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2 Abstract

This thesis describes research on the di↵erences between learning with independent

data and learning with dependent data. We first introduce the background knowledge of

Multivariate Normal Distribution and Matrix Normal Distribution, which are the basis of

generating data. Next, we introduce 6 commonly used machine learning models that are

involved in our project to provide the predicted value, meanwhile we also explain the process

of generating both datasets. Then we collect accuracy results from 6 models by input di↵erent

parameters. We close by discussing the conclusions made by observing the charts of accuracy

trend with di↵erent dataset types and parameters, such as independent and dependent data,

number of observations, number of dimensions, and correlation coe�cient.
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3 Introduction

3.1 Background

3.1.1 Multivariate Normal Distribution

In this project, we will involve a dataset composed of multi-dimensional variables.

So, we may refer to the background knowledge of Multivariate Normal Distribution and

Matrix Normal Distribution. The Multivariate Normal Distribution is the base of Matrix

Normal Distribution. It is also known as Multivariate Gaussian Distribution or Joint Normal

Distribution. Compared to Normal Distribution, it is a generalization to a higher dimension.

To define it clearly, suppose there is a d-dimensional random variable denoted as X1, · · · , Xd,

if every linear combination of d components of this random variable is normal distributed,

then we can say this random variable follows the Multivariate Normal Distribution, which

can be denoted as X ⇠ Nd(µ,⌃). The mathematical definition is shown below [15]:

Definition 1 (Multivariate Normal Distribution) Given a random vector X = [X1, · · · , Xd]T

has a multivariate normal distribution. Then we can say X follows a multivariate normal

distribution if it meets one of following conditions.

1. Every linear combineation is denoted as Y = a1X1 + a2X2 + · · · + adXd, Y ’s

components is normally distributed for any constant vector a 2 Rd
.

2. There exists mean vector µ with d dimentions and a symmetric, positive semidef-

inite covariance matrix ⌃ with a size of d ⇥ d, such that the characteristic function of X

follows conditions below:

'X(u) = exp(iuTµ� 1

2
uT⌃u)

Multivariate Normal Distribution has two parameters, mean vector with a size of
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d⇥ 1 and covariance matrix with a size of d⇥ d, which is denoted respectively as:

µ = E [X] = (E [X1] ,E [X2] , · · · ,E [Xd])
T

⌃i,j = E [(Xi � µi)(Xj � µj)] = Cov [Xi, Xj ]

, where 1 � i and j  d.

3.1.2 Block Matrix

If a matrix can be divided into blocks or submatrices with an arbitrary size, then this

matrix is defined as a block matrix or a partitioned matrix. Intuitively, the block matrix can

be separated by several vertical lines and horizontal lines. For instance, the original matrix

A =

2

66666666664

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3

77777777775

, the block matrix is: A =

2

664
A11 A12

A21 A22

3

775.

This is to say, it can be broken into four blocks, which are:

A11 =

2

664
1 2

5 6

3

775, A12 =

2

664
3 4

7 8

3

775, A21 =

2

664
9 10

13 14

3

775, A22 =

2

664
11 12

15 16

3

775.

3.1.3 Kronecker Product

In mathematics, the Kronecker Product is an operation to calculate the product of

two matrices with arbitrary size. Below is the mathematical definition of the Kronecker

Project:

Definition 2 (Kronecker Product) Given that A matrix has a size of m⇥n and B matrix

has a size of p⇥ q. Then the Kronecker product of A and B is denoted as A⌦B with a size

of pm⇥ qn:
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A⌦B =

2

66666666666666666666666666666666664

a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq

3

77777777777777777777777777777777775

3.1.4 Matrix Normal Distribution

The Matrix Normal Distribution is utilized to generate dependent multi-dimensional

data in this project. In probability and statistics, the Matrix Normal Distribution is de-

fined as the generalization of Multivariate Normal Distribution to applied for matrix-valued

random variables. The mathematical definition is shown below:

Definition 3 (Matrix Normal Distribution)

X ⇠ MNm⇥d(M,U, V )

if and only if

vec(X) ⇠ Nmd(vec(M), V ⌦ U)

, where ⌦ represents the process of Kronecker product introduced previously in section 3.1.3:

Kronecker Product.
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3.2 Contex

The remainder of this thesis will be outlined as follows. In section 4: Models and

Method, the related 6 models will be introduced. The process of generating the dataset is

explained in section 5: Data in detail. In section 6: Results, the accuracy results of models

by using both independent data and dependent data will be listed in the form of tables. The

discussion part and conclusion part can be found respectively in section 7: Discussion and

section 8: Conclusion. In section 10: Appendix, the Jupiter notebook files will be attached

in the appendix.
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4 Models and Method

In this section, we provide a brief introduction of 6 machine learning models utilized

in our program. In order to unify the symbol and size of each parameter, we denote X as the

d-dimension predictors and denote Y as the outcome, where X has a size of n ⇥ d, Y only

equals to 0 or 1 and has the same size as 1⇥ n. For dataset X, the number of dimensions is

denoted as d.

4.1 Logistic Regression Model

Definition 4 (Sigmoid Function) [9] Sigmoid function a transformation function used to

convert Linear Regression to Logistic regression. The Sigmoid function is defined as

S(x) =
1

(1 + ex)
=

ex

1 + ex

Where S is the sigmoind function , X is the data defined in the beginning of this section. Any

real-valued input of sigmoid function can have a result of a value in the range [0,1].

Figure 1: The charts of Sigmoid Function.

Logistic regression is also widely known as logit regression, which is one of the com-

mon models used in supervised learning. The logistic regression can also be regarded as

9



a generalized linear model (GLM), which works well for categorical response variable with

2 levels. However, Logistic Regression has a more complex cost function called ‘Sigmoid

Function’ [3].

(a) a (b) b

Figure 2: [a] shows a graph of a linear regression function. Noted that predicted y can exceed

0 and 1; [b] shows a graph of a logistic regression function. Noted that the predicted y only

lies between 0 and 1.

According the graph of sigmoid function, it can be seen that the sigmoid function

has a bell-curve and its value ranges from 0 to 1. Since the probability of anything only

existed in the range of [0, 1], there is no doubt the sigmoid function is a perfect choice for

logistic regression [4].

Let the Xi denote the data, where i belongs to the range 0  i  n, and �i represents

the weight of every data. Then the probability of data is defined as

p(Xi) = �0 + �1Xi + �2X2 + · · ·+ �iXi + · · ·+ �nXn, 0  i  n

To avoid the situation that the predicted probability is out of the range [0, 1], the

sigmoid function can be used to limit the outcomes. By combining the probability function

and sigmoid function, then we obtain the logistic sigmoid function as

F (x) =
1

1 + e�x
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So, the cost function can be expressed as

S(Xi) =
exp(�0 + �1Xi + �2X2 + · · ·+ �iXi + · · ·+ �nXn)

1 + exp(�0 + �1Xi + �2X2 + · · ·+ �iXi + ·+ �nXn)
, 0  i  n

This transformation process is not only used in the logistic model we created for

training and testing, but also used in the generating predict values for data. The details are

explained in the section 5.3: Generating predict values for data matrix X.

Definition 5 (Cost Function) A cost function is defined as a measure of how wrong the

model performs in terms of its estimation and the true relationship between data X and

outcome Y . Mathematically, the cost function for linear regression is expressed as

J =
1

2

nX

i=1

�
S(Xi)� yi

�2

where n denotes the number of data X, Yi is the outcome.

After the above transformation, we have used the logistic model to predict the out-

come based on the given data X. At this time, a cost function can typically help find a more

accurate model by minimizing the value of the cost function. As mentioned in definition 5

the cost function measures how di↵erent the predicted value and the actual value are. How-

ever, the cost function for linear regression doesn’t work when it comes to logistic regression

[5]. The reason for this is the graph of logistic regression cost function may have many local

minimums so that it is hard to determine which one is the global minimums. That is to say,

the cost function for logistic regression is a non-convex function [3].

As a result, the cost function of logistic regression can be expressed mathematically

as following

Cost(S(Xi), Yi) =

8
>><

>>:

�log(S(Xi)) Yi = 1

�log(1� S(Xi)) Yi = 0

The above cost functions can be combined as a single function like this:

J = � 1

n

X
[Yilog(S(Xi)) + (1� Yilog(1� S(Xi)))]
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4.2 K-Nearest Neighbor Model (KNN algorithm)

K - Nearest Neighbor is an algorithm used in classification problems. During pro-

cessing the dataset, it continuously stores new added data points from dataset and classifies

it based on the votes of surrounding nearest neighbors. The k in the name of this algorithm

represents the number of nearest neighbors. When a new data point is added, this algorithm

will choose the k nearest neighbors of this data point and figure out the cluster with more

votes from k nearest neighbors [13].

The most critical point of implementing the KNN algorithm is to choose a proper

number of neighbors (k value). The small k may be noisy and lead to a critical e↵ect on the

classification result. On the other hand, even though a large k brings a smoother decision

boundary, the classification result is still dramatically impacted due to a lower variance

as well as a higher bias [13]. Correspondingly, a larger k value means a more expensive

computation because the distance between k nearest neighbors and the newly added data

point will be recalculated in every step. In terms of the KNN algorithm, there is no fixed

way to figure out the k value. Three commonly used method are listed below

1. The most general way to decide a k value is to let k =
p
n, where n is the total amount

of data point in training dataset.

2. The proper k value can be obtained by trying di↵erent odd numbers. Because the

classification result of KNN model relies on the cluster with more votes, then the odd

number can avoid the conflict that two clusters hold the same number of votes from

nearest neighbors.

3. To obtain a more precise k value, cross-validation is a better way to approach it.

The cross-validation process usually starts with selecting a cross-validation dataset

from training data with a small portion around 20%. Then, comparing the predicting
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performance while using di↵erent possible k values on the cross-validation dataset.

Therefore, the k value with the best evaluation on cross-validation dataset should be

used in the KNN model.

Figure 3: The K-Fold cross-validation process.

When it comes to how KNN algorithm works, it classifies a new data point based on the

length of line segment between data points. In this case, we should consider the Euclidean

distance with a higher dimension d, the formula below is the general Euclidean distance

formula between data point m = (m1,m2, · · ·,md) and n = (n1, n2, · · ·, nd), where 0  i  d.

d(m,n) =
p
(m1 � n1)2 + (m2 � n2)2 + · · ·+ (mi � ni)2 + · · ·+ (md � nd)2

For instance, there are 8 data points, and we need to decide which cluster the data

point (4,5) belongs to.

There is a simple example to help understand the procedure of how to decide the cluser of a

newly added data point.Assume that k = 5. The steps to implement KNN algorithm are as

follows:

1. List all the data into a table so that we can have a clear view of all data. The original

data points can be seen from above figure.

2. Except for the newly added data point or the target data point, calculate the Euclidean

distance between the target data point and all remaining stored data points.
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Figure 4: The original data points and the newly added data point.

Figure 5: The Euclidean distance between new data point and the rest of points.

3. Rank all the distances from small values to large values and pick up the data point with

first k ranks. In this case, the data points with the top 5 ranks are picked up.

Figure 6: Rank all the distance and find the top 5.
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4. Make the decision that the target data point belongs to the cluster with more votes among

all 5 nearest neighbors.

Figure 7: Make a decision based on the cluster with more votes.

4.3 Support Vector Machine Model (SVM)

Similar to Logistic Regression, Support Vector Machine (SVM) also belongs to the

common supervised learning models. It is suitable to solve classification problems especially

when there are only two groups of data. In this project, we have only two outcomes that are

0 and 1. So, we regard 0 and 1 as the two tags which will be analyzed later in SVM model.

Additionally, our data has d dimension, which can be regarded as d features [12].

To explain the process of SVM processing data, all data should be treated as data

points. Each data point has d features, what’s more, all data points are separated into two

groups with tag 0 or tag 1 by a hyperplane. The hyperplane is also called the decision

boundary, in other words, the data points laid out on one side of hyperplane have the same

tag. To figure out the best hyperplane for classification, we need to maximize the margins

from both sides (tags). Every time a new data point is added, the hyperplane is updated by

calculating a larger margin until the hyperplane reaches an optimal state.
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The hyperplane often works when the data is linear, nevertheless, the hyperplane

can hardly classify the data points. In this case, we need to add more dimensions to make

sure that the data is linearly connected, meanwhile, put all data in a d-dimensional space.

At this time, SVM can obtain an optimal hyperplane and map it back to a lower dimension

[12]. In this way, the classification tasks can be finished.

4.4 Random Forest Model

The Random Forest model is one of the commonly used models in the field of Ma-

chine Learning and Data Mining. This model performs well when dealing with classification

problems. As you can know from the name of the Random Forest Model, it consists of a

bunch of decision trees created on the basis of generated random samples [1]. Meanwhile,

those decision trees also follow di↵erent rules to split the nodes. For those random samples,

they are generated by using the Bagging Method, which is a combination of the bootstrap

method and the aggregating method.

When it comes to implementing the building block of Random Forest, the decision

trees, sometimes we encounter the situation that the training set is overfitting. However, the

Random Decision Forests correct this issue as the Bagging method help reduces the variance

and avoids overfitting. Following is a brief introduction of the Bagging method.

The Bagging method is also called bagging or bootstrap aggregating. It aims to

improve the stability and accuracy of machine learning models. As mentioned before, if we

implement the decision trees, sometimes the training set is overfitting. The reason why this

happens is related to its processing mechanism. In the training process, every node will be

split into two new nodes based on di↵erent conditions, so the model will be overfitting caused

by fitting both parts. This is also the reason why the decision tree has a high variance. For

the same decision tree, when new data comes in, the predicted results vary a lot. At this
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time, the Bootstrap method can help avoid overfitting.

The Bootstrap method is one of the resampling methods and is widely applicable.

The resampling process can be shown as following procedures:

1. Choose a sample from population with a size of m as the original sample.

2. Generate a random sample from the data of original sample with replacement, mean-

while, let the newly generated sample has the same size m as the original sample has.

3. Repeat step 2 for b times.

For the random forest method, the emphasis is to figure out how many features

should be trying to approach the best split. In the splitting process, we should avoid using

the majority of all available predictors, because the Random Forest will be a↵ected much by

those strong predictors. If a strong predictor is utilized, the decision trees are correspondingly

to be analogous to each other, which also shows a high-related relationship between predictors

[6]. To avoid selecting the strong predictors, the Random Forest method stipulates that in

every split, only the subsets of all predictors can be considered [1]. Assume that there are d

predictors totally, the number of predictors in subsets with a denotation of N are suggested

to satisfies the formula as follows.

In this project, the total number of predictors is denoted as d, which means only
p
d

or d/3 predictors are allowed to be considered in each node splitting process. So the number

of considered predictors is defined as

N =
p
d or N =

d

3

Generally, the process of building a random forest is listed as follows:

1. Generate a random sample using Bootstrap with a size of b.

2. Build a decision tree for this Bootstrap random sample.
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3. Repeat the previous 2 steps for k times.

4. Collect results from all the decision trees and classify the data into a cluster with more

votes among all aggregation results.

4.5 Feed-Forward Neural Network Model

Feed-Forward neural network (FNN) is one of models that commonly used in su-

pervised learning case. The other well-known neural networks such as Conventional Neural

Network (CNN) and Recurrent Neural Network (RNN), usually occurs as special cases in the

FNN field. Since we are not analyzing image data in this project, we implement FNN model

and take this model as a representative of all neural networks for research. Comparing to

other Neural Network model, FNN is not limited to linear functions and it is able to give a

reasonable approximation of linear functions, while linear model may be restricted to only

linear functions [11].

Generally, the main goal of FNN is to achieve an approximation of certain functions

[14]. For instance, there is a function that takes X as input and Y as output. FNN maps the

input X to an outcome Y by constructing a neural network architecture. In a FNN model,

there may be a bunch of neural layers but at least three layers. The simplest FNN model

should contains an input layer, a hidden layer or called the second layer, and an output layer.

In a more complex FNN model, only the number of hidden layers can be increased, the input

layer and output layer can only be constructed once. Another special case of FNN is that

the information can be stored within a neural network and there exist loops in the neural

network architecture, which is called the Recurrent Neural Network (RNN) [11].

As what is named for FNN, the flow of information has a forward direction. To help

fully understand the meaning of forward, we use the previous example that a function takes

X as the input and Y as the output. X will be used to calculate and approach the next layer,

18



then being calculated in turn until the FNN model gives an outcome Y.

From the definition of cost function (Definition 5), it is known that a cost function

always shows the di↵erence between the value of target outcomes and the predicted outcomes

approximated by a chosen model. It can be said that the smaller the cost function, the more

accurate the model. FNN’s cost function aims to evaluate how well the neural network is as

a whole instead of single neural.

The most commonly used cost function in FNN is to use the cross-entropy between

the training data and the predictions as the cost function. The Cross-Entropy cost function is

also called Binary Cross-Entropy or Bernoulli negative log-likelihood. Generally, in machine

learning, Cross-Entropy cost function can be written as shown below:

C(W,B, Sr, Er) = �
X

j

[Er
j ln(a

L
j ) + (1� Er

j ) ln(1� aLj )]

, where W represents the weight of neural network, B represents the bias of nueral network,

Sr and Er are the input and the designed output of a training samples.

In this project, we build a simple Feed-forward Neural Network model with only

three layers. The first layer is the input layer, it takes d input and uses ‘Relu’ activation.

The second layer uses the same ‘Relu’ activation as the input layer does. The third layer is

the output layer, who uses the ‘sigmoid’ activation to predict a value in the range of [0,1].

Figure 8 below shows an example of 4 layer Feed-Forward Neural Network. This

FNN has 1 input layer, 2 hidden layers, and 1 output layer. In each hidden layer, there are

6 nodes.
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Figure 8: The architecture of FNN with 2 hidden layers.

4.6 XG boost Model

When it comes to the XG boost model, it’s of great value to learn about its core

algorithm, the Gradient Boosted Tree Algorithm. The Gradient Boosted Tree Algorithm

is one of the supervised learning methods, which implements the approximation process by

optimizing the loss function, thus optimizing the cost function. It’s usually used when solving

classification problems and regression problems.

What is di↵erent from other models is that the Gradient Boosted Algorithm can

use multiple weak learners but provide a quite strong model eventually to solve the problem

[8]. Generally, it is a sequential process of finding the best next model. It minimizes the

overall prediction errors based on the previous model obtained, thus find the next model

with fewer errors. The Gradient boosted algorithm will repeat this step until it can finally

return a strong model with a global optimum prediction error. Every model involved in this

optimizing process is called the weak learner. The weak learner used in Gradient Boosting

is the Decision Tree [2].

Generally, the gradient boosted algorithm has following steps [7]:

1. Calculate the mean value of the target variable.
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2. Use the formula below to calculate the residuals for every observation.

Residual = Actualvalue� Predictedvalue

3. To predict the residuals, we need to build a decision tree with several conditions. If

there are more than one leaf node existed for an inside node, than we remove all leaf

nodes of this inside node and assigned a new leaf node with the mean value of all

previous leaf nodes. Thus making sure every inside node has only one leaf node.

4. Calculate the target price with the formula below:

Newpredictedvalue = Avg(Targetvalue) + learningrate⇥ residual

, where residual is predicted by the decision tree in former steps.

5. Predict the label of the target variable based on the target value we got in step 4.

6. Calculate the new residuals.

7. Repeat step 3 to step 6, until the number of iterations reaches the number of estimators

(hyperparameter) we set.

As to the XG boost model, it is a regularized form of Gradient boosting [8]. Compar-

ing to Gradient boosting, the XG boost holds a higher performance. This is mainly reflected

by the very little time it takes in the process of training data. The reason for its fast training

pace is that the XG boost implements advanced regularization, L1 and L2.

Definition 6 (L1 and L2 regularization) L1 and L2 regularization is two techniques that

can be used to prevent model overfitting. Given that the loss with no regularization is denoted

as below:

Loss = Error(y, ŷ)
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Then the loss funciton with L1 and L2 regularization are shown in order respectively as below:

Loss = Error(y, ŷ) + �
NX

i=1

| !i |

Loss = Error(y, ŷ) + �
NX

i=1

!2
i
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5 Data

The data analyzed in this project is generated by several methods. We totally gen-

erate two kinds of dataset, which is independent dataset and dependent dataset. For each

kind of data, there are two mechanisms to generate the predict values.

5.1 Generating independent data matrix X

As mentioned in the section: Method and Models, each dataset has a size of n and

a dimension of d. The independent data means the dataset is contributed by n observations

(Xi), which are vectors with the same size of 1 ⇥ d and are generated randomly. This is

to say, each Xi is independent of other vectors and every element in Xi is independent of

other elements. To implement n d-dimentional-vector, a normal distribution is used because

it describes sample distribution who is a↵ected by a large number of random disturbances.

Note that in this project, we set the mean to 0 and set the covariance to 1 to make a stan-

dard normal distribution. This approach is implemented with the Python package ‘NumPy.

Random’, to fully make sure the randomness of data.

5.2 Generating dependent data matrix X

Definition 7 (Correlation) Essentially, correlation is the measure of how two or more

variables are related to one another.

When it comes to generating dependent data [10], the relationship between elements

in Xi is no longer independent, which means there is a correlation exists between two or more

variables for each Xi. Instead of the Normal Distribution, a Normal Matrix Distribution is

utilized to implement the dependencies of data. The Normal Matrix Distribution is detailed

explained in the section: introduction and we will loosely follow here. The process of gener-
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ating data with Normal Matrix Distribution needs three parameters, the mean denoted as

M , the covariance among rows denoted as U , and the covariance among columns denoted as

V . In order to control variables as much as possible when comparing independent data and

dependent data, we keep setting the mean to 0. However, both form of mean and covariance

are changed. In a dataset X that generated from Normal Matrix Distribution, the mean M

is an n⇥ d matrix full of 0, the M matrix is listed below:

M =

2

6666664

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

3

7777775

Covariance among rows U is a block matrix with size n⇥ n has the form shown below:

U =

2

666666666666666666666666666666666666664

1 ⇢ ⇢ · · · ⇢ 0 0 0 · · · 0

⇢ 1 ⇢ · · · ⇢ 0 0 0 · · · 0

⇢ ⇢ 1
. . .

... 0 0 0 · · · 0

...
...

. . .
. . . ⇢

...
...

...
. . .

...

⇢ ⇢ · · · ⇢ 1 0 0 0 · · · 0

0 0 0 · · · 0 1 ⇢ ⇢ · · · ⇢

0 0 0 · · · 0 ⇢ 1 ⇢ · · · ⇢

0 0 0 · · · 0 ⇢ ⇢ 1
. . .

...

...
...

...
. . .

...
...

...
. . .

. . . ⇢

0 0 0 · · · 0 1 ⇢ ⇢ · · · ⇢

3

777777777777777777777777777777777777775
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Covariance among columns V is an identity matrix with size d⇥ d, its form is listed below:

V =

2

66666666664

1 0 · · · 0

0 1 0

...
. . .

...

0 · · · 0 1

3

77777777775

Then the covariance is obtained from the Kronecker product of U and V , with a size of

(n⇥d)⇥ (n⇥d) and is denoted as K. Noted that we have two values of rho in this approach,

0.1 and 0.9, for 0.1 represents a weak relationship and 0.9 represents a strong relationship

between random variables. Additionally, since the U is formed as a block matrix, the value

of n must be an even number so that it can be divided by 2 to represent half of the size in

tems of a block matrix. This approach is implemented with the Python package ‘NumPy.

Random. Multivariate normal’.

5.3 Generating predict values for data matrix X

In this project, two mechanisms are utilized to generate predict values for both

independent data and dependent data. To generate the predict value, we implement the

probability of data by using the logit function and Bernoulli Distribution. In both mecha-

nisms, we use the sigmoid function to calculate the probability. For a detailed explanation

of the logit function and sigmoid function, we refer to the content explained in the Method

part: Logistic regression, which we loosely follow here.

In the first mechanism, since the output of logistic sigmoid regression can only be

approximated to 0 or 1, we implement an if-statement and set a threshold of 0.5 to classify

the result into two groups. For the group with outputs that are larger than 0.5, we update

the outputs as 1s, meanwhile, we update all the rest of outputs as 0s.
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In the second mechanism, we implement Bernoulli distribution by using the preset

Bernoulli method from Scipy package. This package takes the probability of data matrix X

as input and generate the predict values as 1s or 0s automatically.

The reason why we retain both mechanisms is that during the process of testing

models, the two mechanisms of generating predict values show a di↵erent result of accuracy.
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6 Results

6.1 Accuracy result of independent data

For each of the 6 models, we provide the results from 2 mechanisms. As described

in the section5.3: Generating predict values for data matrix X, the first mechanism uses

a threshold of 0.5 to classify the results while the second mechanism utilizes the preset

Bernoulli method to predict the results. In each mechanism, we also choose the values of n

from {10, 100, 1000} and d from {2, 10, 100, 1000} .

The following 6 figures show the prediction accuracy obtained by implementing the

6 models under 2 di↵erent mechanisms.

Figure 9: The prediction accuracy of Logistic Model under two mechanisms.

Figure 10: The prediction accuracy of KNN Model under two mechanisms.
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Figure 11: The prediction accuracy of SVM Model under two mechanisms.

Figure 12: The prediction accuracy of Random Forest Model under two mechanisms.

Figure 13: The prediction accuracy of Feed-Forward Nerual Network Model under two mech-

anisms.

Figure 14: The prediction accuracy of XG Boost Model under two mechanisms.
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6.2 Accuracy result of dependent data

As for the prediction result for dependent data, we still provide the results from 2

mechanisms. In actual operation, we are only able to collect results with a small dimension

due to the limit of computing performance of the device. So, for each of the 6 models, we keep

setting the dimension d to a small value as 2 and choose the values of n from {10, 100, 1000}.

In addition, we introduced a new parameter ⇢ when generating the data, so the parameter ⇢

should be also taken into consideration when comparing the prediction results. The value of

⇢ is chosen from {0.1, 0.9}, where 0.1 represents a weak correlation, 0.9 represents a strong

correlation instead.

The following figures illustrate the prediction accuracy obtained by implementing

the 6 models under 2 di↵erent mechanisms, also with di↵erent ⇢.

Figure 15: The prediction accuracy of Logistic Model under two mechanisms with d = 2.

Figure 16: The prediction accuracy of KNN Model under two mechanisms with d = 2.

29



Figure 17: The prediction accuracy of SVM Model under two mechanisms with d = 2.

Figure 18: The prediction accuracy of Random Forest Model under two mechanisms with

d = 2.

Figure 19: The prediction accuracy of Feed-Forward Nerual Network Model under two mech-

anisms with d = 2.
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Figure 20: The prediction accuracy of XG Boost Model under two mechanisms with d = 2.
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7 Discussion

To fully analyze the influence of each parameters brought to the models’ prediction

accuracy, the discussion about accuracy results can be divided into 6 groups. The detailed

group of discussion is listed below as well 3 overall figures of accuracy results.

(a) Logistic Model with independent data (b) KNN Model with independent data

(c) SVM Model with independent data (d) Random Forest Model with independent data

(e) Feed-Forward Neural Network Model with inde-

pendent data

(f) XG-Boost Model with independent data

Figure 21: Line charts of accuracy results of 6 models by using the independent data.
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(a) Logistic Model with Dependent data (b) KNN Model with Dependent data

(c) SVM Model with Dependent data (d) Random Forest Model with Dependent data

(e) Feed-Forward Neural Network Model with De-

pendent data

(f) XG-Boost Model with Dependent data

Figure 22: Line charts of accuracy results of 6 models by using the dependent data.
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Figure 21 shows the trend of prediction accuracy changes brought about by inputting

di↵erent parameter n and parameter d when using 6 models with independent data. The solid

line represents the trend by using mechanism 1 (threshold) to compute predict values, while

the dash lines represent the trend by using mechanism 2 (Bernoulli method). What’s more,

the red, blue, green, and purple lines represent di↵erent dimensions respectively. Similarly,

figure 22 shows that when using dependent data, the trend of prediction accuracy changes

brought by inputting di↵erent parameter n and parameter ⇢ in 6 models. The legend with

this figure is similar to figure 21 except that the di↵erent colors represent di↵erent correlation

values ⇢.

(a) Prediction accuracy of all models with Indepen-

dent data

(b) Prediction accuracy all models with Dependent

data

Figure 23: Put all accuracy with the same data type together.

Figure 23 above shows the overall comparison of the prediction accuracy of models.

The two charts are separated by gathering the accuracy obtained from the same data type.

With regard to these two charts, we set a fixed d that d = 2, and choose the mean correlation

coe�cient ⇢ that ⇢ = 0.5, while n 2 {10, 100, 1000}.

34



7.1 Group 1

Given that we use independent data with fixed n and increasing d, and

both mechanisms of predicting value are considered.

All 6 accuracy charts in figure 21 show a similar trend that the accuracy keeps

decreasing as the number of dimensions gets larger. In figure 21 – chart (c), when the

number of samples n is less than 100, the accuracy is even below 0.8, which is smaller than

the accuracy with a larger dimension such as d = 10. So, we can’t say the smallest dimension

will result in optimal prediction accuracy, but a decreasing dimension will result in more loss

of prediction accuracy. In addition, the accuracy under two mechanisms keeps the same

trend while n is fixed and d increases. Generally, the accuracy under mechanism 1 is larger

than the mechanism 2 overall.

7.2 Group 2

Given that we use independent data with increasing n and fixed d, and

both mechanisms of predicting value are considered.

Under mechanism 1, all 6 accuracy charts in figure 21 show a similar and obvious

trend that the prediction accuracy becomes lager as the number of samples gets larger.

However, when under mechanism 2, the accuracy trend of 6 models doesn’t have a unified

way of changing, in figure 21 – chart (a),(c), and (e), the peak point is reached when n = 100

instead of n = 1000, while in the rest of chart (b),(d), and (f), the increasing trend of

accuracy is easily observed. So, under mechanism 1, the increase of number of samples n

and the fixed number of dimensions will result in a corresponding increase of prediction

accuracy. But under mechanism 2, the increase of n doesn’t always lead to the increase of

prediction accuracy.
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7.3 Group 3

Given that we use independent data with d = 2 and mechanism 1.

Because in discussion group 1 and group 2, we found that mechanism 1 always

provides a better prediction accuracy, so we use mechanism 1 in this overall comparison.

Figure 23 – chart (a) shows the performance of 6 models when they predict with independent

data. Apparently, the Logistic Regression Model has the best accuracy when 10  n  100,

and the Feed-forward Neural Network Model has the best accuracy when 100  n  1000.

Among all the models, the Random Forest Model has the sharpest increase when n increases

from 10 to 100. When 100  n  1000, the accuracy of all models has a flat increase trend.

Overall, all prediction accuracy is improved as the number of samples n increases.

7.4 Group 4

Given that we use dependent data with fixed n and increasing ⇢, and both

mechanisms of predicting value are considered.

Under mechanism 1, by observing figure 22, the increase of ⇢ always brought the loss

of accuracy when n  10 and 100  n. However, n = 100 is a special case since the accuracy

of other models will reach a valley at this time except for the accuracy of the Feed-Forward

Neural Network Model. Meanwhile, ⇢ = 0.5 always reflects the highest prediction accuracy

in all charts of figure 22. Under mechanism 2, the accuracy trend doesn’t keep decreasing

when ⇢ increases. On the contrary, the ⇢ = 0.5 always reflects the highest accuracy. It’s

hard to say that with a stronger relationship between random variables, the accuracy is more

likely to be higher. So, under mechanism 1, when the ⇢ is small like 0.1 and is large like 0.9,

the accuracy will increase as the ⇢ increases, meanwhile, when ⇢ = 0.5, the accuracy always

reaches a peak of accuracy. Under mechanism 2, when n is around 100, a larger correlation

coe�cient ⇢ results in higher accuracy. In other cases, the chart can’t reflect an obvious
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conclusion.

7.5 Group 5

Given that we use dependent data with increasing n and fixed ⇢, and both

mechanisms of predicting value are considered.

What is similar to the conclusions made in group 5 is that n = 100 is still a special

case. Under mechanism 1, when ⇢ = 0.1 or ⇢ = 0.5, the accuracy of all models has an obvious

increasing trend, which can be observed in figure 22. When ⇢ = 0.9, the prediction accuracy

will reach a valley except for the accuracy chart of the Feed-Forward Neural Network Model.

Under mechanism 2, in figure 22 – chart (b), (d), and (e), the accuracy of models shows an

apparent increasing trend with an increasing n. As for figure 22 – chart (a), (c), and (e),

when 10  n  100, the accuracy increases sharply, however, when 100  n, the accuracy

has a slightly decreasing trend.

7.6 Group 6

Given that we use dependent data with d = 2, ⇢ = 0.5, and mechanism 1.

The reason for choosing mechanism 1 is the same as the reason explained in discussion

group 3 and we will loosely mention it here. Figure 23 – chart (b) shows the performance

of the 6 models when they predict with the dependent data. Apparently, the Feed-forward

Neural Network Model has the best accuracy with all values of n 2 {10, 100, 1000}. Among

all the models, the XG-Boost Model has the sharpest increase when n increases from 10 to

100. When 100  n  1000, the accuracy of all models has a flat increase trend. Overall, all

prediction accuracy is improved as the number of samples n increases.
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8 Conclusion

In this thesis, we introduced the background knowledge of Multivariate Normal Dis-

tribution and Matrix Normal Distribution. Next, we introduce 6 commonly used machine

learning models utilized to provide the predicted value. Additionally, the processes of gener-

ating independent and dependent datasets are detailed explained. Then we collect accuracy

results from 6 models by input di↵erent parameters for both datasets. Ultimately, we dis-

cuss the conclusions made by observing the charts of accuracy trend into 6 di↵erent groups

through the method of controlling variates, such as dataset types, number of samples, number

of dimensions, and correlation coe�cient.

38



9 Reference List

References

[1] Biau, G. Scornet, E. 2016. A random forest guided tour. Test252197–227.

[2] Chen, T. Guestrin, C. 2016. Xgboost: A scalable tree boosting system. Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining (

785–794).

[3] Kleinbaum, DG. Klein, M. 2010. Introduction to logistic regression Introduction to

logistic regression. Logistic regression Logistic regression ( 1–39). Springer.

[4] A logical calculus of the ideas immanent in nervous activity. 1943. The bulletin of

mathematical biophysics. https://doi.org/10.1007/BF02478259

[5] McDonald, C. 2017. Machine learning fundamentals (i): Cost functions and gradient

descent. Towards Data Science27.

[6] Murthy, KVS. Salzberg, SL. 1995. On growing better decision trees from data . Citeseer.

[7] Natekin, A. Knoll, A. 2013. Gradient boosting machines, a tutorial. Frontiers in

neurorobotics721.

[8] Nielsen, D. 2016. Tree boosting with xgboost. NTNU Norwegian University of Science

and Technology.

[9] Park, H. 2013. An introduction to logistic regression: from basic concepts to inter-

pretation with particular attention to nursing domain. Journal of Korean Academy of

Nursing432154–164.

39



[10] Racine, J. 2000. Consistent cross-validatory model-selection for dependent data: hv-

block cross-validation. Journal of econometrics99139–61.

[11] Sazlı, MH. 2006. A brief review of feed-forward neural networks.

[12] Stecanella, B. 2017. An Introduction to Support Vector Machines (SVM). Monkey

Learn, https://monkeylearn. com/blog/introduction-tosupport-vector-machines-svm.

[13] Subramanian, D. 2019. A simple introduction to K-Nearest Neighbors Algorithm.

Towards Data Science.

[14] Svozil, D., Kvasnicka, V. Pospichal, J. 1997. Introduction to multi-layer feed-forward

neural networks. Chemometrics and intelligent laboratory systems39143–62.

[15] Tong, YL. 2012. The multivariate normal distribution. Springer Science & Business

Media.

40



10 Appendix

Appendix 1: Independent Variable

# −∗− coding : u t f −8 −∗−

””” Independent va r i ab l e . ipynb

Automatica l ly generated by Colaboratory .

”””

import numpy as np

import numpy . random as nr

import random

from sk l e a rn . l i n ea r mode l import Log i s t i cReg r e s s i on

from sk l e a rn import met r i c s

import math

from sc ipy import s t a t s

#method to genera te Data matrix X with n Xi , each Xi i s a d−diment iona l v e c t o r

de f GenerateData (n , d , v ) : #n : vec to r number o f X n ; d : number o f dimensions o f X n

nr . seed ( )

X = np . array ( nr . normal (0 , 1 , v ) )

for i in range (0 , n−1):

newVec = np . array ( nr . normal (0 , 1 , v ) ) #mean = 0 , cov = 1 , s i z e = 1∗d

X = np . vstack ( (X, newVec ) )

return X #X i s a numpy . ndarray
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de f GenerateTarget (n , X n , beta ) :

Y = [ ]

p = [ ]

np . random . seed (123)

for i in range (0 , n ) :

p i = 1/(1+math . exp(−np . dot (X n [ i ] , beta [ 0 ] ) ) )

p . append ( p i )

for j in range (0 , n ) :

i f p [ j ] >= 0 . 5 :

Y. append (1)

else :

Y. append (0)

return Y

”””∗∗Step 1 − 2∗∗ : Creat ing the method to generate Y n us ing ∗∗Bernou l l i D i s t r i bu t i on ∗∗ . ”””

de f GenerateTarget B (n , X n , beta ) :

Y = [ ]

np . random . seed (123)

for i in range (0 , n ) :

p i = 1/(1+math . exp(−np . dot (X n [ i ] , beta [ 0 ] ) ) )

b e r n ou l l iD i s t = s t a t s . b e r n ou l l i ( p i )

#Y. append ( b e r n o u l l iD i s t . r v s (1 ) )

Y. append ( b e r n ou l l iD i s t . rvs ( 1 ) )

np . r av e l (Y)

return Y
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”””# ∗∗1 . L o g i s t i c Regres s ion ∗∗”””

de f GetLog i s t i cResu l t (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

l o g i s t i cReg r e s s i onMode l = Log i s t i cReg r e s s i on ( )

l o g i s t i cReg r e s s i onMode l . f i t (X n , Y n)

pred y = log i s t i cReg r e s s i onMode l . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

de f GetLog i s t i cResu l t B (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

l o g i s t i cReg r e s s i onMode l = Log i s t i cReg r e s s i on ( )

l o g i s t i cReg r e s s i onMode l . f i t (X n , Y n)

pred y = log i s t i cReg r e s s i onMode l . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

”””Test X n with d i f f e r e n t n and d by us ing l o g i s t i c r e g r e s s i o n model . ”””
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GetLog i s t i cResu l t (10 ,2 , ( 1 , 2 ) )

GetLog i s t i cResu l t (100 ,2 , ( 1 , 2 ) )

GetLog i s t i cResu l t (1000 ,2 , ( 1 , 2 ) )

GetLog i s t i cResu l t B (10 ,2 , ( 1 , 2 ) )

GetLog i s t i cResu l t B (100 , 2 , ( 1 , 2 ) )

GetLog i s t i cResu l t B (1000 ,2 , ( 1 , 2 ) )

GetLog i s t i cResu l t (10 ,10 , ( 1 , 10 ) )

GetLog i s t i cResu l t ( 10 , 100 , ( 1 , 100 ) )

GetLog i s t i cResu l t (10 ,1000 , (1 , 1000) )

GetLog i s t i cResu l t ( 100 , 10 , ( 1 , 10 ) )

GetLog i s t i cResu l t ( 100 , 100 , ( 1 , 100 ) )

GetLog i s t i cResu l t (100 ,1000 , (1 , 1000) )

GetLog i s t i cResu l t ( 1000 , 10 , ( 1 , 10 ) )

GetLog i s t i cResu l t (1000 ,100 , ( 1 , 100 ) )

GetLog i s t i cResu l t (1000 ,1000 , (1 , 1000) )

GetLog i s t i cResu l t B (10 ,10 , ( 1 , 10 ) )

GetLog i s t i cResu l t B (10 , 100 , ( 1 , 100 ) )

GetLog i s t i cResu l t B (10 ,1000 , ( 1 , 1000 ) )

GetLog i s t i cResu l t B (100 , 10 , ( 1 , 10 ) )
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GetLog i s t i cResu l t B (100 , 100 , ( 1 , 100 ) )

GetLog i s t i cResu l t B (100 ,1000 , (1 , 1000) )

GetLog i s t i cResu l t B (1000 , 10 , ( 1 , 10 ) )

GetLog i s t i cResu l t B (1000 ,100 , ( 1 , 100 ) )

GetLog i s t i cResu l t B (1000 ,1000 , (1 , 1000) )

”””## ∗∗2 . Nearest Neibour Model (KNN algor i thm )∗∗ ”””

from sk l e a rn . ne ighbors import KNe ighbor sC la s s i f i e r

de f GetKNNResult (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

KNNc la s s i f i e r = KNe ighbor sC la s s i f i e r ( n ne ighbors=5)

KNNc la s s i f i e r . f i t (X n , Y n)

pred y = KNNcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

de f GetKNNResult B (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e
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t e s t Y = GenerateTarget B (1000 , test X , beta )

KNNc la s s i f i e r = KNe ighbor sC la s s i f i e r ( n ne ighbors=5)

KNNc la s s i f i e r . f i t (X n , Y n)

pred y = KNNcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

GetKNNResult (10 ,2 , ( 1 , 2 ) )

GetKNNResult (100 ,2 , ( 1 , 2 ) )

GetKNNResult (1000 ,2 , ( 1 , 2 ) )

GetKNNResult B (10 ,2 , ( 1 , 2 ) )

GetKNNResult B (100 , 2 , ( 1 , 2 ) )

GetKNNResult B (1000 ,2 , ( 1 , 2 ) )

GetKNNResult (10 ,10 , ( 1 , 1 0 ) )

GetKNNResult ( 10 , 100 , ( 1 , 100 ) )

GetKNNResult (10 ,1000 , (1 , 1000 ) )

GetKNNResult ( 100 , 10 , ( 1 , 10 ) )

GetKNNResult ( 100 , 100 , ( 1 , 100 ) )

GetKNNResult (100 ,1000 , (1 , 1000) )

GetKNNResult ( 1000 , 10 , ( 1 , 10 ) )

GetKNNResult ( 1000 , 100 , ( 1 , 100 ) )

GetKNNResult (1000 ,1000 , (1 , 1000) )
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GetKNNResult B (10 ,10 , ( 1 , 10 ) )

GetKNNResult B (10 , 100 , ( 1 , 100 ) )

GetKNNResult B (10 ,1000 , ( 1 , 1000 ) )

GetKNNResult B (100 , 10 , ( 1 , 10 ) )

GetKNNResult B (100 , 100 , ( 1 , 100 ) )

GetKNNResult B (100 ,1000 , (1 , 1000) )

GetKNNResult B (1000 , 10 , ( 1 , 10 ) )

GetKNNResult B (1000 ,100 , ( 1 , 100 ) )

GetKNNResult B (1000 ,1000 , (1 , 1000) )

”””## ∗∗3 . Support Vector Machine (SVM) Model∗∗”””

from sk l e a rn . svm import SVC

def GetSVMResult (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

SVMc la s s i f i e r = SVC( ke rne l=’ rb f ’ , random state = 1)

SVMc la s s i f i e r . f i t (X n , Y n)

pred y = SVMcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )
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de f GetSVMResult B (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

SVMc la s s i f i e r = SVC( ke rne l=’ rb f ’ , random state = 1)

SVMc la s s i f i e r . f i t (X n , Y n)

pred y = SVMcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

GetSVMResult (10 ,2 , ( 1 , 2 ) )

GetSVMResult (100 ,2 , ( 1 , 2 ) )

GetSVMResult (1000 ,2 , ( 1 , 2 ) )

GetSVMResult B (10 ,2 , ( 1 , 2 ) )

GetSVMResult B (100 , 2 , ( 1 , 2 ) )

GetSVMResult B (1000 ,2 , ( 1 , 2 ) )

GetSVMResult (10 ,10 , ( 1 , 1 0 ) )

GetSVMResult ( 10 , 100 , ( 1 , 100 ) )

GetSVMResult (10 ,1000 , ( 1 , 1000) )

GetSVMResult ( 100 , 10 , ( 1 , 10 ) )
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GetSVMResult ( 100 , 100 , ( 1 , 100 ) )

GetSVMResult (100 ,1000 , (1 , 1000) )

GetSVMResult ( 1000 , 10 , ( 1 , 10 ) )

GetSVMResult (1000 ,100 , (1 , 100 ) )

GetSVMResult (1000 ,1000 , (1 , 1000) )

GetSVMResult B (10 ,10 , ( 1 , 1 0 ) )

GetSVMResult B (10 , 100 , ( 1 , 100 ) )

GetSVMResult B (10 ,1000 , ( 1 , 1000 ) )

GetSVMResult B (100 , 10 , ( 1 , 10 ) )

GetSVMResult B (100 , 100 , ( 1 , 100 ) )

GetSVMResult B (100 ,1000 , (1 , 1000) )

GetSVMResult B (1000 , 10 , ( 1 , 10 ) )

GetSVMResult B (1000 ,100 , ( 1 , 100 ) )

GetSVMResult B (1000 ,1000 , (1 , 1000) )

”””## ∗∗4 . Random Forest Model∗∗”””

from sk l e a rn . ensemble import RandomForestClass i f i e r

de f GetRandomForestResult (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )
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t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

RF c l a s s i f i e r = RandomForestClass i f i e r ( n e s t imato r s =100) #se t the number o f t r e e s to 100

RFc l a s s i f i e r . f i t (X n , Y n)

pred y = RFc l a s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

de f GetRandomForestResult B (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

RF c l a s s i f i e r = RandomForestClass i f i e r ( n e s t imato r s =100) #se t the number o f t r e e s to 100

RFc l a s s i f i e r . f i t (X n , Y n)

pred y = RFc l a s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

GetRandomForestResult (10 ,2 , ( 1 , 2 ) )

GetRandomForestResult (100 ,2 , ( 1 , 2 ) )

GetRandomForestResult (1000 ,2 , ( 1 , 2 ) )

GetRandomForestResult B (10 ,2 , ( 1 , 2 ) )

GetRandomForestResult B (100 , 2 , ( 1 , 2 ) )

GetRandomForestResult B (1000 ,2 , ( 1 , 2 ) )
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GetRandomForestResult (10 ,10 , ( 1 , 10 ) )

GetRandomForestResult ( 10 , 100 , ( 1 , 100 ) )

GetRandomForestResult (10 ,1000 , ( 1 , 1000) )

GetRandomForestResult ( 100 , 10 , ( 1 , 10 ) )

GetRandomForestResult ( 100 , 100 , ( 1 , 100 ) )

GetRandomForestResult (100 ,1000 , (1 , 1000) )

GetRandomForestResult ( 1000 , 10 , ( 1 , 10 ) )

GetRandomForestResult (1000 ,100 , ( 1 , 100 ) )

GetRandomForestResult (1000 ,1000 , (1 , 1000) )

GetRandomForestResult B (10 ,10 , ( 1 , 10 ) )

GetRandomForestResult B (10 , 100 , ( 1 , 100 ) )

GetRandomForestResult B (10 ,1000 , ( 1 , 1000 ) )

GetRandomForestResult B (100 , 10 , ( 1 , 10 ) )

GetRandomForestResult B (100 , 100 , ( 1 , 100 ) )

GetRandomForestResult B (100 ,1000 , (1 , 1000) )

GetRandomForestResult B (1000 , 10 , ( 1 , 10 ) )

GetRandomForestResult B (1000 ,100 , ( 1 , 100 ) )

GetRandomForestResult B (1000 ,1000 , (1 , 1000) )
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”””## ∗∗5 . Feed−Forward Neural Network∗∗”””

import keras

from keras . models import Sequent ia l , Input , Model

from keras . l a y e r s import Conv2D

from keras . l a y e r s import Dense , Flatten , Act ivat ion

de f GetFFNNResult (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

X n = np . array (X n)

Y n = np . array (Y n)

tes t X = np . array ( te s t X )

tes t Y = np . array ( te s t Y )

#Bui ld the f eed forward NN model

NNmodel = Sequent i a l ( )

NNmodel . add (Dense (64 , input shape = v , a c t i v a t i o n = ” r e l u ” ) ) #The f i r s t l a y e r

NNmodel . add (Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ) #The second l a y e r

NNmodel . add (Dense (1 , a c t i v a t i o n=’ s igmoid ’ ) ) #Output l a y e r

#Compile the feed−forward NN model

NNmodel . compi le ( l o s s = ” b ina ry c ro s s en t r opy ” , opt imize r = ”Adam” , met r i c s =[ ’ accuracy ’ ] )

NNmodel . f i t (X n , Y n , epochs=100 , b a t c h s i z e =10, verbose=0)

, accuracy = NNmodel . eva luate ( test X , te s t Y )
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print ( ’ Accuracy : %.2 f ’ % ( accuracy ) )

de f GetFFNNResult B (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

X n = np . array (X n)

Y n = np . array (Y n)

tes t X = np . array ( te s t X )

tes t Y = np . array ( te s t Y )

#Bui ld the f eed forward NN model

NNmodel = Sequent i a l ( )

NNmodel . add (Dense (64 , input shape = v , a c t i v a t i o n = ” r e l u ” ) ) #The f i r s t l a y e r

NNmodel . add (Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ) #The second l a y e r

NNmodel . add (Dense (1 , a c t i v a t i o n=’ s igmoid ’ ) ) #Output l a y e r

#Compile the NN model

NNmodel . compi le ( l o s s = ” b ina ry c ro s s en t r opy ” , opt imize r = ”Adam” , met r i c s =[ ’ accuracy ’ ] )

NNmodel . f i t (X n , Y n , epochs=100 , b a t c h s i z e =10, verbose=0)

, accuracy = NNmodel . eva luate ( test X , te s t Y )

print ( ’ Accuracy : %.2 f ’ % ( accuracy ) )

GetFFNNResult (10 ,2 , ( 1 , 2 ) )

GetFFNNResult (100 ,2 , ( 1 , 2 ) )
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GetFFNNResult (1000 ,2 , ( 1 , 2 ) )

GetFFNNResult B (10 ,2 , ( 1 , 2 ) )

GetFFNNResult B (100 , 2 , ( 1 , 2 ) )

GetFFNNResult B (1000 ,2 , ( 1 , 2 ) )

GetFFNNResult (10 ,10 , ( 1 , 1 0 ) )

GetFFNNResult ( 10 , 100 , ( 1 , 100 ) )

GetFFNNResult (10 ,1000 , (1 , 1000) )

GetFFNNResult ( 100 , 10 , ( 1 , 10 ) )

GetFFNNResult ( 100 , 100 , ( 1 , 100 ) )

GetFFNNResult (100 ,1000 , (1 , 1000) )

GetFFNNResult ( 1000 , 10 , ( 1 , 10 ) )

GetFFNNResult ( 1000 , 100 , ( 1 , 100 ) )

GetFFNNResult (1000 ,1000 , (1 , 1000) )

GetFFNNResult B (10 ,10 , ( 1 , 10 ) )

GetFFNNResult B (10 , 100 , ( 1 , 100 ) )

GetFFNNResult B (10 ,1000 , ( 1 , 1000 ) )

GetFFNNResult B (100 , 10 , ( 1 , 10 ) )

GetFFNNResult B (100 , 100 , ( 1 , 100 ) )

GetFFNNResult B (100 ,1000 , (1 , 1000) )
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GetFFNNResult B (1000 , 10 , ( 1 , 10 ) )

GetFFNNResult B (1000 ,100 , ( 1 , 100 ) )

GetFFNNResult B (1000 ,1000 , (1 , 1000) )

”””## ∗∗6 . XGboost Model∗∗”””

from xgboost import XGBClass i f i er

de f GetXGboostResult (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

XGboo s t c l a s s i f i e r = XGBClass i f i er ( )

XGboo s t c l a s s i f i e r . f i t (np . asar ray (X n ) , np . asar ray (Y n ) )

pred y = XGboo s t c l a s s i f i e r . p r ed i c t (np . asar ray ( te s t X ) )

p r e d i c t i o n s = [ round( va lue ) for value in pred y ]

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , p r e d i c t i o n s ) )

de f GetXGboostResult B (n , d , v ) :

X n = GenerateData (n , d , v )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData (1000 ,d , v ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )
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XGboo s t c l a s s i f i e r = XGBClass i f i er ( )

XGboo s t c l a s s i f i e r . f i t (np . asar ray (X n ) , np . asar ray (Y n ) )

pred y = XGboo s t c l a s s i f i e r . p r ed i c t (np . asar ray ( te s t X ) )

p r e d i c t i o n s = [ round( va lue ) for value in pred y ]

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , p r e d i c t i o n s ) )

GetXGboostResult (10 ,2 , ( 1 , 2 ) )

GetXGboostResult (100 ,2 , ( 1 , 2 ) )

GetXGboostResult (1000 ,2 , ( 1 , 2 ) )

GetXGboostResult B (10 ,2 , ( 1 , 2 ) )

GetXGboostResult B (100 , 2 , ( 1 , 2 ) )

GetXGboostResult B (1000 ,2 , ( 1 , 2 ) )

GetXGboostResult (10 ,10 , ( 1 , 1 0 ) )

GetXGboostResult ( 10 , 100 , ( 1 , 100 ) )

GetXGboostResult (10 ,1000 , (1 , 1000 ) )

GetXGboostResult ( 100 , 10 , ( 1 , 10 ) )

GetXGboostResult ( 100 , 100 , ( 1 , 100 ) )

GetXGboostResult (100 ,1000 , (1 , 1000) )

GetXGboostResult ( 1000 , 10 , ( 1 , 10 ) )

GetXGboostResult (1000 ,100 , ( 1 , 100 ) )

GetXGboostResult (1000 ,1000 , (1 , 1000) )
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GetXGboostResult B (10 ,10 , ( 1 , 1 0 ) )

GetXGboostResult B (10 , 100 , ( 1 , 100 ) )

GetXGboostResult B (10 ,1000 , ( 1 , 1000 ) )

GetXGboostResult B (100 , 10 , ( 1 , 10 ) )

GetXGboostResult B (100 , 100 , ( 1 , 100 ) )

GetXGboostResult B (100 ,1000 , (1 , 1000) )

GetXGboostResult B (1000 , 10 , ( 1 , 10 ) )

GetXGboostResult B (1000 , 100 , ( 1 , 100 ) )

GetXGboostResult B (1000 ,1000 , (1 , 1000) )
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Appendix 2: Dependent Variable

# −∗− coding : u t f −8 −∗−

”””Dependent v a r i a b l e s ( Thes i s Appendix ) . ipynb

Automatica l ly generated by Colaboratory .

”””

import numpy as np

import numpy . random as nr

import random

from sk l e a rn . l i n ea r mode l import Log i s t i cReg r e s s i on

from sk l e a rn import met r i c s

import math

from sc ipy import s t a t s

de f GenerateData D (n , d , rho ) :

#n : number o f X n matrix in X

#d : number o f dimensions o f X n matrix ( columus o f X n vec t o r )

#rho : c o r r e l a t i o n c o e f f i c i e n t

nr . seed (123)

M = np . f u l l (n∗d , 0) #mean vector , s i z e n∗d

U11 = np . f u l l ( ( n // 2 , n // 2) , rho )

U22 = np . f u l l ( ( n // 2 , n // 2) , rho )

U12 = np . zeros ( ( n // 2 , n // 2) )

U21 = np . zeros ( ( n // 2 , n // 2) )

for i in range (n // 2 ) :

U11 [ i , i ] = 1
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U22 [ i , i ] = 1

U = np . b lock ( [ [ U11 , U12 ] , [ U21 , U22 ] ] )#determing covar iance among rows

V = np . i d e n t i t y (d) #determing covar iance among columns

#Ca l cu l a t e Kronecker product

K = np . kron (U,V) #s i z e : (n∗d ) ∗ (n∗d )

vec to r = np . random . mul t i va r i a t e norma l (M,K, ( 1 , 1 ) )

X = vecto r . reshape (n , d )

return X #X i s a numpy . ndarray

de f GenerateTarget (n , X n , beta ) :

Y = [ ]

p = [ ]

np . random . seed (123)

for i in range (0 , n ) :

p i = 1/(1+math . exp(−np . dot (X n [ i ] , beta [ 0 ] ) ) )

p . append ( p i )

for j in range (0 , n ) :

i f p [ j ] >= 0 . 5 :

Y. append (1)

else :

Y. append (0)

return Y

def GenerateTarget B (n , X n , beta ) :

Y = [ ]
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np . random . seed (123)

for i in range (0 , n ) :

p i = 1/(1+math . exp(−np . dot (X n [ i ] , beta [ 0 ] ) ) )

b e r n ou l l iD i s t = s t a t s . b e r n ou l l i ( p i )

Y. append ( b e r n ou l l iD i s t . rvs ( 1 ) )

np . r av e l (Y)

return Y

def GetLog i s t i cResu l t (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

l o g i s t i cReg r e s s i onMode l = Log i s t i cReg r e s s i on ( )

l o g i s t i cReg r e s s i onMode l . f i t (X n , Y n)

pred y = log i s t i cReg r e s s i onMode l . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

de f GetLog i s t i cResu l t B (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )
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l o g i s t i cReg r e s s i onMode l = Log i s t i cReg r e s s i on ( )

l o g i s t i cReg r e s s i onMode l . f i t (X n , Y n)

pred y = log i s t i cReg r e s s i onMode l . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

”””Test X n with d i f f e r e n t n and d by us ing l o g i s t i c r e g r e s s i o n model . ”””

#mechanism 1

GetLog i s t i cResu l t (10 ,2 , 0 . 1 )

GetLog i s t i cResu l t (100 ,2 , 0 . 1 )

GetLog i s t i cResu l t (1000 ,2 , 0 . 1 )

GetLog i s t i cResu l t (10 ,2 , 0 . 5 )

GetLog i s t i cResu l t (100 ,2 , 0 . 5 )

GetLog i s t i cResu l t (1000 ,2 , 0 . 5 )

GetLog i s t i cResu l t (10 ,2 , 0 . 9 )

GetLog i s t i cResu l t (100 ,2 , 0 . 9 )

GetLog i s t i cResu l t (1000 ,2 , 0 . 9 )

#mechanism 2: Bernou l l i

GetLog i s t i cResu l t B (10 ,2 , 0 . 1 )

GetLog i s t i cResu l t B (100 ,2 , 0 . 1 )

GetLog i s t i cResu l t B (1000 ,2 , 0 . 1 )

GetLog i s t i cResu l t B (10 ,2 , 0 . 5 )

GetLog i s t i cResu l t B (100 ,2 , 0 . 5 )
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GetLog i s t i cResu l t B (1000 ,2 , 0 . 5 )

GetLog i s t i cResu l t B (10 ,2 , 0 . 9 )

GetLog i s t i cResu l t B (100 ,2 , 0 . 9 )

GetLog i s t i cResu l t B (1000 ,2 , 0 . 9 )

”””## ∗∗2 . Nearest Neibour Model (KNN algor i thm )∗∗ ”””

from sk l e a rn . ne ighbors import KNe ighbor sC la s s i f i e r

de f GetKNNResult (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

KNNc la s s i f i e r = KNe ighbor sC la s s i f i e r ( n ne ighbors=5)

KNNc la s s i f i e r . f i t (X n , Y n)

pred y = KNNcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

de f GetKNNResult B (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )
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KNNclas s i f i e r = KNe ighbor sC la s s i f i e r ( n ne ighbors=5)

KNNc la s s i f i e r . f i t (X n , Y n)

pred y = KNNcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

#mechanism 1

GetKNNResult (10 ,2 , 0 . 1 )

GetKNNResult (100 ,2 , 0 . 1 )

GetKNNResult (1000 ,2 , 0 . 1 )

GetKNNResult (10 ,2 , 0 . 5 )

GetKNNResult (100 ,2 , 0 . 5 )

GetKNNResult (1000 ,2 , 0 . 5 )

GetKNNResult (10 ,2 , 0 . 9 )

GetKNNResult (100 ,2 , 0 . 9 )

GetKNNResult (1000 ,2 , 0 . 9 )

#mechanism 2: b e r n o u l l i

GetKNNResult B (10 ,2 , 0 . 1 )

GetKNNResult B (100 ,2 , 0 . 1 )

GetKNNResult B (1000 ,2 , 0 . 1 )

GetKNNResult B (10 ,2 , 0 . 5 )

GetKNNResult B (100 ,2 , 0 . 5 )

GetKNNResult B (1000 ,2 , 0 . 5 )
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GetKNNResult B (10 ,2 , 0 . 9 )

GetKNNResult B (100 ,2 , 0 . 9 )

GetKNNResult B (1000 ,2 , 0 . 9 )

”””## ∗∗3 . Support Vector Machine (SVM) Model∗∗”””

from sk l e a rn . svm import SVC

def GetSVMResult (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

SVMc la s s i f i e r = SVC( ke rne l=’ rb f ’ , random state = 1)

SVMc la s s i f i e r . f i t (X n , Y n)

pred y = SVMcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

de f GetSVMResult B (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

SVMc la s s i f i e r = SVC( ke rne l=’ rb f ’ , random state = 1)
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SVMcla s s i f i e r . f i t (X n , Y n)

pred y = SVMcla s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

#mechanism 1

GetSVMResult (10 ,2 , 0 . 1 )

GetSVMResult (100 ,2 , 0 . 1 )

GetSVMResult (1000 ,2 , 0 . 1 )

GetSVMResult (10 ,2 , 0 . 5 )

GetSVMResult (100 ,2 , 0 . 5 )

GetSVMResult (1000 ,2 , 0 . 5 )

GetSVMResult (10 ,2 , 0 . 9 )

GetSVMResult (100 ,2 , 0 . 9 )

GetSVMResult (1000 ,2 , 0 . 9 )

#mechanism 2: b e r n o u l l i

GetSVMResult B (10 ,2 , 0 . 1 )

GetSVMResult B (100 ,2 , 0 . 1 )

GetSVMResult B (1000 ,2 , 0 . 1 )

GetSVMResult B (10 ,2 , 0 . 5 )

GetSVMResult B (100 ,2 , 0 . 5 )

GetSVMResult B (1000 ,2 , 0 . 5 )
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GetSVMResult B (10 ,2 , 0 . 9 )

GetSVMResult B (100 ,2 , 0 . 9 )

GetSVMResult B (1000 ,2 , 0 . 9 )

”””## ∗∗4 . Random Forest Model∗∗”””

from sk l e a rn . ensemble import RandomForestClass i f i e r

de f GetRandomForestResult (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

RF c l a s s i f i e r = RandomForestClass i f i e r ( n e s t imato r s =100) #se t the number o f t r e e s to 100

RFc l a s s i f i e r . f i t (X n , Y n)

pred y = RFc l a s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

de f GetRandomForestResult B (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

RF c l a s s i f i e r = RandomForestClass i f i e r ( n e s t imato r s =100) #se t the number o f t r e e s to 100

RFc l a s s i f i e r . f i t (X n , Y n)
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pred y = RFc l a s s i f i e r . p r ed i c t ( t e s t X )

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , pred y ) )

#mechanism 1

GetRandomForestResult (10 ,2 , 0 . 1 )

GetRandomForestResult (100 ,2 , 0 . 1 )

GetRandomForestResult (1000 ,2 , 0 . 1 )

GetRandomForestResult (10 ,2 , 0 . 5 )

GetRandomForestResult (100 ,2 , 0 . 5 )

GetRandomForestResult (1000 ,2 , 0 . 5 )

GetRandomForestResult (10 ,2 , 0 . 9 )

GetRandomForestResult (100 ,2 , 0 . 9 )

GetRandomForestResult (1000 ,2 , 0 . 9 )

#mechanism 2: b e r n o u l l i

GetRandomForestResult B (10 ,2 , 0 . 1 )

GetRandomForestResult B (100 ,2 , 0 . 1 )

GetRandomForestResult B (1000 ,2 , 0 . 1 )

GetRandomForestResult B (10 ,2 , 0 . 5 )

GetRandomForestResult B (100 ,2 , 0 . 5 )

GetRandomForestResult B (1000 ,2 , 0 . 5 )

GetRandomForestResult B (10 ,2 , 0 . 9 )
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GetRandomForestResult B (100 ,2 , 0 . 9 )

GetRandomForestResult B (1000 ,2 , 0 . 9 )

”””## ∗∗5 . Feed−Forward Neural Network Model∗∗”””

import keras

from keras . models import Sequent ia l , Input , Model

from keras . l a y e r s import Conv2D

from keras . l a y e r s import Dense , Flatten , Act ivat ion

de f GetFFNNResult (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

X n = np . array (X n)

Y n = np . array (Y n)

tes t X = np . array ( te s t X )

tes t Y = np . array ( te s t Y )

#Bui ld the f eed forward NN model

NNmodel = Sequent i a l ( )

NNmodel . add (Dense (64 , input shape = (1 , d ) , a c t i v a t i o n = ” r e l u ” ) )

#The f i r s t l a y e r

NNmodel . add (Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ) #The second l a y e r

NNmodel . add (Dense (1 , a c t i v a t i o n=’ s igmoid ’ ) ) #Output l a y e r

#Compile the feed−forward NN model
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NNmodel . compi le ( l o s s = ” b ina ry c ro s s en t r opy ” , opt imize r = ”Adam” , met r i c s =[ ’ accuracy ’ ] )

NNmodel . f i t (X n , Y n , epochs=100 , b a t c h s i z e =10, verbose=0)

, accuracy = NNmodel . eva luate ( test X , te s t Y )

print ( ’ Accuracy : %.2 f ’ % ( accuracy ) )

de f GetFFNNResult B (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

X n = np . array (X n)

Y n = np . array (Y n)

tes t X = np . array ( te s t X )

tes t Y = np . array ( te s t Y )

#Bui ld the f eed forward NN model

NNmodel = Sequent i a l ( )

NNmodel . add (Dense (64 , input shape = (1 , d ) , a c t i v a t i o n = ” r e l u ” ) )

#The f i r s t l a y e r

NNmodel . add (Dense (32 , a c t i v a t i o n=’ r e l u ’ ) ) #The second l a y e r

NNmodel . add (Dense (1 , a c t i v a t i o n=’ s igmoid ’ ) ) #Output l a y e r

#Compile the NN model

NNmodel . compi le ( l o s s = ” b ina ry c ro s s en t r opy ” , opt imize r = ”Adam” , met r i c s =[ ’ accuracy ’ ] )

NNmodel . f i t (X n , Y n , epochs=100 , b a t c h s i z e =10, verbose=0)

, accuracy = NNmodel . eva luate ( test X , te s t Y )
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print ( ’ Accuracy : %.2 f ’ % ( accuracy ) )

#mechanism 1

GetFFNNResult (10 ,2 , 0 . 1 )

GetFFNNResult (100 ,2 , 0 . 1 )

GetFFNNResult (1000 ,2 , 0 . 1 )

GetFFNNResult (10 ,2 , 0 . 5 )

GetFFNNResult (100 ,2 , 0 . 5 )

GetFFNNResult (1000 ,2 , 0 . 5 )

GetFFNNResult (10 ,2 , 0 . 9 )

GetFFNNResult (100 ,2 , 0 . 9 )

GetFFNNResult (1000 ,2 , 0 . 9 )

#mechanism 2: b e r n o u l l i

GetFFNNResult B (10 ,2 , 0 . 1 )

GetFFNNResult B (100 ,2 , 0 . 1 )

GetFFNNResult B (1000 ,2 , 0 . 1 )

GetFFNNResult B (10 ,2 , 0 . 5 )

GetFFNNResult B (100 ,2 , 0 . 5 )

GetFFNNResult B (1000 ,2 , 0 . 5 )

GetFFNNResult B (10 ,2 , 0 . 9 )

GetFFNNResult B (100 ,2 , 0 . 9 )
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GetFFNNResult B (1000 ,2 , 0 . 9 )

”””## ∗∗6 . XG−boost Model∗∗”””

from xgboost import XGBClass i f i er

de f GetXGboostResult (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget (1000 , test X , beta )

XGboo s t c l a s s i f i e r = XGBClass i f i er ( )

XGboo s t c l a s s i f i e r . f i t (np . asar ray (X n ) , np . asar ray (Y n ) )

pred y = XGboo s t c l a s s i f i e r . p r ed i c t (np . asar ray ( te s t X ) )

p r e d i c t i o n s = [ round( va lue ) for value in pred y ]

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , p r e d i c t i o n s ) )

de f GetXGboostResult B (n , d , rho ) :

X n = GenerateData D (n , d , rho )

beta = np . random . d i r i c h l e t (np . ones (d ) , s ize=1)

Y n = GenerateTarget B (n , X n , beta )

t e s t X = GenerateData D (1000 ,d , rho ) #to ge t accura te r e s u l t s in accuracy t e s t , s e t 1000 as d e f u l t s i z e

t e s t Y = GenerateTarget B (1000 , test X , beta )

XGboo s t c l a s s i f i e r = XGBClass i f i er ( )

XGboo s t c l a s s i f i e r . f i t (np . asar ray (X n ) , np . asar ray (Y n ) )

pred y = XGboo s t c l a s s i f i e r . p r ed i c t (np . asar ray ( te s t X ) )
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p r ed i c t i o n s = [ round( va lue ) for value in pred y ]

print ( ’ Accuracy : ’ , met r i c s . a c cu racy s co r e ( test Y , p r e d i c t i o n s ) )

#mechanism 1

GetXGboostResult (10 ,2 , 0 . 1 )

GetXGboostResult (100 ,2 , 0 . 1 )

GetXGboostResult (1000 ,2 , 0 . 1 )

GetXGboostResult (10 ,2 , 0 . 5 )

GetXGboostResult (100 ,2 , 0 . 5 )

GetXGboostResult (1000 ,2 , 0 . 5 )

GetXGboostResult (10 ,2 , 0 . 9 )

GetXGboostResult (100 ,2 , 0 . 9 )

GetXGboostResult (1000 ,2 , 0 . 9 )

#mechanism 2: b e r n o u l l i

GetXGboostResult B (10 ,2 , 0 . 1 )

GetXGboostResult B (100 ,2 , 0 . 1 )

GetXGboostResult B (1000 ,2 , 0 . 1 )

GetXGboostResult B (10 ,2 , 0 . 5 )

GetXGboostResult B (100 ,2 , 0 . 5 )

GetXGboostResult B (1000 ,2 , 0 . 5 )

GetXGboostResult B (10 ,2 , 0 . 9 )
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GetXGboostResult B (100 ,2 , 0 . 9 )

GetXGboostResult B (1000 ,2 , 0 . 9 )
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