used by 

adding the argument parms = list(split = "information"). Besides, rpart runs 10-fold cross-

validation by default, the optimal cp value can be found to obtain the cost of tree 𝑅( by running 

10-fold cross-validation. Growing a tree can be easily overfit our data, 10-fold cross-validation 

aims to avoid overfitting.  

We can use plotcp() to extract cross-validation results. Figure 2 is the results using a small 

maximum cp of 0.001 to keep the tree as large as possible first.  
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Figure 2: Plot by plotcp (upper horizontal axis is size of tree, y-axis is cross-validation error) 

 

The dashed line in Figure 2 is the sum of the cross-validation and its standard deviation within 

minimum cp value, it is common to use the smallest tree within 1 standard error (SE) of the 

minimum cross-validation error, this is called the 1-SE rule. Then we apply 1-SE rule to check 

the suggested size of tree and choose a tree with 16 leaves.  

rpart.plot (Stephen, 2020) can be used to visualize the tree, but it constructs the tree with size 

corresponding to the last point from plotcp, e.g., rpart.plot will build a tree with size 38 instead 

of 16 if cp is still 0.001. To comply with 1-SE rule, we adjust cp value to 0.01 to grow a tree with 

size 16, see Figure 3. 
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Figure 3: Classification tree with size 16 (predicted probabilities of each group shown in each 

                   box, probability order follows the order in top left legend) 

 

According to Figure 3, most of the classification rules lead to group B (Bacteria candidate 

phyla). This is in part because Bacteria candidate phyla is the most common taxonomic group in 

our study dataset. Almost all groups can be predicted by the tree, except Spirochaetes (S) and 
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Acidobacteria (Y), these two groups are never predicted by this tree, and thus are marked unused 

in the legend. We also calculate cross-validation (CV) error by writing a function, detailed R 

code can be seen in Appendix. The basic idea is using different 9 node tree built separately from 

each training set and then tested on the test set, finally average the 10 cross-entropy. CV error 

under classification tree is 38.4%. We will use other methods to analyze our data and compare 

CV error among them in the following sections.  

 

2.1.4 New Predictors: GARP & FYMINK  
 
We will use classification tree methods with new predictors in this section. The response variable 

is still taxonomic group, but the predictor variables are GARP and FYMINK, which are two 

combinations of amino acid compositions. GARP is value of sum of amino acid frequencies G, 

A, R and P, similarly for FYMINK.  

Similarly, by using impurity measure cross-entropy and choosing cp = 0.001 to keep the tree as 

large as possible first, we got Figure 4. According to 1-SE rule, the suggested tree size here is 3. 

Then, we adjust the cp value to 0.02, and use rpart.plot to view the pruned tree (Figure 5). 
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Figure 4: Plot by plotcp of predictors GARP and FYMINK 

 

Based on Figure 5, it is simpler tree than with regular predictors, we can conclude that group B 

(Bacteria candidate phyla) and X (Actinobacteria) are two common taxonomic groups. The 

cross-validation error here is 47.2%, which is higher than CV error of the regular predictors.  
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Figure 5: Classification tree with predictors GARP and FYMINK (predicted probabilities  

                      of each group shown in each box, probability order follows the order in top right 

                      legend) 

 

2.2. Principal Component Analysis (PCA)  
 
PCA is one of the dimension reduction methods. It aims to summarize, in an optimal way, the 

variation in a set of unordered and correlated variables 𝑿 by constructing a new set of ordered 

and uncorrelated variables by a few linear combinations 𝑍) = 𝒄𝒊+𝑿, 𝑖 = 1,… , 𝑝, such that  

𝑖,-	principal component (PC) = linear combination 𝒄𝒊+𝑿 that maximizes 

                                                       Var(𝑍)) = 	 𝒄𝒊+𝚺𝒄𝒊 subject to 𝒄𝒊+𝒄𝒊 = 1, and  

                                                                        CovH𝑍) , 𝑍.I = 𝒄𝒊+𝚺𝒄𝒊 = 0, 𝑗 < 𝑖 
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Since covariance matrix Σ is positive definite matrix, there exists an orthogonal matrix E such 

that 𝐄+𝚺𝐄 = 𝚲, where	𝐄+𝐄 = 𝐄𝐄+ = 𝐈/, and 𝚲 is diagonal matrix of eigenvalues in decreasing 

order, i.e., 𝚲 = 𝑑𝑖𝑎𝑔H𝜆!, … , 𝜆/I, 𝜆! ≥ ⋯ ≥ 𝜆/ ≥ 0.  

Equivalently, 𝑖,-	principal component is 𝑍) = 𝒆𝒊+𝑿, where 𝒆𝒊 is 𝑖,- column of E, which is the 𝑖,- 

normalized eigenvector of 𝚺, also referred to as the principal component loadings for the 𝑖,- 

principal component. Here are three important properties of PCA,  

Var(𝑍)) = 𝜆) 

CovH𝑍) , 𝑍.I = 0, for	𝑖 ≠ 𝑗 

Var(𝑍!) ≥ Var(𝑍") ≥ ⋯ ≥ VarH𝑍/I ≥ 0 

Back to our data set, unfortunately, PCA does not work well. The first PC only explains about 

40% of total variance (Figure 6), and based on the red curve, the first 5 PCs (> 70% of total 

variance) can be used to reveal the structure of data.  
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Figure 6: Scree plot (blue line that displays how much simple variation each PC captures  

                from the data) and cumulative contributions to variance plot (red) based on  

                covariance matrix            

 

According to Figure 7, ambiguous clusters structure exists, but there is no clear separation of the 

groups perhaps with the exception of group X. There are some outliers in taxonomic group B, 

C/M, and f. The first two PCs thus does not seem able to recognize the taxonomic structure of 

our dataset. Because PCA is a clustering technique without using class labels, CV error cannot 

be used to assess performance. 

Since PCA does not work very well as expected, we will next consider another dimension 

reduction method, linear discriminant analysis, that uses class labels. 
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Figure 7: First two principal components based on PCA from covariance matrix 

 

2.3. Linear Discriminant Analysis (LDA) 
 
LDA is another dimension reduction method, similar to PCA, it seeks axes that maximize the 

separation between multiple classes while maintaining relatively small variation within classes. 

Suppose we have 𝑔 classes. Let W denote the variance within classes, and B denote the variance 

between classes.  

𝑊 = !
012

∑(	𝑥). − 𝑥. 	)", 

where 𝑥). is 𝑖,- observation point in 𝑗,- class, 𝑥. is mean of 𝑗,- class. 
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𝐵 = !
01!

∑(	𝑥. − 𝑥	)", 

where 𝑥 is overall mean, 𝑛 is number of observation points. LDA aims to maximizes the ratio 

𝐵/𝑊.  

Compared with Figure 7 and Figure 8, we can say that LDA is superior to PCA in our case, even 

though it is still hard to see clear cluster structure based on taxonomic grouping. The data points 

are more spread out. For example, the majority of taxonomic group B data points are in the left 

half of Figure 8, with negative first linear discriminant value. Also, group X data points are more 

in the bottom right, with positive first linear discriminant and negative second linear discriminant 

values. Additionally, the CV error of regular 20 predictors is 28.4%, which is lower than tree-

based method, but CV error for the model that using GARP and FYMINK rises to 47.6%.  

 

Figure 8: Plot of first two linear discriminants 
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2.4. Multinomial Logistic Regression  
 
Multinomial analysis is a classification method that generalize logistic regression to multiple 

classes problem, i.e., we have 10 possible taxonomic groups. Multinomial model can be 

constructed to predict the probabilities of different possible outcomes (taxonomic groups) by 

given a set of predictor variables (amino acid species). We can develop multinomial model based 

on linear regression and logistic regression. In linear regression,  

𝐸(𝒀|𝑿) = 𝜷+𝑿, where 𝜷 is regression coefficients matrix 

Suppose we only have two possible discrete outcomes (i.e., Y = 0	or	1), and by definition of 

logistic regression, the model is  

𝑙𝑜𝑔(
𝑃𝑟(𝑌 = 1|𝑋)

1 − 𝑃𝑟(𝑌 = 1|𝑋)	) = 𝜷+𝑿 

⟹ 	𝑃𝑟(𝑌 = 1|𝑋) =
𝑒𝜷!𝑿

1 + 𝑒𝜷!𝑿
	,		 

					𝑃𝑟(𝑌 = 0|𝑋) =
1

1 + 𝑒𝜷!𝑿
		 

Since we have 10 possible taxonomic group labels (i.e., Y = 0, 1, 2, . . . , 9), for 10 possible 

outcomes, we need to extend the logistic regression model. The multinomial model includes 

logistic regression as a special case and sets 

𝑃𝑟(𝑌 = 𝑖|𝑋) =
𝑒𝜷𝒊

!𝑿

1 + ∑ 𝑒𝜷𝒋
!𝑿5

.'!

		 , 𝑖 = 1, . . . ,9 

𝑃𝑟(𝑌 = 0|𝑋) =
1

1 + ∑ 𝑒𝜷𝒋
!𝑿5

.'!

 

In our dataset, as you can see from Table 1, most of observation points are belonging to group B, 

we used it as reference group 𝑌 = 0. We used the routine multinom(), part of the R package nnet 



  
  
  

16 

(Venables & Ripley, 2002) for fitting. The logarithm of the ratio between probabilities, amino 

acid coefficient can be simplified to give 

𝐿𝑜𝑔	 l
Pr(𝑌 = 𝑖|𝑋)
Pr(𝑌 = 0|𝑋)n = 𝐿𝑜𝑔	 o

𝑒𝜷𝒊
!𝑿

1 + ∑ 𝑒𝜷𝒋
!𝑿5

.'!

×
1 + ∑ 𝑒𝜷𝒋

!𝑿5
.'!

1 q 

                                                              = 𝐿𝑜𝑔	(𝑒𝜷𝒊
!𝑿) 

                                                              = 𝜷𝒊+𝑿 

Suppose we change from 𝑥. to 𝑥. + 1, which means one percent increase in the frequency of the 

𝑗,-	amino acid, and holding all other variables fixed. Then the difference of the log probabilities 

(i.e., coefficient of amino acid j in taxonomic group i) is 

 

Δ	𝐿𝑜𝑔	 l
Pr(𝑌 = 𝑖|𝑋)
Pr(𝑌 = 0|𝑋)n =s𝛽)%𝑥%

%6.

+ 𝛽). ∙ H𝑥. + 1I −s𝛽)%𝑥%
%6.

− 𝛽).𝑥. 

                                                          = 𝛽). 

Please note that the following table results do not include the reference group B, since the 

significant amino acids from all other groups are compared with the reference group B. For 

example, there are 16 significant amino acids in group C, which means that these 16 amino acids 

are significant to predict whether an amino acid composition vector was from group C or group 

B.  

Furthermore, if we want to test whether an amino acid composition vector was from group i or 

group k, the logarithm of the ratio becomes 

𝐿𝑜𝑔	 l
Pr(𝑌 = 𝑖|𝑋)
Pr(𝑌 = 𝑘|𝑋)n = 𝐿𝑜𝑔	 o

𝑒𝜷𝒊
!𝑿

1 + ∑ 𝑒𝜷𝒋
!𝑿5

.'!

×
1 + ∑ 𝑒𝜷𝒋

!𝑿5
.'!

𝑒𝜷𝒌!𝑿
q 

                                                              = 𝐿𝑜𝑔	(𝑒(𝜷𝒊1𝜷𝒌)!𝑿) 
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                                                              = (𝜷𝒊 − 𝜷𝒌)+𝑿 

So, if 𝜷𝒊 = 𝜷𝒌, then none of amino acids are valuable for predicting group i or group k, but they 

could be significant for predicting group i or group 0. 

 

2.4.1 Regular Predictors 
 
By doing multinomial analysis, we aim to find the significant predictor variables (amino acids), 

such as how many significant amino acids for each taxonomic group and what are they?  

To avoid multicollinearity issues arising from the sum of amino acid frequencies equaling 1, we 

remove the last amino acid V. In order to check the significance of each amino acid, we 

construct 95% confidence interval for each amino acid coefficient in each taxonomic group. If 

the confidence interval of an amino acid contains 0, then this amino acid is not significant for the 

prediction of certain taxonomic group i versus group B. We summarize the results in Table 2 and 

Table 3. The significant amino acids in each taxonomic group can be seen in Table 2.  

From Table 2, all amino acids are significant in taxonomic group Y, group S also requires all 

amino acids, except amino acid L for prediction. On the other hand, there are only 10 of amino 

acids are significant in taxonomic group F. Thus, it is much complex and need more information 

to predict taxonomic group Y and S versus group B compared with group F versus group B. 

More generally, we can conclude the most important amino acid species from Table 3, amino 

acid A and W are significant in all taxonomic groups, also, species D, Q, H, K, P and S are 

significant in 8 of 9 taxonomic group. So, these amino acids are the important variables for us 

and necessary factors for prediction. However, amino acid L is significant in only 4 taxonomic 

group, in general, we can say that it is the least important predictor variable we have. 

CV error here is 30.2%, which is better than tree method, but slightly higher than LDA. 
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Taxonomic 
Group 

Significant amino acids Number of significant 
amino acids 

C A, N, D, C, Q, E, G, H, I, K, M, P, S, T, W, Y 16 
C/M A, R, N, D, C, Q, E, H, I, L, M, P, S, W 14 

f A, R, Q, G, H, K, F, P, S, T, W 11 
F A, N, D, C, G, H, K, P, T, W 10 
P A, R, D, Q, E, H, I, L, K, F, P, S, T, W 14 
S A, R, N, D, C, Q, E, G, H, I, K, M, F, P, S, T, W, Y 18 
T A, R, N, D, Q, E, I, L, K, M, F, P, S, T, W, Y 16 
X A, R, D, C, Q, E, H, K, M, F, S, W, Y 13 
Y A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y 19 

 
Table 2: Significant amino acid species in each taxonomic group 

 

Amino acid species Number of taxonomic groups which amino acid is significant 
A 9 
R 7 
N 6 
D 8 
C 6 
Q 8 
E 7 
G 5 
H 8 
I 6 
L 4 
K 8 
M 6 
F 6 
P 8 
S 8 
T 7 
W 9 
Y 5 

 
Table 3: Number of taxonomic groups for which the amino acid was significant  
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In each grid of Figure 9, we can observe the dot plot of distribution of coefficients in different 

taxonomic groups for a certain amino acid. Please note that we used the actual coefficient value 

divided by 100 to indicate percentage change, and vertical lines in each grid represent coefficient 

is 0.  

Coefficients in amino acid G and C are more widely distributed. Majority coefficients in amino 

acid S and L are negative, and the coefficients in amino acid L are more spread out than S.  In 

addition, coefficients in rest of the amino acids do not have much fluctuation, especially A and 

W, coefficients in these two amino acids are more concentrated on the vertical line 0. 

 

Figure 9: Dot plot of amino acids’ coefficients in each taxonomic group 
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2.4.2 New Predictors: GARP & FYMINK 
 
In this section, we consider multinomial models with predictors GARP and FYMINK. By  

Table 4, the two amino acid combinations are both significant in group f and group T, but 

insignificant in both group F and group X. This indicates that in taxonomic group f and T, the 

amino acids that within the two combinations are more important than amino acids that not in the 

combinations, and vice versa in taxonomic group F and T. In the rest of taxonomic group, there 

is only one amino acid combination is significant, so, we may more focus on the species that in 

the significant combination rather than other amino acids in the further studies. 

Taxonomic 
Group 

Significant amino acid 
combinations 

Number of significant amino acid 
combinations 

C FYMINK 1 
C/M FYMINK 1 

f GARP, FYMINK 2 
F None 0 
P FYMINK 1 
S GARP 1 
T GARP, FYMINK 2 
X None 0 
Y GARP 1 

 
Table 4: Significant amino acid combinations in each taxonomic group 

 

Amino acid species Number of taxonomic groups which amino acid combinations is significant 
GARP 4 

FYMINK 5 
 

Table 5: Number of taxonomic groups for which the amino acid combination was significant  

 

We cannot really say that which amino acid combination is more important than the other from 

Table 5, but more detailed comparison can be seen by Figure 10. The coefficients in GARP are 

more widely distributed, and only the coefficient in group T is negative. For FYMINK, the 
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coefficients are more stable. Five of coefficients are very near the vertical line 0. The CV error 

for the model using GARP and FYMINK is 46.8%.  

 

Figure 10: Dot plot of amino acids combinations’ coefficients in each taxonomic group 

 

2.4.3 Likelihood Ratio Test  
 
A Likelihood ratio test can be applied to test if using all of the amino acids gives significantly 

better predictions than using GARP and FYMINK.  

Full model:	 

𝑙𝑜𝑔(
𝑃𝑟(Y = 𝑖|𝑋)

1 − 𝑃𝑟(Y = 0|𝑋)	) = 𝛽:) + 𝛽!)𝑿! +⋯+ 𝛽!5)𝑿!5	, 𝑖 = 1,⋯ , 9 

Reduced model:  

𝑙𝑜𝑔(
𝑃𝑟(Y = 𝑖|𝑋)

1 − 𝑃𝑟(Y = 0|𝑋)	) = 𝛽:) + 𝛽!)𝑿;<=> + 𝛽")𝑿?@ABC& 	, 𝑖 = 1,⋯ , 9 
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Likelihood ratio test:  

H0: Reduced model is true    vs.   HA: Full model is true 

The test statistic is 

2 × (𝑙?DEE − 𝑙=FGDHFG), 

where 𝑙?DEE is log-likelihood of full model,	𝑙=FGDHFG is log-likelihood of reduced model. 

To calculate test statistic, we need to use deviance residual, deviance of full model is 𝐷?DEE =

2 × (𝑙IJ,DKJ,FG − 𝑙?DEE), similar as deviance of reduced model. 

So,  

𝐷=FGDHFG − 𝐷?DEE = 2 × (𝑙IJ,DKJ,FG − 𝑙=FGDHFG) − H2 × (𝑙IJ,DKJ,FG − 𝑙?DEE)I 

                                             = 2 × (𝑙?DEE − 𝑙=FGDHFG) 

                                             = Test	statistic 

By summary(), we get deviance of reduced model is 2252.256, and deviance of full model is 

1093.266. So, test statistic is 2317.98, as we know, it follows chi-square distribution with degree 

of freedom 𝑝 − 𝑞, 𝑝 is number of parameters in full model, which is 9 × 19 = 171, 𝑞 is number 

of parameters in reduced model, 9 × 2 = 18. Thus, test statistic follows 𝜒!#L" , and the p-value is 

very near to 0, we can conclude that there is a significant evidence to reject the null hypothesis. 

 

3. Cross-validation Results/Conclusion 
 
The summary CV error results for all of the methods and predictors considered is given in  

Table 6. We compare CV errors among 3 methods with regular predictors or new predictors. As 

we can see, there are not much difference in the reduced models. CV errors are all approximately 

equal to 0.5, which are all higher than the CV errors in the full models. So, using GARP and 

FYMINK as our predictors is not a good choice in our case. On the other hand, CV errors have 
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some fluctuation in the full models, and we can use the full model and choose LDA and 

multinomial logistic regression as the main approaches in the future studies to further analyze the 

data since their CV errors are smaller than tree method.  

Regular predictors CV Error 
Tree method 38.4% 
LDA 28.4% 
Multinomial Logistic Regression 30.2% 
New predictors: GARP & FYMINK CV Error 
Tree method 47.2% 
LDA 47.6% 
Multinomial Logistic Regression 46.8% 

 
Table 6: Summary of Cross-validation results  

 

In summary, Bacteria candidate phyla is the most common taxonomic group in the study data 

set. Another two common taxonomic groups are FCB group (f) and Actinobacteria (X), and 

based on multinomial logistic regression model, 11 and 13 amino acids are significant predictors 

respectively in each taxonomic group for the predictions that versus the reference taxonomic 

group Bacteria candidate phyla (B). In addition, taxonomic groups Acidobacteria (Y) and 

Spirochaetes (S) require more significant amino acids than other taxonomic groups for 

prediction. Furthermore, amino acid A, D, Q, H, K, P and S are the common significant ones in 

all taxonomic groups.  
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Appendix 
 
Selected R codes attached here, and the entire codes will be available upon request.  

CV error functions in 3 methods 
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