Influencing factors of cyanotoxins based on

Spatio-Temporal Statistics

Name	•	Yihang	Xing
------	---	--------	------

Studentnumber : B00840889

Professor : Dr. Hong Gu

Data courtesy of : Dr. Barry Husk

Date : 2023/4/10

Content:

1. Background and motivation	2
2. Data description and exploration	2
2.1 Summary	2
2.2 Outlier handling	3
2.3 Data collation	3
2.4 Time-Series Plots	4
2.5 Hovmoller Plots	6
2.6 Empirical Spatial Means	7
2.7 Empirical Temporal Means	8
3. Methods for modelling	8
3.1 Scatter plot	8
3.2 Model introduction	10
3.3 Microcystine	10
3.4 Phycocyanine	16
3.5 Chlorophylle	22
3.6 PCCH1	
4. Results and discussion	33
5. Code and Appendix	35

1 Background and motivation

We live in a complex world, and clever people are continually coming up with new ways to obserVe and record increasingly large parts of it so we can comprehend it better . We are squarely in the midst of a "big data" era, and it seems that every day new methodologies and algorithms emerge that are designed to deal with the ever-increasing size of these data streams. Spatio-temporal data are everywhere in science, engineering, business, and industry.In this paper,we describe some basic components of spatio-temporal data structures in R, followed by spatio-temporal visualization and exploratory tools.Then fit simple statistical models to the data to indicate possible patterns and see if assumptions are violated.

2 Data description and exploration

2.1 Summary

The values of cyanotoxins was monitored by different stations at different time. This paper studies 25 stations at different times .In order to find how the cyanotoxins variables (including Microcystines, Phycocyanines, Chlorophylle,PCChl) are realted to other variables.

The data types of this dataset are divided into numeric variable and categorical variable .There are 485 data samples and 32 variables.And there are 4 factor variables and 28 numeric variables.The descriptive statistics of the data is below.

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
Date	0	1	39669.04	40.56	39602	39637	39672	39707	39735	
Microcystine.(µg/L)	23	0.95	0.39	0.75	0.05	0.12	0.19	0.32	5	
Phycocyanine.(RFU)	23	0.95	0.02	0.09	0	0	0	0.01	1.57	
Chlorophylle.in.situ.(µg/L)	23	0.95	6.17	5.54	0.61	3.31	4.76	6.81	46.17	
PC/Chl	23	0.95	0.23	0.44	0.03	0.07	0.1	0.19	5.46	
Température.ambiante.(°C)	168	0.65	19.78	5.83	3.1	16	19.4	23.5	35.5	
Humidité.relative.(%)	168	0.65	68.49	16.74	6.3	56.3	68.8	80.3	100	_
Vent.moyenne.(km/h)	90	0.81	2.64	2.39	0	1.1	2.1	3.76	11.8	
Vent.max.(km/h)	93	0.81	5.11	4.05	0	2.38	4.4	7.12	24.6	.
Transparence.(m)	48	0.9	1.07	0.28	0.04	1.2	1.2	1.2	1.2	
Température.(°C)	43	0.91	20.47	3.51	10.48	18.25	21.35	22.85	28.34	
Saturation.en.oxygène.(%)	48	0.9	98.08	16.66	54.7	88	97.6	107.5	197.5	
Oxygène.dissous.(ppm)	48	0.9	8.87	1.57	4.8	7.85	8.86	9.74	16.27	
рН	47	0.9	7.84	0.52	6.49	7.52	7.74	8.16	9.86	
Potentiel.Redox.(mV)	104	0.79	94.03	356.14	-940	-27.3	163	275	1281	
TDS.(ppm)	47	0.9	0.09	0.03	0.04	0.07	0.09	0.1	0.19	_
Conductivité.(µS/cm)	47	0.9	129.78	44.12	53	104	125	147.75	254	_
Coliformes.totaux.(colonies/1	27	0.94	390	649.67	2	52.75	134	350	2425	
00.mL)										
E.coli.(colonies/100.mL)	27	0.94	42.9	157.37	0	3	8	25	2425	
Turbidité	115	0.76	11.86	13.28	1	5.75	8	12.33	112.67	
Phosphore.(mgP/L)	393	0.19	0.03	0.04	0.01	0.01	0.02	0.03	0.27	
Chlorophylle.SM(µg/L)	257	0.47	6.55	18.06	0.43	1.5	2.04	3.4	140	
NH4.(mgN/L)	393	0.19	0.08	0.12	0.03	0.03	0.03	0.08	0.83	
NO2.NO3.(mgN/L)	393	0.19	0.1	0.11	0.05	0.05	0.05	0.05	0.47	
NO2.(mgN/L)	393	0.19	0.05	0	0.05	0.05	0.05	0.05	0.05	
NO3.(mgN/L)	393	0.19	0.1	0.11	0.05	0.05	0.05	0.05	0.47	
NTK.(mgN/L)	393	0.19	0.25	0.4	0.05	0.05	0.08	0.29	2.35	
TOC.(mg/L)	393	0.19	6.63	2.69	2.9	4.87	6.22	7.52	17.5	

Table1: Describtion of numeric variable

Table2:Describtion of factor variable

skim_variable	n_missing	complete_rate	n_unique	top_counts
Station	0	1	25	ARG: 20, AYL: 20, BPN: 20, BRO: 20
Pluie/Nuage/Soleil	56	0.88	5	Sol: 218, Nua: 133, Plu: 36, sol: 24
Direction.du.vent	213	0.56	2	Ver: 216, Ver: 56
Fleur.d′eau	42	0.91	5	non: 371, Dis: 38, Sou: 24, écu: 9

Tables 1 and 2 show that except Date and Station all variables contain missing data.In this paper, the variables with a large missing proportion are deleted and the following variables are retained:

"Station", "Microcystine", "Phycocyanine", "Chlorophylle", "PCChl", "Ventmoyenne", "Ventmax", "Transparence", "Temp", "Saturation", "Oxygene", "PH", "TDS", "ConductivitE", "Coliformes", "Ecoli",

2.2 Outlier handling

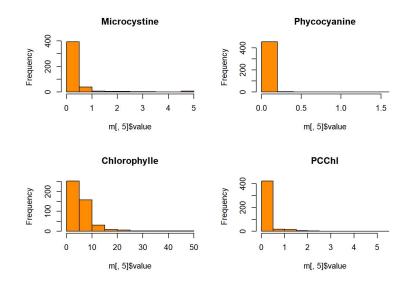
From the table above, some variables contain asterisk, interval data and classification data. For these outliers, we deal with them as follows:

1) asterisk converted to NA.

2) '<3' converted to 2;'>2424' converted to 2425.

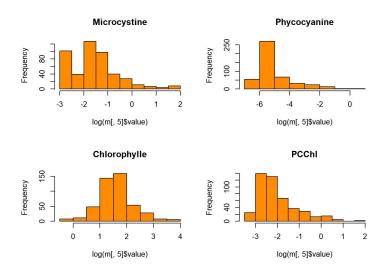
3) vent->Mean of each stations

Moyen->Mean of each stations


Faible->1st Qu. of each stations

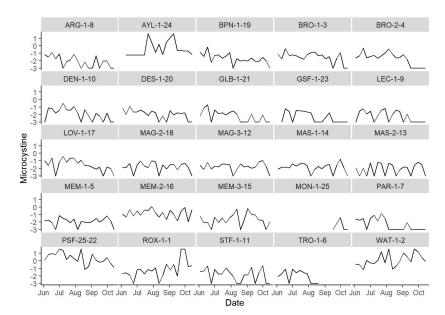
Fort->3rd Qu. of each stations

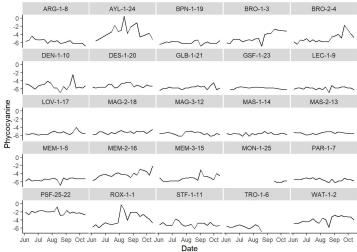
2.3 Data collation


We choose the variables in columns C,D,E,F to analysis.First ,we convert wide data into long data format.Next, let's look at the data distribution through histogram.

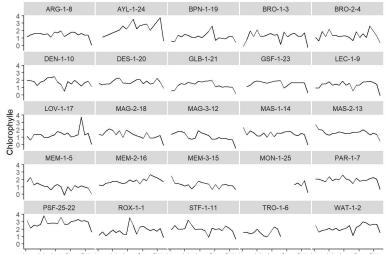
2.3.1 Distribution

The histogram of the four variables show skewed distribution, and the data after log transformation shows normal distribution.

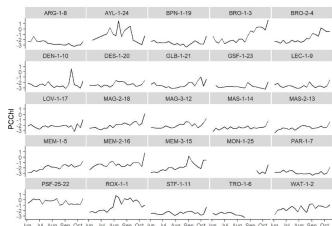

The distribution figure is as follows:


2.4 Time-Series Plots

Next, we look at the time series associated with the columns C,D,E,F in the data set. One can plot the time series at all 25 stations.From the time series, we can see that some stations have less data, such as MON-1-25. And the time series fluctuation of the above four variables is obvious at station AYL-1-24.

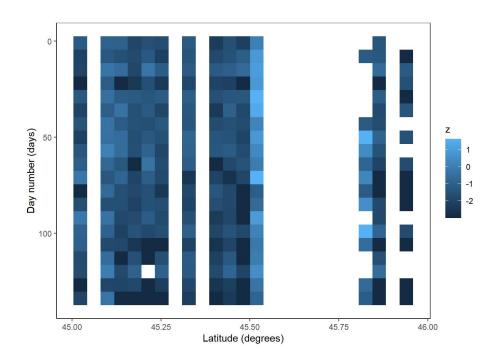

2.4.1 Microcystine

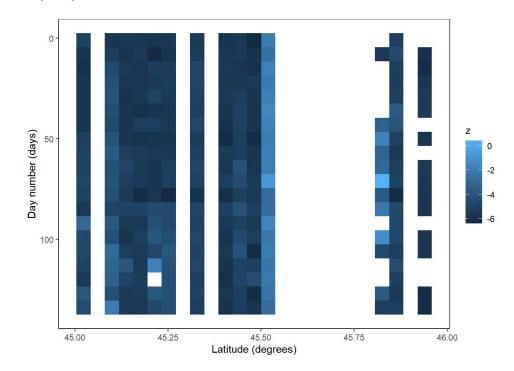
2.4.2 Phycocyanine



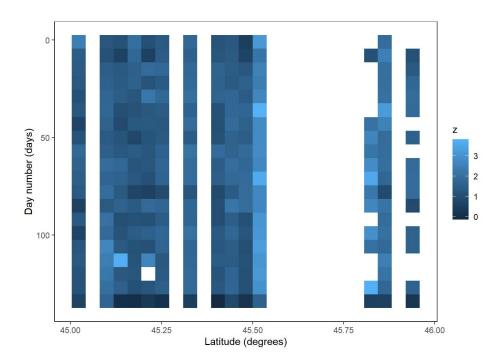
2.4.3 Chlorophylle

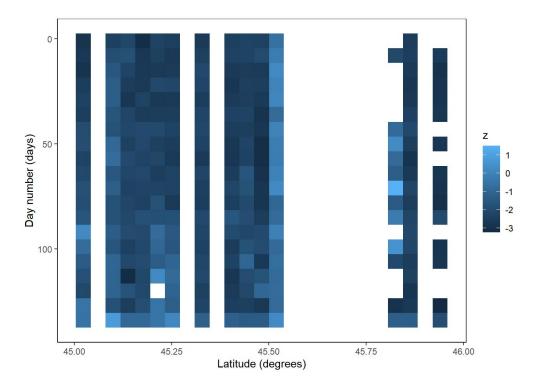
Jun Jul Aug Sep Oct Date


2.4.4 PC/Chl

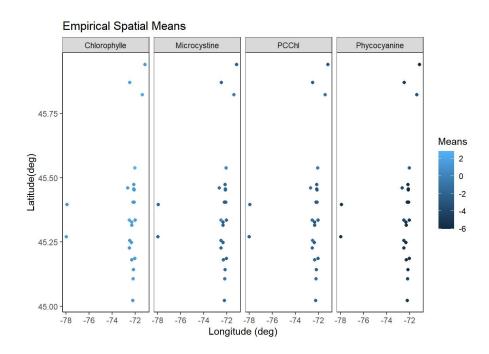

Jun Jul Aug Sep Oct Jun Ju

2.5 Hovmoller Plots

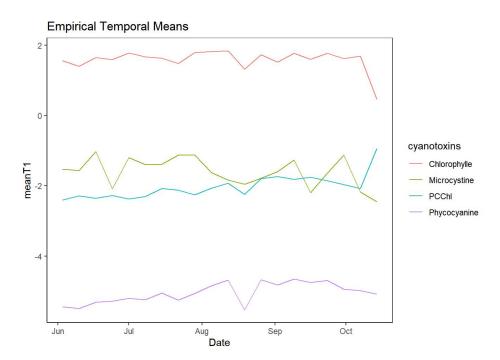

A Hovmöller plot is a two-dimensional space-time visualization, where space is collapsed (projected or averaged) onto one dimension; the second dimension then denotes time.Here,Consider the latitudinal Hovmöller plot. The first step is to generate a regular grid of,say, 25 spatial points and 100 temporal points using the function expand.grid, with limits set to the latitudinal and temporal limits available in the data set. we try to do a Hovmoller Plot for each of four variables.


2.5.2 Phycocyanine

2.5.3 Chlorophylle



2.5.4 PC/Chl


2.6 Empirical Spatial Means

The empirical spatial mean is a spatial quantity that can be stored in a new data frame that contains the spatial locations and the respective average value of each variable at each location.

2.7 Empirical Temporal Means

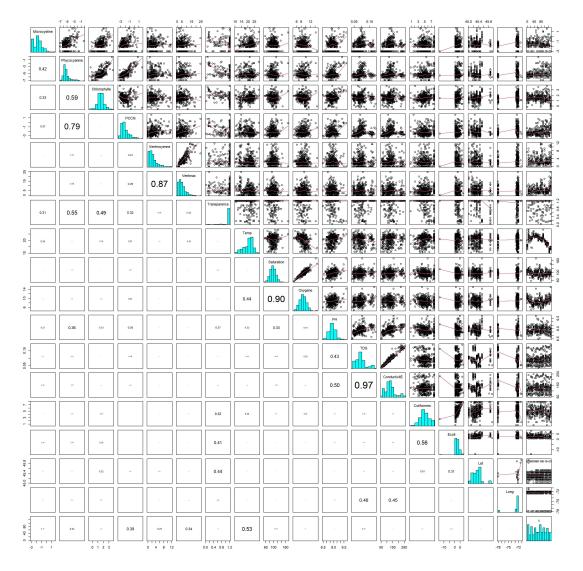
The empirical temporal mean can be computed easily using the tools of R.first, group the data by time; and second, summarize using the summarise function. From the trend point of view, the fluctuations of the four variables are obviously stationary.

3 Methods for modelling

3.1 Scatter plot

Each station has latitude and longitude. After obtaining latitude and longitude data, then match the two data sets through left_join. The target dataset was named result1.

There are 485 observations and 20 variables in the dataset result1. These variables include:


"Date", "Station", "Microcystine", "Phycocyanine", "Chlorophylle", "PCChl", "Ventmoyenne", "Ventmax", "Transparence", "Temp", "Saturation", "Oxygene", "PH", "TDS", "ConductivitE", "Coliformes", "Ecoli", "Lat", "Long", "t".

At the beginning of this paper, the missing situation of each variable is counted. The proportion of missing values in these variables is small, so this paper just omit these observations.

And there are 375 observations and 20 variables in the dataset result2.Next,let's look at the distribution and correlation coefficient of different variables in result2.

Similarly, do log transformation for variables that do not obey normal distribution .The variables for log transformation are:

"Microcystine","Phycocyanine","Chlorophylle","PCChl","Coliformes","Ecoli"

The correlation coefficient describes the relationship between two variables and the correlation direction. However, the correlation coefficient can not exactly indicate the

degree of correlation between the two variables. Its value is between-1 and 1. Correlation coefficient is calculated as follows:

Simple Correlation Coefficient:

$$Cov(x, y) = \sum (X_i - \overline{X})(Y_i - \overline{Y})$$

Pearson Correlation Coefficient:

$$r_{xy} = \frac{Cov(x, y)}{S_x S_y}$$

Partial Correlation Coefficient:

$$r_{xyz} = \frac{r_{xy} - r_{xz}r_{yz}}{\sqrt{(1 - r_{xy}^2)}\sqrt{(1 - r_z^2)}}$$

Here I choose Pearson Correlation Coefficient.It can be seen from the scatter plot that some variables have high correlation and have collinearity problem. The correlation coefficient between ConductivitE and TDS is 0.97, the correlation coefficient between Ventmax and Ventmoyenne is 0.87, and the correlation coefficient between Oxygene and Nature is 0.9. Therefore, it is necessary to consider the collinearity problem between variables in subsequent modeling.

3.2 Model Introduction

The linear regression results are as follows. In this paper, I use stepwise regression to choose the best regression model. The best model usually has the smallest AIC. In addition, I also use plot function to draw the regression diagnosis diagram. From these four pictures, we can check whether the residuals satisfies Homovariance, normality and independence, and also can check whether there are abnormal observations.

- Residuals vs Fitted: The red line horizontally indicates that there is a good linear relationship.
- QQ plot: We can check whether the residual conforms to the normal distribution.
- Scale-Location plot: Red lines should not have obvious trends.
- Residuals vs Levelage: Large outliers are marked.

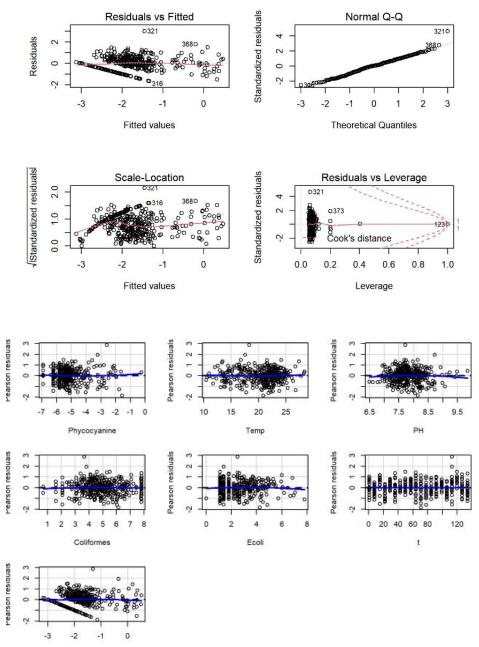
For the regression model, this paper is also based on the data set result2.All the variables we used for the regression model are as follows:

"Station", "Microcystine", "Phycocyanine", "Chlorophylle", "PCChl", "Ventmoyenne", "Ventmax", "Transparence", "Temp", "Saturation", "Oxygene", "PH", "TDS", "ConductivitE", "Coliformes", "Ecoli", "Lat", "Long", "t".

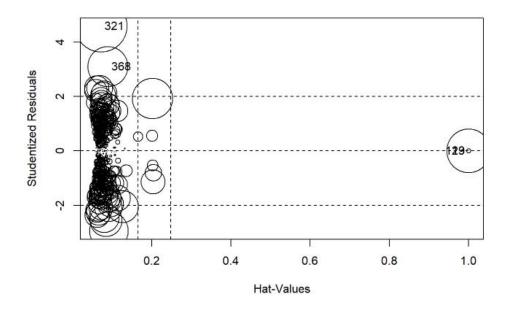
3.3 Microcystine

1) model-1

Here, run a linear regression for Microcystine on the predictors, call it model1a.

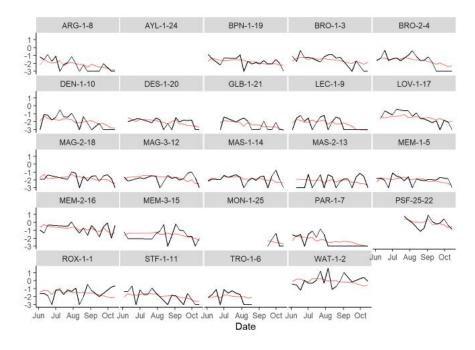

response:Microcystine

predictors:"Station","Ventmoyenne", "Ventmax","Transparence", "Temp", "Saturation", "Oxygene", "PH","TDS","ConductivitE", "Coliformes","Ecoli","Lat","Long","t"


And we use stepwise regression to choose predictors.

the best stepwise regression: lm(formula = Microcystine ~ Station + Phycocyanine + Temp + PH + Coliformes + Ecoli + t, data = resulta)

From the report of model1a, the Adjusted R-squared is 0.4892.



Fitted values

The influencePlot shows that there are some outliers in the model. We remove these outliers and re-run the model call it model1b. The numeric indexes of outliers are 123,321 and 368.

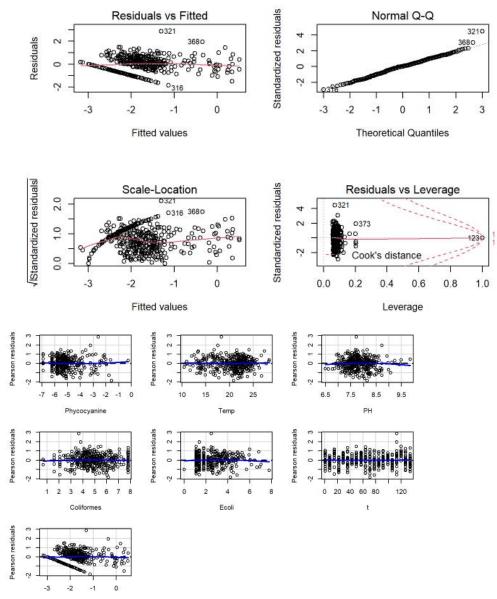
The Adjusted R-squared of model1b is 0.4978.Regression results showed that Temp,t,Ecoli ,Coliformes and part of stations was significant at 0.05 confidence level. Regression coefficients showed that Temp,Coliforms, Ecoli and t had positive effects on Microcystine.

Coe	ffi	ci	ents	ż.
		~~	01101	· ·

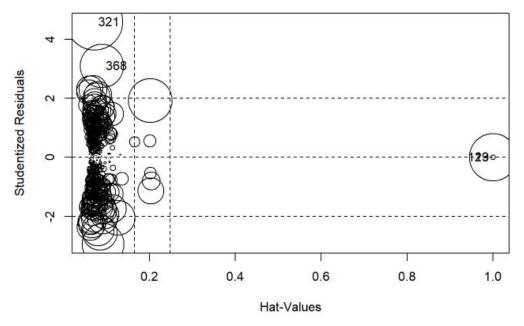
SUCCEPTION CONTRACTOR OF CONTO					
	Estimate	Std. Error	t value	Pr(t)	
(Intercept)	-3.083086	0.354585	-8.695	< 2e-16	***
StationAYL-1-24	1.187045	0.676015	1.756	0.079988	
StationBPN-1-19	0.421593	0.219081	1.924	0.055133	
StationBRO-1-3	0.650728	0.216321	3.008	0.002822	**
StationBRO-2-4	0.533034	0.213325	2.499	0.012931	*
StationDEN-1-10	0.153246	0.215732	0.710	0.477967	
StationDES-1-20	0.107373	0.223402	0.481	0.631088	
StationGLB-1-21	-0.123334	0.227734	-0.542	0.588467	
StationLEC-1-9	0.005006	0.216194	0.023	0.981541	
StationLOV-1-17	0.695454	0.220703	3.151	0.001769	**
StationMAG-2-18	0.456716	0.225509	2.025	0.043612	*
StationMAG-3-12	0.473028	0.222568	2.125	0.034272	*
StationMAS-1-14	0.408997	0.218988	1.868	0.062659	
StationMAS-2-13	0.057747	0.221401	0.261	0.794384	
StationMEM-1-5	0.151167	0.221142	0.684	0.494704	
StationMEM-2-16	1.511188	0.224766	6.723	7.40e-11	***
StationMEM-3-15	0.713177	0.224243	3.180	0.001605	**
StationMON-1-25	-0.152197	0.347056	-0.439	0.661272	
StationPAR-1-7	-0.072204	0.216338	-0.334	0.738768	
StationPSF-25-22	2.188175	0.250334	8.741	< 2e-16	***
StationROX-1-1	0.653814	0.218687	2.990	0.002993	**
StationSTF-1-11	0.219332	0.220061	0.997	0.319616	
StationTRO-1-6	0.042294	0.243661	0.174	0.862301	
StationWAT-1-2	2.163746	0.219851	9.842	< 2e-16	***
Temp	0.065875	0.012125	5.433	1.05e-07	***
Coliformes	-0.110642	0.031710	-3.489	0.000548	***
Ecoli	0.096485	0.035688	2.704	0.007201	**
t	-0.002476	0.001116	-2.218	0.027201	*
Signif. codes:	0 '***' 0.(001 '**' 0.	01 '*' 0.	.05 '.' 0.	1''
Residual standar	d error: 0.	646 on 344	degrees	of freed	າຫ
Multiple R-squar			1		
	62 on 27 au				

2) mode1-2

Here, run a linear regression for Microcystine on the predictors, call it model1c.

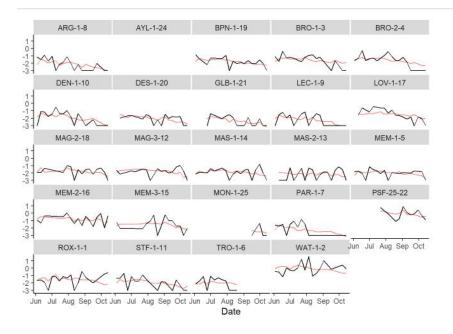

response:Microcystine

```
predictors:"Station", "Phycocyanine","Chlorophylle" "PCChl","Ventmoyenne",
"Ventmax","Transparence", "Temp", "Saturation", "Oxygene",
"PH","TDS","ConductivitE", "Coliformes","Ecoli","Lat","Long","t"
```


And we use stepwise regression to choose predictors.

```
the best stepwise regression: lm(formula = Microcystine ~ Station +
Phycocyanine + Temp + PH + Coliformes + Ecoli + t, data = resulta)
```

From the report of model1c, the Adjusted R-squared is 0.4959.



Fitted values

The influencePlot shows that there are some outliers in the model. We remove these outliers and re-run the model call it model1d. The numeric indexes of outliers are 123,321 and 368.

The Adjusted R-squared of model1d is 0.5049.Regression results showed that PH,Temp,t,Ecoli ,Coliformes and part of stations was significant at 0.05 confidence level. Regression coefficients showed that Temp,Ecoli had positive effects on Microcystine.

Coefficients:

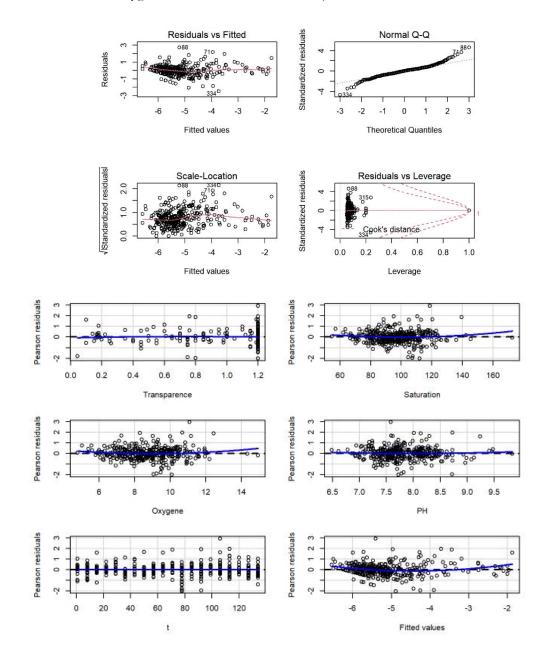
COEFFICIENCS.					
	Estimate	Std. Error	t value	$\Pr(t)$	
(Intercept)	-0.359754	1.101297	-0.327	0.744122	
StationAYL-1-24	1.046798	0.673352	1.555	0.120964	
StationBPN-1-19	0.627376	0.231858	2.706	0.007154	**
StationBRO-1-3	0.662061	0.222009	2.982	0.003068	**
StationBRO-2-4	0.550469	0.216280	2.545	0.011361	*
StationDEN-1-10	0.196717	0.217877	0.903	0.367224	
StationDES-1-20	0.068481	0.223045	0.307	0.759009	
StationGLB-1-21	-0.116057	0.226167	-0.513	0.608178	
StationLEC-1-9	0.090514	0.217372	0.416	0.677377	
StationLOV-1-17	0.699239	0.219911	3.180	0.001609	**
StationMAG-2-18	0.589012	0.235297	2.503	0.012771	*
StationMAG-3-12	0.500449	0.221518	2.259	0.024501	*
StationMAS-1-14	0.619087	0.236040	2.623	0.009111	**
StationMAS-2-13	0.277584	0.241603	1.149	0.251389	
StationMEM-1-5	0.259541	0.226384	1.146	0.252405	
StationMEM-2-16	1.345367	0.239472	5.618	4.01e-08	***
StationMEM-3-15	0.784694	0.231197	3.394	0.000770	***
StationMON-1-25	-0.131743	0.345037	-0.382	0.702829	
StationPAR-1-7	-0.186500	0.219243	-0.851	0.395557	
StationPSF-25-22	2.290214	0.323258	7.085	7.99e-12	***
StationROX-1-1	0.534897	0.234960	2.277	0.023431	*
StationSTF-1-11	0.228575	0.222442	1.028	0.304879	
StationTRO-1-6	0.050849	0.242232	0.210	0.833857	
StationWAT-1-2	2.058873	0.234382	8.784	< 2e-16	***
Phycocyanine	0.110124	0.055069	2.000	0.046320	*
Temp	0.076061	0.013085	5.813	1.41e-08	***
PH	-0.294511	0.124821	-2.359	0.018863	*
Coliformes	-0.121955	0.031844	-3.830	0.000153	***
Ecoli	0.089812	0.035527	2.528	0.011922	*
t	-0.002833	0.001152	-2.460	0.014392	*
Signif. codes:	0 '***' 0.1	001 '**' 0.0)1 '*' O.	.05 '.' 0.	1 '

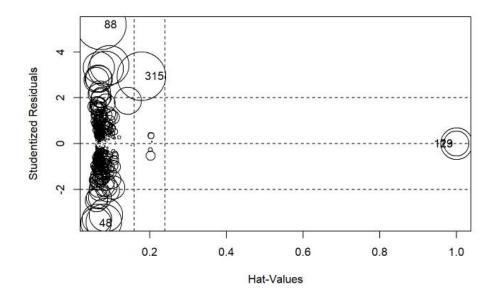
Residual standard error: 0.6414 on 342 degrees of freedom Multiple R-squared: 0.5436, Adjusted R-squared: 0.5049 F-statistic: 14.05 on 29 and 342 DF, p-value: < 2.2e-16

3.4 Phycocyanine

1) model-1

Next, run a linear regression for Phycocyanine ,call it model2a.

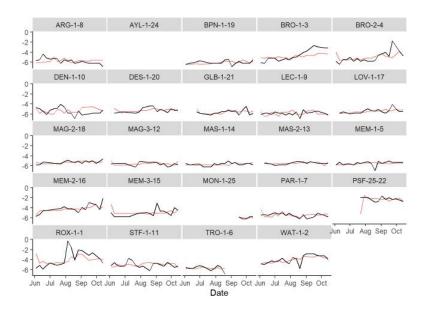

Response:Phycocyanine


Predictors:

"Station", "Ventmoyenne", "Ventmax", "Transparence", "Temp", "Saturation", "Oxygene", "PH", "TDS", "ConductivitE", "Coliformes", "Ecoli", "Lat", "Long", "t".

From the report, the Adjusted R-squared of model2a is 0.6532.

The best stepwise regression:lm(formula = Phycocyanine ~ Station + Transparence + Saturation + Oxygene + PH + t, data = resultb)



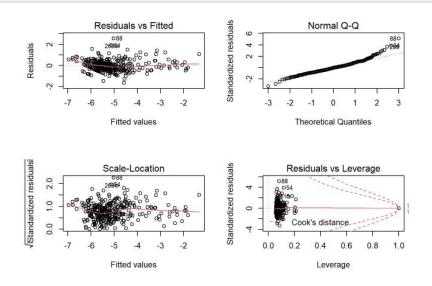
The influencePlot shows that there are some outliers in the model. We remove these outliers and re-run the model call it model2b. The numeric indexes of outliers are 48,88,123 and 315.

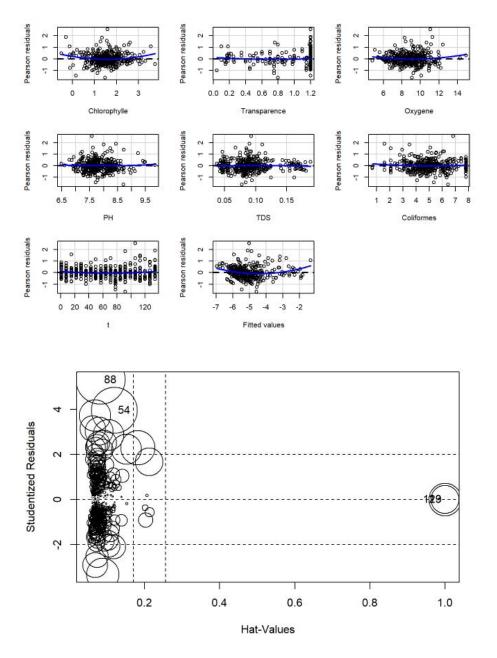
From the report ,the Adjusted R-squared is 0.6693.Regression results showed that Transparencet,t,PH,and part of stations were significant at 0.05 confidence level.

	Estimate	Std. Error	t value	Pr(t)	
(Intercept)	-1.002e+01	7.752e-01	-12.930	< 2e-16	***
StationAYL-1-24	8.210e-01	5.913e-01	1.388	0.1659	
StationBPN-1-19	-6.560e-01	2.023e-01	-3.243	0.0013	**
StationBRO-1-3	8.800e-01	1.980e-01	4.445	1.19e-05	***
StationBRO-2-4	4.714e-01	1.904e-01	2.476	0.0138	*
StationDEN-1-10	2.882e-02	1.970e-01	0.146	0.8837	
StationDES-1-20	4.877e-01	1.980e-01	2.463	0.0143	*
StationGLB-1-21	9.722e-02	2.015e-01	0.482	0.6298	
StationLEC-1-9	-2.891e-01	1.920e-01	-1.506	0.1331	
StationLOV-1-17	2.699e-01	1.954e-01	1.381	0.1681	
StationMAG-2-18	9.502e-02	2.086e-01	0.456	0.6490	
StationMAG-3-12	1.163e-01	1.977e-01	0.588	0.5566	
StationMAS-1-14	-3.478e-01	2.046e-01	-1.699	0.0902	
StationMAS-2-13	-2.712e-01	2.128e-01	-1.274	0.2035	
StationMEM-1-5	-2.061e-02	1.983e-01	-0.104	0.9173	
StationMEM-2-16	1.503e+00	1.972e-01	7.624	2.42e-13	***
StationMEM-3-15	4.254e-01	2.036e-01	2.089	0.0374	*
StationMON-1-25	1.140e-01	2.919e-01	0.390	0.6965	
StationPAR-1-7	4.666e-01	1.929e-01	2.418	0.0161	*
StationPSF-25-22	1.523e+00	2.989e-01	5.094	5.80e-07	***
StationROX-1-1	1.454e+00	1.941e-01	7.488	5.92e-13	***
StationSTF-1-11	7.057e-02	2.177e-01	0.324	0.7460	
StationTRO-1-6	1.253e-01	2.146e-01	0.584	0.5596	
StationWAT-1-2	1.296e+00	1.963e-01	6.601	1.55e-10	***
fransparence	-8.828e-01	1.833e-01	-4.816	2.20e-06	***
PH	6.588e-01	9.478e-02	6.951	1.83e-11	***
t	5.117e-03	7.793e-04	6.566	1.91e-10	***
(miling)					

Residual standard error: 0.5719 on 344 degrees of freedom Multiple R-squared: 0.6926, Adjusted R-squared: 0.6693 F-statistic: 29.8 on 26 and 344 DF, p-value: < 2.2e-16

2) model-2

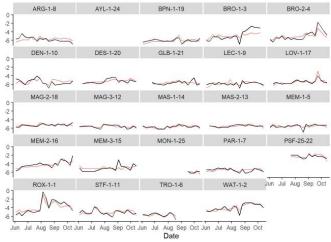

Next, run a linear regression for Phycocyanine ,call it model2c.


Response:Phycocyanine

predictors:"Station","Microcystine","Chlorophylle" "PCChl","Ventmoyenne", "Ventmax","Transparence", "Temp", "Saturation", "Oxygene", "PH","TDS","ConductivitE", "Coliformes","Ecoli","Lat","Long","t"

From the report, the Adjusted R-squared of model2c is 0.7467.

The best stepwise regression: $lm(formula = Phycocyanine \sim Station + Chlorophyll e + Transparence + Oxygene + PH + TDS + Coliformes + t, data = resultb)$


The influencePlot shows that there are some outliers in the model. We remove these outliers and re-run the model call it model2d. The numeric indexes of outliers are 54,88 and 123.

The Adjusted R-squared of model2d is 0.7742.Regression results showed that Chlorophylle,Transparence,PH,TDS,t and part of stations was significant at 0.05 confidence level.

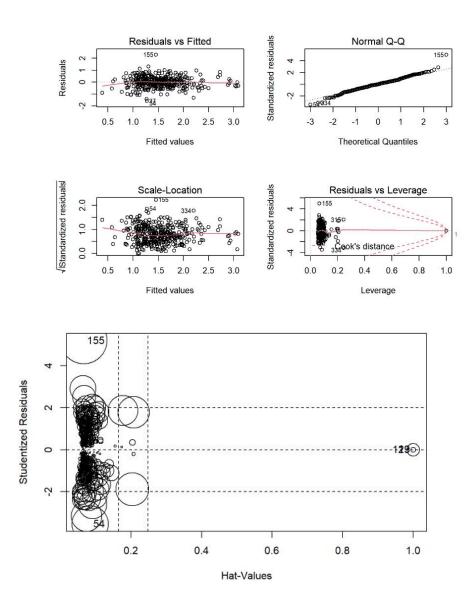
Coefficients:					
	Estimate	Std. Error	t value	Pr(t)	
(Intercept)	-8.8832750	0.6848111	-12.972	< 2e-16	***
StationAYL-1-24	1.0290438	0.5040537	2.042	0.04196	*
StationBPN-1-19	-0.4527122	0.1760456	-2.572	0.01055	*
StationBR0-1-3	0.7232264	0.1755362	4.120	4.76e-05	***
StationBRO-2-4	0.4852693	0.1708391	2.841	0.00477	**
StationDEN-1-10	-0.1576291	0.1710910	-0.921	0.35753	
StationDES-1-20	0.1355071	0.1860783	0.728	0.46697	
StationGLB-1-21	0.2611243	0.1847189	1.414	0.15838	
StationLEC-1-9	-0.0765919	0.1689828	-0.453	0.65065	
StationLOV-1-17	0.2288687	0.1676997	1.365	0.17323	
StationMAG-2-18	0.0689538	0.2154582	0.320	0.74914	
StationMAG-3-12	0.0237848	0.2207854	0.108	0.91427	
StationMAS-1-14	-0.9013407	0.3500663	-2.575	0.01045	*
StationMAS-2-13	-0.8585260	0.3458049	-2.483	0.01352	*
StationMEM-1-5	0.1162031	0.1887895	0.616	0.53862	
StationMEM-2-16	1.0587088	0.1883008	5.622	3.91e-08	***
StationMEM-3-15	0.3431057	0.2045019	1.678	0.09431	
StationMON-1-25	0.3725907	0.2548925	1.462	0.14473	
StationPAR-1-7	0.1485310	0.1740751	0.853	0.39411	
StationPSF-25-22	0.4704768	0.2938328	1.601	0.11026	
StationROX-1-1	1.2042670	0.1780524	6.764	5.84e-11	***
StationSTF-1-11	-0.6247823	0.2610050	-2.394	0.01722	*
StationTRO-1-6	-0.0610917	0.1938011	-0.315	0.75278	
StationWAT-1-2	0.6686629	0.1982620	3.373	0.00083	***
poly(Chlorophylle,	2)1 8.4692356	0.6714437	12.613	< 2e-16	***
poly(Chlorophylle,	2)2 1.7234036	0.5669928	3.040	0.00255	**
Transparence	-0.7388871	0.1561195	-4.733	3.25e-06	***
PH	0.4319649	0.0822811	5.250	2.68e-07	***
TDS	7.1751116	3.0929383	2.320	0.02094	*
t	0.0053536	0.0007216	7.419	9.42e-13	***

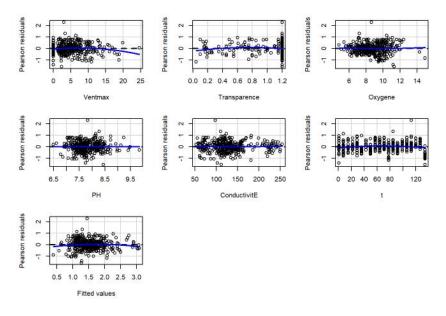
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4867 on 342 degrees of freedom Multiple R-squared: 0.7918, Adjusted R-squared: 0.7742 F-statistic: 44.85 on 29 and 342 DF, p-value: < 2.2e-16

3.5 Chlorophylle

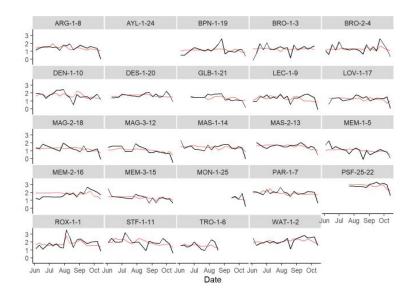
1) model-1


Next, run a linear regression for Chlorophylle, call it model3a.


response: Chlorophylle

Predictors: "Station", "Chlorophylle", "Ventmoyenne", "Ventmax", "Transparence", "Temp", "Saturation", "Oxygene", "PH", "TDS", "ConductivitE", "Coliformes", "Ecoli", "Lat", "Long", "t".

The report shows that the Adjusted R-squared is 0.4352.


The best sepwise regression: $lm(formula = Chlorophylle \sim Station + Ventmax + Transparence + Oxygene + PH + ConductivitE + t, data = resultc)$

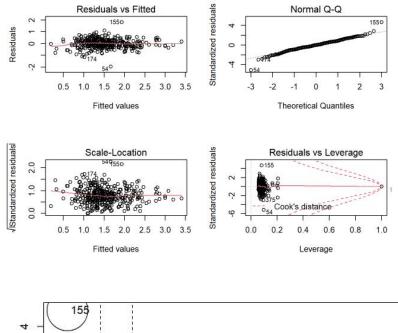
Residual plot show that Ventmax show non-linear relations in the residual plots. This paper re-run the linear model with polynomial order 2 and I also remove these outliers. The numeric indexes of outliers are 54,123,155 and 334. We remove these outliers and re-run the model call it mode3b.

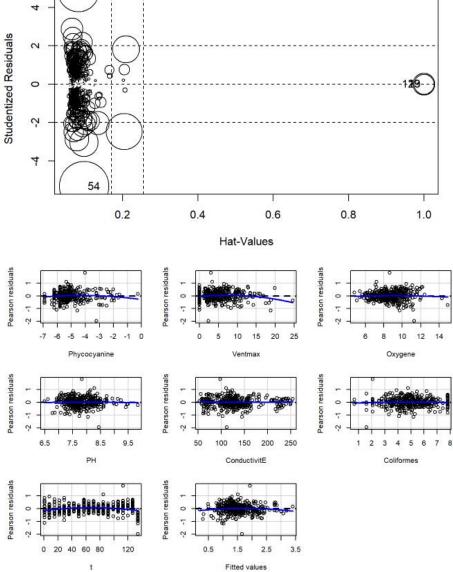
From the report ,the Adjusted R-squared is 0.471.Regression results showed that poly(Ventmax,2),Transparence,t,PH,Oxygene,ConductivitE and part of stations were significant at 0.05 confidence level.The regression coefficients show that the effects of ploy(Ventmax,2),Transparency, Oxygene, ConductivitE, t on Chlorophylle are negative and PH is positive.

Coefficients:					
Coefficients:	Vetiente	Std. Error	+	$\mathbb{D}_{\mathbb{P}}(\Sigma [\pm 1))$	
(T++)	-0.2159982	0.6179748		201 201 202	
	-0.2345593	0. 6179748		0. 612688	
				01.007.007	
	-0.4070477	0.1587995		0.010797	*
	-0.1011087	0.1594960	10000	0.526554	
	-0.1469403	0.1532255		0.338248	
StationDEN-1-10	0.1714249	0.1532930		0.264233	
StationDES-1-20	0.3964108	0.1686028	2.351	0.019284	*
200 T 200	-0.1110303	0.1687128	1 1 2 2 2 3 3 3 1	0.510916	
StationLEC-1-9	-0.2988490	0.1551927	-1.926	0.054978	•
StationLOV-1-17	-0.0966597	0.1575809	-0.613	0.540023	
StationMAG-2-18	-0.1611186	0.1874694	-0.859	0.390702	
StationMAG-3-12	-0.1395691	0.1906801	-0.732	0.464699	
StationMAS-1-14	0.3430268	0.2864834	1.197	0.231994	
StationMAS-2-13	0.4034564	0.2867510	1.407	0.160340	
StationMEM-1-5	-0.3717631	0.1662605	-2.236	0.025996	*
StationMEM-2-16	0.5379396	0.1674026	3.213	0.001437	**
StationMEM-3-15	-0.0201502	0.1788857	-0.113	0.910380	
StationMON-1-25	-0.3432080	0.2412792	-1.422	0.155809	
StationPAR-1-7	0.4962525	0.1560374	3.180	0.001606	**
StationPSF-25-22	0.7454168	0.2485770	2.999	0.002910	**
StationROX-1-1	0.3167397	0.1586397	1.997	0.046663	*
StationSTF-1-11	0.5261378	0.2218048	2.372	0.018243	*
StationTRO-1-6	0.1665355	0.1766426	0.943	0.346460	
StationWAT-1-2	0.6144962	0.1715789	3.581	0.000391	***
poly(Ventmax, 2)1	-1.0173962	0.5192125	-1.959	0.050869	
poly(Ventmax, 2)2	-0.9906457	0.4807273	-2.061	0.040088	*
Transparence	-0.4785651	0.1457381	-3.284	0.001131	**
Oxygene	-0.0530885	0.0168853	-3.144	0.001812	**
PH	0.4178120	0.0779807	5.358	1.55e-07	***
ConductivitE	-0.0041283	0.0018908	-2.183	0.029692	*
t	-0.0018438	0.0006696	-2.754	0.006208	**
<u></u>					
Signif. codes: 0	'***' 0.001	*** 0.01	'*' 0.0	5'.' 0.1	, ,

Residual standard error: 0.4462 on 341 degrees of freedom Multiple R-squared: 0.5139, Adjusted R-squared: 0.4712 F-statistic: 12.02 on 30 and 341 DF, p-value: < 2.2e-16

2) model-2

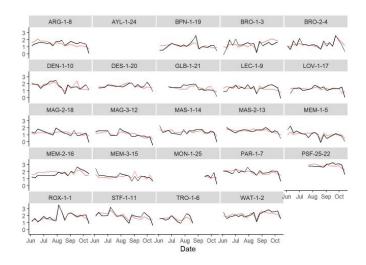

Next, run a linear regression for Chlorophylle, call it model3c.


response: Chlorophylle

predictors:"Station","Microcystine" "Phycocyanine","PCChl","Ventmoyenne", "Ventmax","Transparence", "Temp", "Saturation", "Oxygene", "PH","TDS","ConductivitE", "Coliformes","Ecoli","Lat","Long","t"

The report shows that the Adjusted R-squared is 0.5892.

The best sepwise regression:(lm(formula = Chlorophylle ~ Station + Phycocyanine + Ventmax + Oxygene + PH + ConductivitE + Coliformes + t, data = result c)



Residual plot show that Ventmax show non-linear relations in the residual plots. This paper re-run the linear model with polynomial order 2 and I also remove these outliers. The numeric indexes of outliers are 54,123,155. We remove these outliers and re-run the model call it mode3c.

From the report ,the Adjusted R-squared is 0.631.Regression results showed that poly(Ventmax,2),t,PH,,ConductivitE,Coliformes and part of stations were significant at 0.05 confidence level.

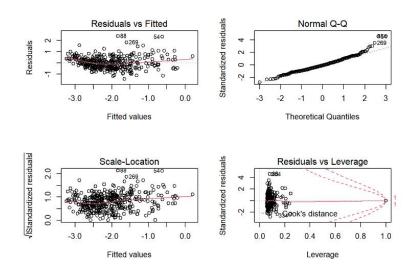
Coefficients:	Estimate	Std. Error	t value	Pr()[t])	
(Intercept)	4.1418923	0.6333569		2.26e-10	***
StationAVL-1-24	-0.5328931				
StationBPN-1-19	-0.1301451	0.1342531			
StationBRO-1-3	-0.3832351	0.1338157			**
StationBRO-2-4	-0.3389101	0.1291318		0.009068	
StationDEN-1-10	0.1176693	0.1279030		0.358231	
StationDES-1-20	0.2028650	0.1414344		0.152394	
StationGLB-1-21	-0.1808670	0.1394252		0.195431	
StationLEC-1-9	-0.1857521	0.1300125	-1.429	0.154001	
StationLOV-1-17	-0.2027863	0.1308449	- * C. STAR	0.122115	
StationMAG-2-18	-0.1901814	0.1567207		0.225779	
StationMAG-3-12	-0.1452749	0.1592774	-0.912	0.362369	
StationMAS-1-14	0.5697679	0.2401247	2.373	0.018210	*
StationMAS-2-13	0.5864807	0.2405374	2.438	0.015272	*
StationMEM-1-5	-0.3916621	0.1404960	-2.788	0.005607	**
StationMEM-2-16	-0.0523717	0.1478941	-0.354	0.723472	
StationMEM-3-15	-0.1758211	0.1497645	-1.174	0.241223	
StationMON-1-25	-0.4672195	0.2013809	-2.320	0.020928	*
StationPAR-1-7	0.2843674	0.1313544	2.165	0.031092	*
StationPSF-25-22	0.3304453	0.1960716	1.685	0.092842	
StationROX-1-1	-0.2915458	0.1415927	-2.059	0.040251	*
StationSTF-1-11	0.6308534	0.1693250	3.726	0.000228	***
StationTRO-1-6	0.1160422	0.1476844	0.786	0.432565	
StationWAT-1-2	0.1287555	0.1481039	0.869	0.385264	
hycocyanine	0.4107046	0.0320836	12.801	< 2e-16	***
poly(Ventmax, 2)1	-0.8378283	0.4246842	-1.973	0.049325	*
poly(Ventmax, 2)2	-1.0299772	0.3966042	-2.597	0.009813	**
Oxygene	-0.0614893	0.0142049	-4.329	1.97e-05	***
PH	0.1387013	0.0687697	2.017	0.044492	*
ConductivitE	-0.0048838	0.0015669	-3.117	0.001983	**
Coliformes	-0.0279652	0.0155728	-1.796	0.073419	
t	-0.0041426	0.0005904	-7.016	1.24e-11	***

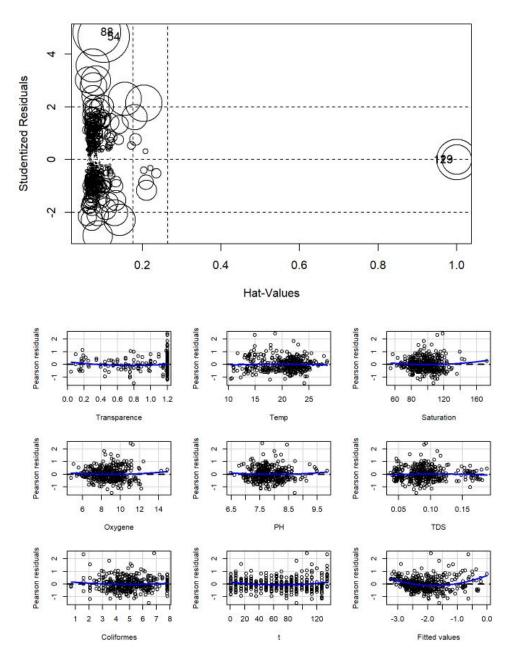
Residual standard error: 0.3727 on 340 degrees of freedom Multiple R-squared: 0.6618, Adjusted R-squared: 0.631 F-statistic: 21.47 on 31 and 340 DF, p-value: < 2.2e-16

3.6 PCChl

1) Model-1

Here, run a linear regression for PCChl on all the predictors, call it model4a.

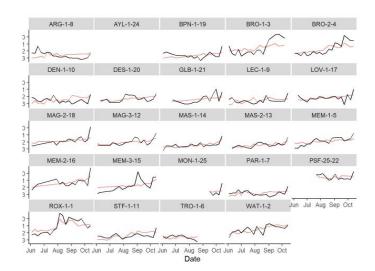

Response:PCChl


Predictors:

"Station", "Ventmoyenne", "Ventmax", "Transparence", "Temp", "Saturation", "Oxygene", "PH", "TDS", "ConductivitE", "Coliformes", "Ecoli", "Lat", "Long", "t".

the Adjusted R-squared of model4 is 0.5768.

The best stepwise regression: $lm(formula = PCChl \sim Station + Transparence + T emp + Saturation + Oxygene + PH + TDS + Coliformes + t, data = resultd)$



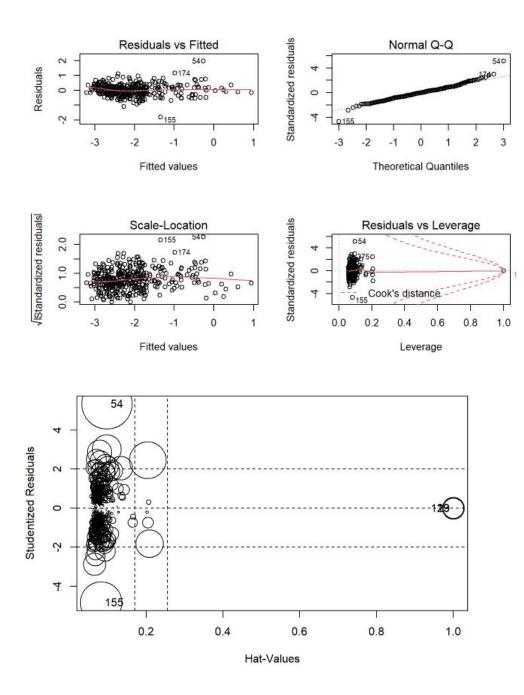
It can be seen that Transparence shows non-linear relations in the residual plots. I re-run the linear model with polynomial order 2. I also remove these outliers. The numeric indexes of outliers are 54,88 and 123. We remove these outliers and re-run the model call it mode4b.

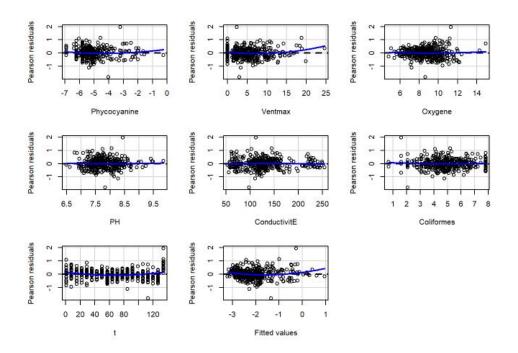
From the report ,the Adjusted R-squared is 0.5922.From the results of regression model,t,Transparence,TDS,PH,Coliformes and part of stations were significant at 0.05 confidence level.The regression coefficients show that t,Coliformes,TDS,PH have a positive effect on PCChl.

Coefficients:	Patients	Ct J T	4	n. ALLA	
(T		Std. Error			
·	-5.6765497				
StationAYL-1-24				0.044693	
StationBPN-1-19	-0.3310732	0.1845259			
StationBRO-1-3		0.1849979			
StationBRO-2-4					**
StationDEN-1-10		0.1801681			
StationDES-1-20	-0.0335706	0.1944861	-0.173	0.863058	
StationGLB-1-21	0.3084324	0.1945950	1.585	0.113889	
StationLEC-1-9	0.0304088	0.1772692	0.172	0.863900	
StationLOV-1-17	0.2920652	0.1764373	1.655	0.098769	20
StationMAG-2-18	0.1152743	0.2266873	0.509	0.611418	
StationMAG-3-12	0.0452442	0.2332856	0.194	0.846335	
StationMAS-1-14	-1.1034776	0.3678828	-3.000	0.002902	**
StationMAS-2-13	-1.0882249	0.3625186	-3.002	0.002880	**
StationMEM-1-5	0.3108758	0.1986235	1.565	0.118470	
StationMEM-2-16	0.8724681	0.1962447	4.446	1.18e-05	***
StationMEM-3-15	0.3318331	0.2152722	1.541	0.124127	
StationMON-1-25	0.6124423	0.2680889	2.284	0.022954	*
StationPAR-1-7	0.0225871	0.1802749	0.125	0.900365	
StationPSF-25-22	0.2843592	0.3055822	0.931	0.352741	
StationROX-1-1	1.1115693	0.1866893	5.954	6.47e-09	***
StationSTF-1-11	-0.8495522	0.2730035	-3.112	0.002015	**
StationTRO-1-6	-0.1101391	0.2041398	-0.540	0.589873	
StationWAT-1-2	0.4774103	0.2057681	2.320	0.020920	*
Transparence	-0.6311055	0.1646743	-3.832	0.000151	***
PH	0.3356218	0.0843985	3.977	8.53e-05	***
TDS	10.1814435	3.2358188	3.146	0.001797	**
Coliformes	0.0387849	0.0214215	1.811	0.071084	10000 100
t	0.0064200	0.0007494	8.567	3.66e-16	***
Signif. codes:	0 '***' 0.00	0.0 '**' 0.0	1 '*' 0.1	o5 '.' O. 1	, ,

Residual standard error: 0.5131 on 343 degrees of freedom Multiple R-squared: 0.623, Adjusted R-squared: 0.5922

2) model-2

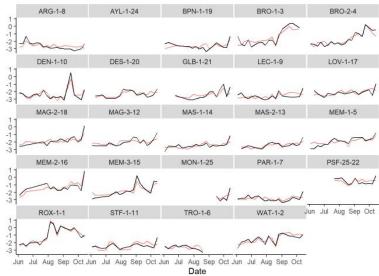

Next, run a linear regression for PCChl,call it model4c.


response: PCChl

predictors:"Station","Microcystine" "Phycocyanine","Chlorophylle","Ventmoyenne", "Ventmax","Transparence", "Temp", "Saturation", "Oxygene", "PH","TDS","ConductivitE", "Coliformes","Ecoli","Lat","Long","t"

The report shows that the Adjusted R-squared is 0.7668.

The best sepwise regression: $lm(formula = PCChl \sim Station + Phycocyanine + Ve ntmax + Oxygene + PH + ConductivitE + Coliformes + t, data = resultd)$


It can be seen that Transparence shows non-linear relations in the residual plots. I re-run the linear model with polynomial order 2. I also remove these outliers. The numeric indexes of outliers are 55,155 and 123. We remove these outliers and re-run the model call it model4d.

From the report ,the Adjusted R-squared is 0.7899.From the results of regression model,t,Coliformes,Oxygene ,ConductivitE ,poly(Ventmax,2) and part of stations were significant at 0.05 confidence level.

Coefficients:					
	Estimate	Std. Error	t value	$\Pr(t)$	
(Intercept)	0.4632779	0.6333569	0.731	0.465000	
StationAYL-1-24	0.5328931	0.3889620	1.370	0.171579	
StationBPN-1-19	0.1301451	0.1342531	0.969	0.333034	
StationBRO-1-3	0.3832351	0.1338157	2.864	0.004444	**
StationBRO-2-4	0.3389101	0.1291318	2.625	0.009068	**
StationDEN-1-10	-0.1176693	0.1279030	-0.920	0.358231	
StationDES-1-20	-0.2028650	0.1414344	-1.434	0.152394	
StationGLB-1-21	0.1808670	0.1394252	1.297	0.195431	
StationLEC-1-9	0.1857521	0.1300125	1.429	0.154001	
StationLOV-1-17	0.2027863	0.1308449	1.550	0.122115	
StationMAG-2-18	0.1901814	0.1567207	1.214	0.225779	
StationMAG-3-12	0.1452749	0.1592774	0.912	0.362369	
StationMAS-1-14	-0.5697679	0.2401247	-2.373	0.018210	*
StationMAS-2-13	-0.5864807	0.2405374	-2.438	0.015272	*
StationMEM-1-5	0.3916621	0.1404960	2.788	0.005607	**
StationMEM-2-16	0.0523717	0.1478941	0.354	0.723472	
StationMEM-3-15	0.1758211	0.1497645	1.174	0.241223	
StationMON-1-25	0.4672195	0.2013809	2.320	0.020928	*
StationPAR-1-7	-0.2843674	0.1313544	-2.165	0.031092	*
StationPSF-25-22	-0.3304453	0.1960716	-1.685	0.092842	
StationROX-1-1	0.2915458	0.1415927	2.059	0.040251	*
StationSTF-1-11	-0.6308534	0.1693250	-3.726	0.000228	***
StationTRO-1-6	-0.1160422	0.1476844	-0.786	0.432565	
StationWAT-1-2	-0.1287555	0.1481039	-0.869	0.385264	
Phycocyanine	0.5892954	0.0320836	18.368	< 2e-16	***
poly(Ventmax, 2)1	0.8378283	0.4246842	1.973	0.049325	*
poly(Ventmax, 2)2	1.0299772	0.3966042	2.597	0.009813	**
Oxygene	0.0614893	0.0142049	4.329	1.97e-05	***
РН	-0.1387013	0.0687697	-2.017	0.044492	*
ConductivitE	0.0048838	0.0015669	3.117	0.001983	**
Coliformes	0.0279652	0.0155728	1.796	0.073419	
t	0.0041426	0.0005904	7.016	1.24e-11	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3727 on 340 degrees of freedom Multiple R-squared: 0.8074, Adjusted R-squared: 0.7899 F-statistic: 45.98 on 31 and 340 DF, $\,$ p-value: < 2.2e-16

4 Results and discussion

In this paper, the data of cyanotoxins at 25 stations were studied. Firstly, the data is preprocessed and then the data distribution of the four main variables is examined. Finally, the factors affecting cyanotoxins were analyzed by nonlinear model.

1) without including the other three toxins

The final four models are as follows:

model1 <-lm(formula = Microcystine ~ Station + Phycocyanine + Temp + PH + Coliformes + Ecoli + t, data = resulta)
Model2 =:lm(formula = Phycocyanine ~ Station + Transparence + Saturation + Oxygene + PH + t, data = resultb)
Model3 =lm(formula = Chlorophylle ~ Station + Ventmax + Transparence + Ox ygene + PH + ConductivitE + t, data = resultc)
Model4 =lm(formula = PCChl ~ Station + Transparence + Temp + Saturation + Oxygene + PH + TDS + Coliformes + t, data = resultd)

2) including the other three toxins

Model5<-lm(formula = Microcystine ~ Station + Phycocyanine + Temp + PH + Coliformes + Ecoli + t, data = resulta)

Model6<-lm(formula = Phycocyanine ~ Station + Chlorophylle + Transparence + Oxygene + PH + TDS

+ Coliformes + t, data = resultb)

Model7<-lm(formula = Chlorophylle ~ Station + Phycocyanine + Ventmax + Ox ygene + PH + ConductivitE + Coliformes + t, data = resultc)

Model8<-lm(formula = PCChl ~ Station + Phycocyanine + Ventmax + Oxygene + PH + ConductivitE + Coliformes + t, data = resultd)

	including	without
Microcystine	0.4978	0.5049
Phycocyanine	0.6693	0.7742
Chlorophylle	0.4712	0.631
PCChl	0.5922	0.7899

R-squared of the model

From the results, the model with three variables performs better than the model without them.The Adjusted R-squared of model1d is 0.5049.Regression results showed that PH,Temp,t,Ecoli ,Coliformes and part of stations was significant at 0.05 confidence level. Regression coefficients showed that Phycocyanine ,Temp,Ecoli had positive effects on Microcystine.PH and t had Negative effects on Microcystine.The Adjusted R-squared of model2d is 0.7742.Regression results showed that

Chlorophylle,Oxygene,Transparence,PH,TDS,t and part of stations was significant at 0.05 confidence level. Regression coefficients showed that Chlorophylle,

Xxygene,PH,Coliformes,TDS,t had positive effects on Phycocyanine.

From the report ,the Adjusted R-squared of model3d is 0.631.Regression results showed that poly(Ventmax,2),t,PH,,ConductivitE,Coliformes and part of stations were significant at 0.05 confidence level.From the report ,the Adjusted R-squared of model4d is 0.7899.From the results of regression model,t,Coliformes,Oxygene ,ConductivitE ,

poly(Ventmax,2) and part of stations were significant at 0.05 confidence level.

5 Code and appendix

Data description and exploration:

1 summary

```
for (i in 1:32) {
  df[,i] <- gsub("[*]","",df[,i])
}
for (i in 1:32) {
  df[,i] <- gsub("<3","2",df[,i])
  df[,i] <- gsub(">2424","2425",df[,i])
}
stations = unique(df$Station)
fs \leq function(df,n)
  result = data.frame()
  for (s in stations) {
     ds1<-subset(df,Station==s)
     values = as.vector(ds1[,n])
     v = values[!(values %in% c("vent", "moyen", "faible", "fort"))]
     \#v[is.na(v)] = 0
     \#v1 = v
     v1 = as.numeric(v)
     v2 = t(summary(v1))
     ds1[,n] \le gsub("vent",v2[4],ds1[,n])
     ds1[,n] \le gsub("moyen",v2[4],ds1[,n])
     ds1[,n] \le gsub("faible",v2[2],ds1[,n])
     ds1[,n] \le gsub("fort",v2[5],ds1[,n])
     result = rbind(result,ds1)
  }
  return(result)
}
df_a = fs(df,9)
df_b = fs(df_a, 10)
```

```
nums <-c(1,3:10,13:20,22:32)
df_c <- df_b
for (i in nums) {
  df_c[,i] \leq as.numeric(df_c[,i])
}
numss \leq c(2,11,12,21)
for (i in numss) {
  df_c[,i] \leq as.factor(df_c[,i])
}
skim(df_c)
2 Data collation
df_c$date<-as.Date(df_c$Date,origin='1900-1-1')-2
data = df_c[,c(33,1:6)]
names(data) =
c("Date","id","Station","Microcystine","Phycocyanine","Chlorophylle","PCChl")
data_long = data \% > \%
  pivot_longer(-c(Date, Station,id), names_to = "cyanotoxins", values_to =
"value", values_drop_na = T)
head(data_long)
3 Time-Series Plots
f \leq - function(ca)
 data\_sub = data\_long \% > \%
  filter(cyanotoxins == ca)
TS \leq ggplot(data_sub) +
  geom_line(aes(x = Date, y = value)) +
  facet_wrap(\sim Station, ncol = 5) +
  xlab("Date") +
  ylab(ca) +
  theme(panel.spacing = unit(0.1, "lines"))+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
print(TS)
```

}

f("Microcystine")

4 Hovmoller Plots

 $dt_a = dt[,c(1,4:5)]$ names(dt_a) = c("Station","Lat","Long") data_join = left_join(data_long, dt_a, by = "Station") $f0 \leq function(ca)$ T1 <- filter(data_join, cyanotoxins == ca) T1\$t = T1\$id - 39601 lim_lat <- range(T1\$Lat) # latitude range lim_t <- range(T1\$t) # time range</pre> lat_axis <- seq(lim_lat[1], lim_lat[2], length=25)</pre> $t_axis \le seq(lim_t[1], lim_t[2], length=100)$ lat_t_grid <- expand.grid(lat = lat_axis,</pre> $t = t_{axis}$ T1_grid <- T1 dists <- abs(outer(T1\$Lat, lat_axis, "-")) T1_grid\$Lat <- lat_axis[apply(dists, 1, which.min)] T1_lat_Hov <- ddply(T1_grid, .(Lat, t), summarize, z = mean(value)) Hovmoller_lat <- ggplot(T1_lat_Hov) + # take data $geom_tile(aes(x = Lat, y = t, fill = z)) +$ scale_y_reverse() + # rev y scale ylab("Day number (days)") + # add y label xlab("Latitude (degrees)") + # add x label theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_line(colour = "black")) Hovmoller lat } f0("Microcystine")

5 Empirical Spatial Means

T1 <- data_join

T1 = T1 id - 39601

spat_av <- ddply(T1,.(Lat,Long,cyanotoxins),summarize,Means = mean(value))</pre>

ggplot(spat_av) +

geom_point(aes(Long,Lat, colour = Means)) +

xlab("Longitude (deg)") +

ylab("Latitude(deg)") + theme_bw()+ggtitle("Empirical Spatial Means")+

 $facet_wrap(\sim cyanotoxins, ncol = 5)+$

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

```
panel.background = element_blank(), axis.line = element_line(colour = "black"))
```

6 Empirical Temporal Means

T1 <-data_join

T1t = T1id - 39601

T1_av <- ddply(T1,.(Date,t,cyanotoxins),summarize,meanT1 = mean(value))

gTmaxav <-ggplot(T1_av) + geom_line(aes(x = Date, y = meanT1,group= cyanotoxins,colour = cyanotoxins)) +theme_bw()+

```
ggtitle("Empirical Temporal Means")+
```

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

```
panel.background = element_blank(), axis.line = element_line(colour = "black"))
```

gTmaxav

7 scatter plots

```
result2 = na.omit(result1)
```

```
los <- c("Microcystine", "Phycocyanine", "Chlorophylle", "PCChl", "Coliformes")
```

```
for (l in los){
```

```
result2[l] = log(result2[l])
```

}

```
result2["Ecoli"] = log(result2["Ecoli"]+1)
```

```
panel.hist <- function(x, ...)</pre>
```

{

```
usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)</pre>
```

```
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
}
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r <- abs(cor(x, y))
    txt <- format(c(r, 0.123456789), digits = digits)[1]
    txt <- paste0(prefix, txt)
    if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
    text(0.5, 0.5, txt, cex = cex.cor * r)
}</pre>
```

```
pairs(result2[,c(3:20)],panel = panel.cor,upper.panel = panel.smooth,
```

```
diag.panel = panel.hist,
```

```
data=result2[,c(3:20)],main="")
```

8 modeling

1 Microcystine

1) without

```
resulta = result[,c(1:2,6:19)]
fit <- lm(Microcystine \sim., data = resulta)
```

```
step.fit <- stepAIC(fit,direction = "both",trace = F)</pre>
```

```
summary(step.fit)
```

```
model1 = lm(formula = Microcystine ~ Station + Temp + Coliformes + Ecoli +
```

t, data = resulta)

```
par(mfrow = c(2, 2))
```

plot(model1)

```
result4 = resulta[-c(368,321,123),]
```

```
model11 <- lm(formula = Microcystine ~ Station + Temp + Coliformes + Ecoli +
    t, data = result4)
summary(model11)</pre>
```

r1 = re[-c(368,321,123),]

r1['fit'] = model11\$fitted.values

r1\$date<-as.Date(r1\$Date,origin='1900-1-1')-2

data = r1[,c(23,3,4,22)]

names(data) = c("Date", "Station", "Microcystine", "fit")

 $TS \leq ggplot(data) +$

```
geom_line(aes(x = Date, y = fit, color = "red")) +
```

```
geom_line(aes(x = Date, y = Microcystine))+
```

```
facet_wrap(\sim Station, ncol = 5) +
```

```
xlab("Date") +
```

ylab("") +

theme(panel.spacing = unit(0.1, "lines"))+

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

```
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="none")
```

print(TS)

2) Including

resulta = result

```
fit <- lm(Microcystine \sim., data = resulta)
```

```
step.fit <- stepAIC(fit,direction = "both",trace = F)
summary(step.fit)</pre>
```

```
model1 = lm(formula = Microcystine \sim Station + Phycocyanine + Temp + PH +
```

```
Coliformes + Ecoli + t, data = resulta)
```

```
par(mfrow = c(2, 2))
```

plot(model1)

result4 = resulta[-c(321,368,123),]

```
model11 <- lm(formula = Microcystine ~ Station + Phycocyanine + Temp + PH +
```

```
Coliformes + Ecoli + t, data = result4)
```

```
summary(model11)
```

r1 = re[-c(368,321,123),]

r1['fit'] = model11\$fitted.values

r1\$date<-as.Date(r1\$Date,origin='1900-1-1')-2

data = r1[,c(23,3,4,22)]

names(data) = c("Date", "Station", "Microcystine", "fit")

 $TS \leq ggplot(data) +$

```
geom_line(aes(x = Date, y = fit, color = "red")) +
```

```
geom_line(aes(x = Date, y = Microcystine))+
```

```
facet_wrap(\sim Station, ncol = 5) +
```

```
xlab("Date") +
```

ylab("") +

theme(panel.spacing = unit(0.1, "lines"))+

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

```
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="none")
```

print(TS)

2 Phycocyanine

1) Without

```
resultb = result[,c(1,3,6:19)]
```

fit <- lm(Phycocyanine \sim ., data = resultb)

step.fit <- stepAIC(fit,direction = "both",trace = F)</pre>

summary(step.fit)

```
model3 <- lm(formula = Phycocyanine ~ Station + Transparence + Saturation +
```

Oxygene + PH + t, data = resultb)

```
par(mfrow = c(2, 2))
```

plot(model3)

result5 = resultb[-c(48,88,315,123),]

model21<- lm(formula = Phycocyanine ~ Station + Transparence + PH + t, data = result5)

summary(model21)

r1 = re[-c(48,88,123,315),]

r1['fit'] = model21\$fitted.values

```
r1$date<-as.Date(r1$Date,origin='1900-1-1')-2
```

data = r1[,c(23,3,5,22)]

names(data) = c("Date","Station","Phycocyanine","fit")

 $TS \leq ggplot(data) +$

 $geom_line(aes(x = Date, y = fit, color = "red")) +$

 $geom_line(aes(x = Date, y = Phycocyanine))+$

 $facet_wrap(\sim Station, ncol = 5) +$

xlab("Date") +

ylab("") +

theme(panel.spacing = unit(0.1, "lines"))+

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),

```
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="none")
```

print(TS)

2) Including

```
resultb = result[,c(1,2,3,4,6:19)]
```

fit <- lm(Phycocyanine \sim ., data = resultb)

step.fit <- stepAIC(fit,direction = "both",trace = F)</pre>

```
summary(step.fit)
```

```
model3 <- lm(formula = Phycocyanine ~ Station + Chlorophylle + Transparence +
```

```
Oxygene + PH + TDS + Coliformes + t, data = resultb)
```

```
par(mfrow = c(2, 2))
```

```
plot(model3)
```

```
result5 = resultb[-c(88,54,123),]
```

```
model21<- lm(formula = Phycocyanine ~ Station + poly(Chlorophylle,2) +
```

```
Transparence + PH + TDS + t, data = result5)
```

summary(model21)

r1 = re[-c(54,88,123),]

r1['fit'] = model21\$fitted.values

r1\$date<-as.Date(r1\$Date,origin='1900-1-1')-2

data = r1[,c(23,3,5,22)]

names(data) = c("Date","Station","Phycocyanine","fit")

```
TS \leq ggplot(data) +
```

```
geom_line(aes(x = Date, y = fit,color = "red")) +
geom_line(aes(x = Date, y = Phycocyanine))+
facet_wrap(~Station, ncol = 5) +
xlab("Date") +
ylab("") +
theme(panel.spacing = unit(0.1, "lines"))+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
```

```
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="none")
```

print(TS)

3 Chlorophylle

1) Without

```
result: = result[,c(1,4,6:19)]
fit <- lm(Chlorophylle \sim., data = resultc)
step.fit <- stepAIC(fit,direction = "both",trace = F)</pre>
summary(step.fit)
model4 <- lm(formula = Chlorophylle ~ Station + Ventmax + Transparence +
     Oxygene + PH + ConductivitE + t, data = resultc)
par(mfrow = c(2, 2))
plot(model4)
result6 = resultc[-c(54, 155, 123),]
               lm(formula = Chlorophylle \sim Station + poly(Ventmax, 2) + Transparence
model31 <-
+ Oxygene + PH + ConductivitE + t, data = result6)
summary(model31)
r1 = re[-c(54, 155, 123)]
r1['fit'] = model31$fitted.values
r1$date<-as.Date(r1$Date,origin='1900-1-1')-2
data = r1[,c(23,3,6,22)]
names(data) = c("Date","Station","Chlorophylle","fit")
TS \leq -ggplot(data) +
  geom_line(aes(x = Date, y = fit, color = "red")) +
   geom_line(aes(x = Date, y = Chlorophylle))+
```

```
facet_wrap(\sim Station, ncol = 5) +
  xlab("Date") +
  ylab("") +
  theme(panel.spacing = unit(0.1, "lines"))+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="none")
print(TS)
2) Including
resultc = result[,c(1,2,3,4,6:19)]
fit <- lm(Chlorophylle \sim., data = resultc)
step.fit <- stepAIC(fit,direction = "both",trace = F)</pre>
summary(step.fit)
model4 <- lm(formula = Chlorophylle ~ Station + Phycocyanine + Ventmax +
     Oxygene + PH + ConductivitE + Coliformes + t, data = resultc)
par(mfrow = c(2, 2))
```

plot(model4)

```
result6 = resultc[-c(54,155,123),]
```

```
model31 <- lm(formula = Chlorophylle ~ Station + Phycocyanine + poly(Ventmax,2)
+ Oxygene + PH + ConductivitE + Coliformes + t, data = result6)
```

summary(model31)

```
r1 = re[-c(54, 155, 123),]
```

r1['fit'] = model31\$fitted.values

```
r1$date<-as.Date(r1$Date,origin='1900-1-1')-2
```

```
data = r1[,c(23,3,6,22)]
```

```
names(data) = c("Date","Station","Chlorophylle","fit")
```

```
TS \leq ggplot(data) +
```

```
geom_line(aes(x = Date, y = fit,color = "red")) +
```

```
geom_line(aes(x = Date, y = Chlorophylle))+
```

```
facet_wrap(\sim Station, ncol = 5) +
```

```
xlab("Date") +
```

ylab("") +

```
theme(panel.spacing = unit(0.1, "lines"))+
```

```
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="none")
```

print(TS)

4 PCChl

1) Without

```
resultd = result[,c(1,5,6:19)]
fit <- lm(PCChl \sim., data = resultd)
step.fit <- stepAIC(fit,direction = "both",trace = F)</pre>
summary(step.fit)
model5 <- lm(formula = PCChl ~ Station + Transparence + Temp + Saturation +
     Oxygene + PH + TDS + Coliformes + t, data = resultd)
par(mfrow = c(2, 2))
plot(model5)
result5 = resultd[-c(54,88,123),]
model41 <- lm(formula = PCChl ~ Station + Transparence+ PH + TDS + Coliformes
+ t, data = result5)
summary(model41)
r1 = re[-c(54,88,123),]
r1['fit'] = model41$fitted.values
r1$date<-as.Date(r1$Date,origin='1900-1-1')-2
data = r1[,c(23,3,7,22)]
names(data) = c("Date", "Station", "PCChl", "fit")
TS \leq ggplot(data) +
  geom_line(aes(x = Date, y = fit, color = "red")) +
   geom_line(aes(x = Date, y = PCChl))+
  facet_wrap(\sim Station, ncol = 5) +
  xlab("Date") +
  ylab("") +
  theme(panel.spacing = unit(0.1, "lines"))+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="none")
```

print(TS)

2) Including resultd = result[,c(1:3,5,6:19)] fit $<- lm(PCChl \sim., data = resultd)$ step.fit <- stepAIC(fit,direction = "both",trace = F)</pre> summary(step.fit) model5 <- lm(formula = PCChl ~ Station + Phycocyanine + Ventmax + Oxygene + PH + ConductivitE + Coliformes + t, data = resultd)par(mfrow = c(2, 2))plot(model5) result5 = resultd[-c(54,155,123),] model41 <- lm(formula = PCChl ~ Station + Phycocyanine + poly(Ventmax,2) + Oxygene + PH + ConductivitE + Coliformes + t, data = result5) summary(model41) r1 = re[-c(54, 155, 123),]r1['fit'] = model41\$fitted.values r1\$date<-as.Date(r1\$Date,origin='1900-1-1')-2 data = r1[,c(23,3,7,22)]names(data) = c("Date", "Station", "PCChl", "fit") $TS \leq ggplot(data) +$ $geom_line(aes(x = Date, y = fit, color = "red")) +$ $geom_line(aes(x = Date, y = PCChl))+$ $facet_wrap(\sim Station, ncol = 5) +$ xlab("Date") + vlab("") +theme(panel.spacing = unit(0.1, "lines"))+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_line(colour = "black")) + theme(legend.position="none")

print(TS)