
Supplementary Material

A detailed description of the PG-BSM

The PG-BSM consists of three components : (1) a model for the evolution of the codon sequence; (2) a

model for the evolution of a discrete phenotype; and (3) a model that accounts for the mechanism(s) by

which (1) and (2) are associated. The model chosen for the evolution of the phenotype is the proportional

rates model, analagous to F81 for DNA (Felsenstein, 1981), characterized by the following rate matrix (in

this case assuming k = 3 distinct phenotypes):
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Each ∗ in (1) indicates a value that makes the corresponding row sum to zero. The πi
F represent the

stationary frequencies for the three phenotypic states i ∈ {1, 2, 3} (the subscript F is used to indicate

that the associated symbol is an element of the model for phenotype evolution). The scaling factor rF is

included so that the rate constant λ gives the expected number of changes in the discrete phenotypic state

per unit branch length. Equation (1) is used not only to compute the probability of the vector of observed

phenotypes, but also to generate samples from the distribution of ancestral phenotypes that are required

to inform the mechanism(s) of adaptive evolution as described in a separate section below.

The null PG-BSM assumes that some proportion π0 of sites evolved under ω0 = 0 over the tree while

the remaining sites switched randomly via a covarion-like process between two rate ratios ω1 < ω2 over

time independent of the phenotype. The rate matrix for the covarion-like process can be constructed by

expanding the state space to (codon, ω) pairs:
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Here I is the identity matrix that is the same size as Q(ω1) and Q(ω2) (e.g., 61×61 for the standard genetic

code), p1 is the average proportion of time sites evolved under ω1, and p2 = 1− p1 the average proportion

of time sites evolved under ω2. The vector of stationary frequencies for all possible (codon, ω) pairs is the

1 × 122 vector 〈p1π, p2π〉, where πQ(ω1) = πQ(ω2) = 0. The scaling factor 1/c1 is set to make branch

lengths equal to the expected number of single nucleotide substitutions per codon: c1 = p1rω1 + p2rω2 ,

where rωk
=
∑

j 6=i πiQij(ωk){`1 + 2`2 + 3`3} for k ∈ {1, 2}. Including the scaling factor 1/c2 = 1/(2p1p2)

permits δ to be interpreted as the expected number of switches between ω1 and ω2 per unit branch length

(Jones et al., 2018).
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The likelihood function under the null hypothesis that the phenotype and genotype evolved indepen-

dently is computed as follows (where xh is the hth site pattern in X):

Lnul(X,F;λ,θ, t) = P(F;λ, t)
n∏

h=1

(
π0P0(x

h;θ, t) + (1− π0)PCL(xh;θ, t)
)

(3)

P(F;λ, t) is the probability of the vector of phenotypes given the rate constant λ and branch lengths t,

P0(x
h;θ, t) is the probability of the site pattern xh assuming the site evolved under ω0 = 0, PCL(xh;θ, t)

is the probability of the site pattern assuming it evolved under equation (2), and θ = (ω1, ω2, p1, δ, κ) is a

vector of parameters for sequence evolution. All probabilities are computed using the pruning algorithm

(Felsenstein, 1981).

CW rCW BW

Figure 1: An illustration of the differenece between the cladewise (CW and rCW) and branchwise (BW) evolutionary

processes assumed under the alternative component of the PG-BSM. Each process accounts for a specific form of heterotachy

associated with changes in phenotype. The empty and filled markers at the terminal nodes indicate three phenotypic states.

ω1 < ω2 are dN/dS rate ratios. The grey disks indicate the nodes at which a change in phenotype occurred. CW sites are

assumed to have evolved under ω1 prior to a change in phenotype and under ω2 after a change. rCW sites are assumed to

have evolved under ω2 prior to a change in phenotype and under ω1 after a change. BW sites are assumed to have evolved

under ω2 over branches along which a change in phenotype occurred and under ω1 everywhere else in the tree. The model

assumes a rooted tree because the interpretation of the CW and rCW processes require a particular order of change in rate

ratio.

The alternative PG-BSM enforces dependencies between phenotype and genotype evolution at some

fraction of sites. Various mechanisms of dependency are amenable to phenomenological representation

as distinct modes of heterotachy as illustrated in Figure 1. To infer phenotype-genotype associations of

any kind requires knowledge of the ancestral branches over which the phenotype changed or remained
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constant. This information is provided by realizations of ancestral phenotypes at the internal nodes of the

tree generated using equation (1), each of which is converted to a change map z = (z1, ..., z2N−2) as follows

(see Figure 1):

zb =

 0 if the phenotype is the same at the two ends of branch b

1 if the phenotype is different at the two ends of branch b
(4)

The likelihood function under the alternative hypothesis can in principle be computed by summing over

all possible change maps:

Lalt(X,F;λ,θ, t) = P(F;λ, t)
∑
z

{
P(z | F, λ, t)

n∏
h=1

g(xh; z)

}
(5)

where P(z | F, λ, t) is the probability of the change map z given the terminal states F, the rate constant λ

and a vector of branch lengths t. The mixture probability g(xh; z) depends on the particular combination of

processes included in the alternate PG-BSM. If the objective was to detect sites consistent with either the

cladewise (CW) or branchwise (BW) processes, for example, the mixture probability would be as follows:

g(xh; z) = π0P0(x
h;θ, t) + πCLPCL(xh;θ, t) + πCWPCW(xh;θ, t, z) + πBWPBW(xh;θ, t, z) (6)

Here PCW(xh;θ, t, z) and PBW(xh;θ, t, z) give the probabilities of the site pattern xh assuming the site

evolved under the cladewise and branchwise process, respectively, and π0 + πCL + πCW + πBW = 1.

The number of possible change maps can be very large depending on the number of taxa and phenotypic

states. It is therefore often infeasible to compute equation (5) exactly by summing over all z. Instead,

P(z | F, λ, t) is approximated by the relative frequency π̂z of z in a sample of 105 realizations of ancestral

phenotypes. These are generated using the maximum likelihood estimates for λ and t and the model for

phenotype evolution as described in a separate section below. The summation in equation (5) is then over

all unique change maps that appear in the sample using π̂z in place of P(z | F, λ, t). Computation time

increases with the number of unique change maps. To reduce computational load, change maps z that

occurred with a frequency < 10−3 are excluded and the probabilities π̂z renormalized to sum to one. Note

that estimates of λ and t are required to generate ancestral phenotypes. An exact but costly approach

would be to resample from P(z | F, λ, t) with each iterative update of λ and t inside the optimization

function. A less costly approximation is implemented instead as follows. Maximum likelihood estimates

(λ̂, t̂) obtained by fitting the null PG-BSM to the data are first used to generate a preliminary sample.

The alternate PG-BSM is then fitted to the data using this sample to produce new estimates (λ̂, t̂). To

account for any resulting changes in (λ̂, t̂), a second sample is generated using the new estimates and the

alternate PG-BSM fitted once more to produce the final results.
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Rejection of the null hypothesis provides evidence for phenotype-genotype association. Naive empirical

Bayes analysis can then be used to identify the most likely category for each site. Let c ∈ {CW, rCW,BW}

index the three categories of phenotype-geneotype association possibly included in the alternative model.

The posterior probability that a site evolved under the process indicated by category c is evaluated at the

maximum likelihood estimate of the vector of parameters of the alternate PG-BSM as follows:

P(c | xh) =
Lalt(x

h | c)π̂c
Lalt(xh)

(7)

To assess the accuracy and power of the post hoc analyses of our simulation studies, the mean observed

false discovery count and the mean power were computed for each set of S simulated alignments as follows:

FDC(c) =
1

S

S∑
i=1

Fi(c), Power =
1

S

S∑
i=1

Di(c)− Fi(c)

n(c)
(8)

Here Fi(c) is the number of false discoveries of category c sites and Di(c) the total number of discoveries

of category c sites, both for the ith alignment, and n(c) is the number of sites in the alignment that were

evolved under the process indicated by category c. The expected false discovery count E{FDC} = E{Fi(c)}

can be controlled by setting a posterior threshold that is specific to the alignment under consideration as

described in a separate section below. This threshold can change from one data set to another. For the

analyses presented in the paper we used E{FDC} ∈ {1, 2} for each category of sites c ∈ {CW, rCW,BW}

included in the alternate PG-BSM.

To quantify the evidential support for branches over which the phenotype is thought to have changed,

the probability of the most frequently sampled change map z∗ conditioned on the combined data is esti-

mated as follows:

P̂(z∗ | X,F) =
Lalt(X,F | z∗)π̂z∗

Lalt(X,F)
(9)

where π̂z∗ is the frequency of the most commonly sampled change map. Equation (9) is evaluated at

the MLE for the alternate PG-BSM. The observed frequency π̂z∗ depends on X only through branch

length estimates. The likelihood Lalt(X,F | z∗), by contrast, also depends on the existence of individ-

ual site patterns that match to greater or lesser degree the patterns of phenotype-genotype association

indicated by z∗. An alignment generated with no phenotype-genotype association will tend to result in

Lalt(X,F | z∗)/Lalt(X,F) ≈ 1 making P̂(z∗ | X,F) ≈ π̂z∗ , in concordance with an alignment that contains

no information about ancestral phenotypic states. When there is phenotype-genotype association at some

sites the ratio of likelihoods will be greater than one depending on the proportion of sites generated un-

der the cladewise, reverse cladewise and branchwise processes and on the extent to which z∗ matches the

change map that generated the data. A good match combined with strong signal will tend to result in

Lalt(X,F | z∗)/Lalt(X,F) > 1 making P̂(z∗ | X,F) > π̂z∗ .
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Tabulated Simulation Results

Table 1: Simulation 1 Parameter Estimates

parameter generating C 300 C 1000 UC 300 UC 1000

π0 0.65 0.65/0.65,(0.03) 0.65/0.65,(0.01) 0.65/0.65,(0.01) 0.65/0.65,(0.01)

ω1 0.10 0.10/0.10,(0.03) 0.10/0.10,(0.01) 0.10/0.10,(0.02) 0.10/0.10,(0.01)

ω2 1.50 1.51/1.50,(0.25) 1.57/1.54,(0.18) 1.56/1.55,(0.26) 1.51/1.52,(0.14)

p1 0.80 0.78/0.78,(0.03) 0.83/0.83,(0.02) 0.80/0.80,(0.03) 0.79/0.79,(0.02)

δ 0.20 0.19/0.18,(0.07) 0.21/0.20,(0.04) 0.20/0.19,(0.06) 0.20/0.19,(0.03)

κ 4.61 4.71/4.66,(0.42) 4.53/4.53,(0.20) 4.60/4.63,(0.37) 4.54/4.54,(0.19)

Table 2: Mean/median, (standard deviation) of select maximum likelihood estimates for Simulation 1. C indicates simula-

tions using the clocked tree, UC simulations using the unclocked tree; 300 and 1000 indicate the number of simulated codon

sites. One hundred alignments were generated under each simulation scenario.
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Table 3: Simulation 2 Parameter Estimates

generating model π̂0 ω̂2 π̂CW π̂BW rejections

Scenario 2a (πCW, πBW) = (0%, 0%)

MSmmtDNA 0% DT 0.59 1.10 0.01 0.00 0/50 false

MSmmtDNA 6% DT 0.65 1.40 0.01 0.01 0/50 false

MSTGdR 0% DT 0.76 2.31 0.00 0.00 0/50 false

Scenario 2b (πCW, πBW) = (5%, 0%)

MSmmtDNA 0% DT 0.55 1.11 0.07 0.01 47/50 true

MSmmtDNA 6% DT 0.58 1.25 0.07 0.01 46/50 true

MSTGdR 0% DT 0.71 1.38 0.04 0.00 42/50 true

Scenario 2c (πCW, πBW) = (0%, 5%)

MSmmtDNA 0% DT 0.59 1.10 0.01 0.09 46/50 true

MSmmtDNA 6% DT 0.57 2.20 0.02 0.07 38/50 true

MSTGdR 0% DT 0.73 1.35 0.01 0.07 50/50 true

Scenario 2d (πCW, πBW) = (0%, 0%)

MSmmtDNA 0% DT 0.60 1.27 0.01 0.01 1/50 false

MSmmtDNA 6% DT 0.56 2.30 0.01 0.00 1/50 false

MSTGdR 0% DT 0.72 1.37 0.00 0.00 2/50 false

Scenario 2e (πCW, πBW) = (5%, 5%)

MSmmtDNA 0% DT 0.55 1.10 0.06 0.09 50/50 true

MSmmtDNA 6% DT 0.57 1.42 0.06 0.08 50/50 true

MSTGdR 0% DT 0.70 1.36 0.06 0.06 50/50 true

Table 4: Select mean maximum likelihood estimates and omnibus test results for Simulation 2. Note that Scenario 2d used

the same alignments as Scenario 2c but with a misspecified vector of phenotypes (i.e., πBW = 0 under Scenario 2d because,

although the data was generated with peak shifts, these did not co-occur with changes in phenotype as indicated by the

misspecified vector F). % DT indicates the proportion of double or triple substitutions permitted by the generating model.
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Table 5: Simulation 2 post hoc Analysis

generating model CW FDC CW Power BW FDC BW Power (prior,post) matches

Scenario 2b (πCW, πBW) = (5%, 0%)

MSmmtDNA 0% DT 0.80 0.31(4.72) 0.86 - (0.73,0.96) 48/50

MSmmtDNA 6% DT 0.66 0.34(5.12) 1.16 - (0.70,0.96) 47/50

MSTGdR 0% DT 0.62 0.36(5.44) 1.20 - (0.62,0.88) 44/50

Scenario 2c (πCW, πBW) = (0%, 5%)

MSmmtDNA 0% DT 1.30 - 1.54 0.37(5.60) (0.76,1.00) 50/50

MSmmtDNA 6% DT 1.86 - 1.08 0.24(3.54) (0.72,0.98) 49/50

MSTGdR 0% DT 1.76 - 1.20 0.59(8.88) (0.73,1.00) 50/50

Scenario 2e (πCW, πBW) = (5%, 5%)

MSmmtDNA 0% DT 1.04 0.29(4.38) 2.12 0.28(4.14) (0.75,1.00) 50/50

MSmmtDNA 6% DT 1.90 0.26(3.90) 1.76 0.34(5.10) (0.77,1.00) 50/50

MSTGdR 0% DT 1.44 0.46(6.86) 1.48 0.42(6.18) (0.78,1.00) 50/50

Table 6: Results of the post hoc analysis of Simulation 2 datasets. Column headings: CW FDC - the average number

of cladewise sites discovered per alignment that were false; CW Power - average proportion of sites generated under the

cladewise processes that were correctly identified (in brackets is the average number of true discoveries per alignment);

BW FDC (branchwise false discovery count) and BW power are similarly defined; prior = π̂z∗ - the frequency of the most

frequently sampled change map z∗ averaged over trials; post = P̂(z∗ | X,F) - the probability of z∗ conditioned on all of the

data averaged over trials; matches - the number of trials for which z∗ matched the generating change map. % DT indicates

the proportion of double or triple substitutions permitted by the generating model.

Table 7: Simulation 3 Parameter Estimates

Scenario π̂0 ω̂2 π̂CW π̂BW rejections

3a, (πCW, πBW) = (0%, 0%) 0.62 1.00 0.00 0.00 0/50 false

3b, (πCW, πBW) = (5%, 0%) 0.59 1.05 0.02 0.00 15/50 true

3c, (πCW, πBW) = (0%, 5%) 0.60 2.21 0.00 0.06 50/50 true

3d, (πCW, πBW) = (5%, 5%) 0.57 1.52 0.04 0.05 50/50 true

Table 8: Selected results for Simulation 3 where there were four phenotypes evolved from three discrete changes over the

tree.
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Table 9: Simulation 3 post hoc Analysis

Scenario CW FDC CW Power BW FDC BW Power (prior, post) matches

3b 0.08 0.16(2.46) 0.14 - (0.38,0.80) 49/50

3c 0.44 - 0.32 0.67(10.18) (0.50,1.00) 50/50

3d 0.68 0.36(5.38) 0.78 0.67(10.12) (0.56,1.00) 49/50

Table 10: Results of the post hoc analysis of Simulation 3 datasets. See caption for Table 6 for definitions of each column

heading.

Simulation 2 Additional Analyis

To determine the impact of the generating scenario on the number of false discoveries in Simulation 2, a

generalized linear model was fitted to the false discovery counts of each type for each alignment using as

predictor variables: the generating model (xMS = 1, 2 or 3 for MSmmtDNA 0% double-triple mutations,

MSmmtDNA 6% double-triple mutations, and MSTGdR 0% double-triple mutations); the presence or

absence of sites evolved under the cladewise process (xCW = 1 or 0); and the presence or absence of

sites evolved under the branchwise process (xBW = 1 or 0). The generating model was found to have no

significant effect on either of the expected false discovery counts, neither FDC(CW) (p-value = 0.08) nor

FDC(BW) (p-value = 0.12). After removing xMS from the analysis, the following significant relationships

were found:

log {FDC(CW)} = −0.37 + 0.80xBW (10)

log {FDC(BW)} = −0.27 + 0.34xCW + 0.51xBW (11)

For alignments generated with no phenotype-genotype association (i.e., with xCW = xBW = 0) the first

model predicts an average false discovery count of FDC(CW) = 0.69 per alignment for cladewise sites

and the second model an average of FDC(BW) = 0.76 per alignment for branchwise sites, both slightly

under the target E{FDC} = 1. The first model predicts an average FDC(CW) = 1.54 for alignments

generated with branchwise sites whether or not cladewise sites were present. The second model predicts

FDC(BW) = 1.07 for alignments generated with cladewise sites only and FDC(BW) = 1.27 for alignments

generated with branchwise sites only. The predicted rate is nearly two false detections per alignment when

the generating process includes both cladewise and branchwise sites, with FDC(BW) = 1.78 per alignment.
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Analysis of mammalian mtDNA
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Figure 2: Branch lengths (the expected number of single nucleotide substitutions per codon) estimated by fitting the

null and alternate PG-BSM to the alignment of 12 concatenated H-strand mitochondrial DNA sequences (3331 codon sites)

from 20 mammalian species distributed in alignment form by the PAML software package (Yang, 2007). Trees are drawn

to the same scale. Vertical dashed lines indicate the average tip-to-root distance (di, i = 1, ..., 20) across terminal nodes.

Accounting for non-stationary processes under the alternate model caused the tree to be more consistent with the molecular

clock hypothesis, with less variation in the di.

Mitochondrial genes encode proteins involved in basic metabolic processes and are therefore thought to

be functionally constrained most of the time. Signatures of adaptation in mammalian mtDNA have

nevertheless been detected. For example, Pupko and Galtier (2002) detected significant differences in the

replacement rate at some sites in mitochondrial genes in a clade of 7 simian primates compared to a clade

of 27 other mammalian lineages. The authors interpreted this as evidence of adapation and speculated

that it might have been due to changes in metabolic requirements related to an increase in the size of the

neocortex among primates compared to the other mammals included in their analysis (Pupko and Galtier,

2002). Here we present an analysis of a similar alignment of 12 mammalian mtDNA genes 3331 codons

in length taken from 20 mammalian species (Yang, 2007). We used primate/non-primate as a binary

phenotype to facilitate comparison with Pupko and Galtier (2002), but consider this to be a proxy for an

unobserved and unknown phenotype. The analysis presented here is included because it illustrates the

potential impact of accounting for non-stationary cladewise and branchwise processes on branch-length

estimates (i.e., by making the tree more clock-like), and provides a case study that suggests that the
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PG-BSM can be robust to confounding by branch-length effects.

Four models of increasing complexity were fitted to the alignment: (i) the model M3(k = 2) (Yang

et al., 2000), which assumes that some proportion p1 of sites evolved under a smaller ω1 and the remaining

sites under a larger ω2 across the tree without heterotachy; (ii) the covarion-like model CLM3(k = 2),

which assumes that sites evolved under ω1 a proportion p1 of the time but switched randomly between ω1

and ω2 at a rate of δ switches per single nucleotide substitution; (iii) the null PG-BSM, which combines

CLM3(k = 2) with a category of sites that evolved under ω0 = 0; and (iv) the alternate PG-BSM, which

adds to the null model two categories of sites for the cladewise and branchwise processes. Note that

CLM3(k = 2) is fitted to the alignment X alone, whereas the PG-BSM is fitted to X together with the

vector of phenotypes F. We therefore report the log-likelihood of the PG-BSM as the sum of two values:

ln{Lnul(X,F;λ,θ, t)} = ln{P(F;λ, t)}+ ln

{
n∏

h=1

(
π0P0(x

h;θ, t) + (1− π0)PCL(xh;θ, t)
)}

= LLF(F;λ, t) + LLX(X;θ, t)

Similarly:

LLCL(X;θ, t) = ln

{
n∏

h=1

PCL(xh;θ, t)

}
where θ = 〈ω1, ω2, p1, δ, κ, 〉. The log-likelihood ratio LLR = 2 {LLX(X;θ, t)− LLCL(X;θ, t)} evaluated

at the MLEs for the two models provides a means to test the significance of accounting for sites evolving

under ω0 = 0. Note that, whereas t is estimated from (X,F) under the null PG-BSM, it is estimated from

X alone under CLM3(k = 2). Hence the LLR is only approximate. It is likely to be a close approximation

however, since the MLE for t is determined primarily by the information in X.

Model LLX LLF π̂0 ω̂1 ω̂2 p̂1 δ̂ π̂CW π̂BW

M3(k = 2) -89,162 - - 0.01 0.15 0.71 - - -

CLM3(k = 2) -88,880 - - 0.00 0.21 0.77 0.06 - -

null PG-BSM -88,719 -4 0.47 0.02 0.35 0.76 0.12 - -

alt PG-BSM -88,681 -4 0.48 0.02 0.31 0.70 0.13 0.06 0.04

Table 11: Results of the analysis of the mammalian mtDNA.

Accounting for heterotachy resulted in a large improvement in fit, as the M3 vs CLM3 contrast produced

LLR = 2(89, 162 − 88, 880) = 564 on one parameter (δ) (Table 11). Including a category for sites that

evolved under ω0 = 0 also resulted in a large improvement in fit, with LLR = 2(88, 880 − 88, 719) = 322

on one parameter (π0) for the CLM3 vs null PG-BSM contrast. Accounting for phenotype-genotype

association resulted in a smaller but also highly significant improvment, with LLR = 2(88, 719−88, 681) =
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76 on two parameters (πCW and πBW). Trees with branch lengths estimated under the null and alternate PG-

BSM are shown in Figure 2. It is interesting that accounting for non-stationary cladewise and branchwise

processes under the alternate PG-BSM reduced the length of the branch leading to the primate clade from

2.2 single nucleotide substitutions per codon under the null model to 1.3 under the alternate model. This

was accompanied by an increase in the average of the distances d1, ..., d20 from each terminal node to the

root from 2.6 to 2.9. The combined effect was a reduction in the variance of the di. Accounting for the

non-stationary cladewise and branchwise processes therefore caused the tree to be more consistent with

the molecular clock hypothesis.

The alternate PG-BSM inferred a fraction of sites (π̂CW = 0.06, π̂BW = 0.04) to be associated with the

change from non-primate to primate. The post hoc analysis identified a total of 17 sites (11 cladewise

and 6 branchwise) that likely underwent changes in their site-specific fitness landscapes along the branch

leading to the primate clade. Substitution patterns for these sites are shown in Figure 3. Cladewise sites

with posteriors 0.77 ≤ P(CW) ≤ 0.87 (where the upper bound 0.87 corresponds to the maximum value of

P(CW) and the lower bound was determined by setting E{FDC(CW)} = 2) exhibit two or more amino

acids among primates and typically a single amino acid among non-primates, consistent with relaxation of

selection pressure among the primate clade. Branchwise sites with posteriors 0.67 ≤ P(BW) ≤ 0.75 (where

the upper bound 0.75 corresponds to the maximum value of P(BW) and the lower bound was determined

by setting E{FDC(BW)} = 2) exhibit a single amino acid among primates and a single different amino

acid among non-primates consistent with peak shifts along the branch leading to the primate clade.
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Figure 3: Patterns for sites in the mammalian mtDNA alignment inferred to have evolved in association with a change in

the primate/non-primate binary character state after application of false discovery count control with E{FDC} = 2. Rows

designate taxa in the same order as they appear in the tree shown in Figure 2. Columns designate sites. The horizontal

line separates primates from non-primates. The vertical line separates CW from BW sites. Sites of each type are arranged

in order of decreasing posterior probability. The value below each CW site pattern indicates the number of different amino

acids among primates at that site. Colors indicate physicochemical properties: small nonpolar (orange), hydrophobic (green),

polar (magenta), negatively charged (red), positively charged (blue).

The YN-BSM A and YN-BSM B were also fitted to the alignment using the long branch leading to the

primate clade as the foreground. The YN-BSM B is similar to YN-BSM A but estimates the three rate

ratios ω0, ω1, and ω2 freely and uses M3(k = 2) as the null model (Yang and Nielsen, 2002). The YN-BSM

B is not a test for ω2 > 1, but only for a change to ω2 at some sites along the designated foreground branch.

The YN-BSM A detected no evidence of positive selection along the branch leading to the primate clade

(LLR = 2.62 compared to a critical value of 3.84 for a 5% test assuming LLR ∼ χ2
1, Table 12). Model

B detected strong evidence (LLR = 54.44 compared to a critical value of 5.99 for a 5% test assuming

LLR ∼ χ2
2) for an elevation in the rate ratio at some sites along the same branch (ω̂2 = 0.98, p̂2 = 0.15).

The PG-BSM provided the best fit, as the AIC was 177,456 for the PG-BSM, 178,358 for the YN-BSM B

and 181,777 for the YN-BSM A.
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YN-BSM A LLR = 2.62 < 3.84 YN-BSM B LLR = 54.44 > 5.99

category proportion BG ω FG ω proportion BG ω FG ω

0 0.89 0.03 0.03 0.70 0.01 0.01

1 0.07 1.00 1.00 0.28 0.15 0.15

2a 0.04 0.03 1.79 0.01 0.01 0.98

2b 0.00 1.00 1.79 0.01 0.15 0.98

Table 12: Results of the fit of alternate YN-BSM A and B to the mammalian mtDNA data. LLR is the log-likelihood ratio

for the model contrast.

Figure 4 shows 13 sites inferred by YN-BSM B to have undergone an elevation in rate ratio to ω̂2 = 0.98

on the foreground branch after false discovery count control was applied to the Bayes empirical Bayes

posteriors with E{FDC} = 2. Three of these sites have amino acid patterns that match the primate/non-

primate phenotype (marked by filled circles in Figure 4). All three are among the 6 sites inferred by the

PG-BSM to have undergone the branchwise process. None of the sites are consistent with the cladewise

process. However, seven of them are consistent with the reverse cladewise process, exhibiting one amino

acid among primates and several among non-primates (marked by filled triangles in Figure 4). Similar site

patterns were identified by Pupko and Galtier (2002) in their data, and were interpreted as evidence of

functional shifts. Motivated by the presence of site patterns of this kind, the alternate PG-BSM accounting

for the reverse cladewise process alone was fitted to the alignment. No evidence for the reverse cladewise

process was detected (π̂rCW = 0.00) despite the fact that the alignment includes a fair number of site

patterns that are apparently consistent with this process (e.g., there are 828 sites patterns with one amino

acid among primates and 2 or more among the 13 non-primates).
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Figure 4: Patterns for sites in the mammalian mtDNA alignment inferred to be in category 2a or 2b by the YN-BSM B

after application of false discovery count control with E{FDC} = 2. Rows designate taxa in the same order as they appear

in the tree shown in Figure 2. Columns designate sites. The horizontal line separates primates from non-primates. Sites

are arranged in order of decreasing posterior probability estimated using YB-BSM B. Filled triangles and circles mark site

patterns most consistent with the reverse cladewise and branchwise process, respectively. Colors indicate physicochemical

properties: small nonpolar (orange), hydrophobic (green), polar (magenta), negatively charged (red), positively charged

(blue).

The fact that the PG-BSM did not detect evidence for the reverse cladewise process suggests that the

covarion-like component of the null model provides a measure of protection against branch-length effects

(although possibly at the expense of statistical power, cf. Scenario 3b (πCW, πBW) = (5%, 0%)). A site that

evolved on a static fitness landscape over the tree in Figure 2 is likely to exhibit a single amino acid among

the primates because the branches within the primate clade are very short. The same site is likely to exhibit

considerable amino acid diversity among the remaining terminal nodes because the non-primates consist

of three clades each with relatively long terminal branches. It follows that the site-pattern distribution

implied by evolution on static fitness landscapes is similar to that implied by the mechanism whereby

sites undergo an increase in the stringency of selection along the branch leading to the primate clade.

Heterotachous site patterns xh in the alignment consistent with the reverse cladewise process therefore

tended to be approximately equally likely under the covarion-like process. Inclusion of the covarion-like

model CLM3(k = 2) in the null PG-BSM consequently resulted in no evidence for the reverse cladewise

process, possibly preventing a type I error.

The cladewise process was intended to detect sites that might have undergone a reduction in functional
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importance along branches over which the phenotype changed, a process not necessarily associated with

adaptation. However, many of the cladewise site patterns identified in the real mammalian mtDNA suggest

not only a reduction in the stringency of selection among primates but also a peak shift along the branch

leading to the primate clade. The first cladewise site pattern in Figure 3, for example, consists of one amino

acid (arginine) among non-primates and two amino acids among primates. A peak shift is suggested by

the fact that the amino acids among primates are both different than arginine (histidine and tyrosine).

Most of the cladewise sites in Figure 3 have similar patterns. It might therefore be the case that sites that

underwent a reduction in the stringency of selection in combination with a peak shift are more readily

detected by the cladewise component of the alternate PG-BSM than sites that underwent a reduction

in stringency alone. This provides an alternative explanation for the low power to detect cladewise sites

in Simulation Scenario 3b (πCW, πBW) = (5%, 0%), where cladewise sites were generated by reducing the

stringency of selection alone. It should be pointed out however that the alternate PG-BSM does not

provide a formal test for the co-occurrance of a reduction in the stringency of selection with a peak shift

because both processes are expressed in the model by a phenomenological switch to the larger rate ratio ω2.

That co-occurrance can be identified informally by appealing to contextual information demonstrates that

it might be formally detected by the PG-BSM via inclusion of measures to discriminate between amino

acids (cf., Gu, 2006). We leave this task for future efforts.
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Analysis of Phytochrome A&CF
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Figure 5: Branch lengths (the expected number of single nucleotide substitutions per codon) estimated by fitting the

alternate PG-BSM to the phytochrome A&CF alignment.

Phytochrome is a plant photoreceptor associated with the regulation of developmental processes. Most

seed plants contain variants phyA, phyB and phyC, but some also include variants phyD, phyE and phyF

that apparently arose following duplication of phyB (Mathews, 2010). We conducted an analysis of an

alignment of 15 angiosperm phytochrome sequences 1072 codons in length (Figure 5). Previous analyses of

the same data performed as a test case for the YN-BSM partitioned the sequences as phyA versus phyCF

(Yang and Nielsen, 2002; Zhang et al., 2005). We used the same partition and conducted an analysis to

compare the YN-BSM A and YN-BSM B with the PG-BSM.

No phenotype-genotype association was detected by the PG-BSM. However, both YN-BSM A and

YN-BSM B rejected their respective nulls. YN-BSM A detected evidence of positive selection at some

sites along the branch leading to the phyCF clade (i.e., category 2 sites with ω̂2 = 30.17, p̂2 = 0.12) and

identified 29 sites with Bayes empirical Bayes posterior probabilities 0.95 < P(cat 2) < 1.00, all of which

remained after false discovery count control was applied with E{FDC} = 1 (Figure 6). YN-BSM B detected

evidence for an elevation in the rate ratio at some sites along the same branch (ω̂2 = 5.56, p̂2 = 0.05).

Akaike’s Information Criterion was 57,510 for the null PG-BSM, 57,700 for the YN BSM B and 58,255 for

the YN BSM A. Thus the null PG-BSM provided the best fit of the three models.
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Model LLX LLF π̂0 ω̂1 ω̂2 p̂1 δ̂ π̂CW π̂BW

M3(k = 2) -28,818 - - 0.03 0.22 0.55 - - -

CLM3(k = 2) -28,739 - - 0.01 0.30 0.62 0.13 - -

null PG-BSM -28,708 -4 0.22 0.04 0.40 0.68 0.20 - -

alt PG-BSM -28,708 -4 0.22 0.04 0.40 0.68 0.20 0.00 0.00

Table 13: Results of the analysis of the phyA&CF data.

YN-BSM A LLR = 22.67 > 3.84 YN-BSM B LLR = 23.27 > 5.99

category proportion BG ω FG ω proportion BG ω FG ω

0 0.81 0.09 0.09 0.55 0.03 0.03

1 0.07 1.00 1.00 0.40 0.23 0.23

2a 0.11 0.09 30.17 0.03 0.03 5.56

2b 0.01 1.00 30.17 0.02 0.23 5.56

Table 14: Results of the fit of alternate YN-BSM A and B to the phyA&CF data. LLR is the log-likelihood ratio for the

model contrast.

scenario % variant % CW % BW PG-BSM YN-BSM A

4a 40 5 5 50/50 50/50

4b 70 5 5 42/50 50/50

4c 40 0 0 0/50 11/50

4d 70 0 0 0/50 31/50

Table 15: Counts of the number of times the null was rejected for omnibus tests applied to Simulation 4 alignments.

% variant gives the approximate proportion of site patterns in the simulated alignments that exhibited some degree of

heterotachy. The columns PG-BSM and YN-BSM A show the number of trials out of 50 for which the relevant model

rejected the null hypothesis. Rejections are true for scenarios 4a and 4b and false for scenarios 4c and 4d.
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Figure 6: Patterns for sites in the phytochrome alignment inferred to be in category 2a or 2b by the YN-BSM A after

application of FDC control with E{FDC} = 1. Rows designate taxa in the same order as they appear in the tree shown in

Figure 5. Columns designate sites. The horizontal line separates phyA from phyCF. Sites are arranged in order of decreasing

posterior probabilities estimated using YB-BSM A. Filled triangles and circles mark site patterns most consistent with the

CW and BW processes, respectively. Colors indicate physicochemical properties: small nonpolar (orange), hydrophobic

(green), polar (magenta), negatively charged (red), positively charged (blue).
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Data Generation using MSmmtDNA and MSTGdR

Simulations under the MS framework were conducted as follows. First, parameters of the mutation pro-

cess M , including position-specific nucleotide frequencies and the transition/transverion rate ratio, were

estimated from a real alignment consisting of 12 concatenated H-strand mitochondrial DNA sequences

(3331 codon sites) from 20 mammalian species as distributed in alignment form by the PAML software

package (Yang, 2007). Most alignments were simulated without fixation of double-triple mutations by set-

ting (α, β) = (0, 0). In cases where alignments were generated with fixation of double-triple mutations, we

set (α, β) = (0.0371, 0.0030) so that ≈ 6% of all mutations would be double (≈ 5.8%) or triple (≈ 0.2%).

Recent studies suggest that double-triple mutations comprise between 1% and 3% of all mutations (Keight-

ley et al., 2009; Schrider et al., 2014; De Maio et al., 2013; Harris and Nielsen, 2014). We used a larger

value (i.e., 6%) to investigate the impact of double-triple substitutions on model power and accuracy when

left unaccounted for by the fitted model. Next, vectors of amino acid fitness coefficients were drawn for

each site using either MSmmtDNA (as described in Jones et al., 2018) or MSTGdR (i.e., drawn with

replacement from the set of 3598 vectors estimated from real mammalian mtDNA using swMutSel with

a Dirichlet-based penalty and with σ = 0.1 as described in Tamuri et al., 2014). These were scaled and

converted to site-specific substitution rate matrices as follows:

1. A scaling factor σh ∼ 0.001 + (0.01− 0.001)×B was drawn to determine the stringency of selection

at the site, where B ∈ [0, 1] is a beta random variable with shape parameters u, v > 0. Values

of σh ∈ [0.001, 0.01] closer to the upper bound correspond to greater selection stringency, whereas

values closer to the lower bound correspond to a balance between selection and drift that typically

results in shifting balance (Jones et al., 2017). Parameters u and v for the beta distribution were

chosen to make the distributions of scaled selection coefficients sij drawn under MSmmtDNA match

those reported by Tamuri et al. (2012) as closely as possible (Jones et al., 2018) (i.e., u = 0.08 and

v = 0.02).

2. A vector fh of fitness coefficients for the 60 codons for the mammalian mitochondrial genetic code

was then constructed from the amino acid fitnesses with the assumption that synonymous codons

are equally fit. This vector was scaled to make its standard deviation equal to σh.

3. fh =
〈
fh
1 , ..., f

h
60

〉
for the 60 codons was converted into a matrix W h of fixation probabilities computed

from scaled selection coefficients shij = Ne(f
h
j −fh

i ) assuming an effective population size of Ne = 1000

and a ploidy of one for mtDNA:

W h
ij ∝

 1 if shij = 0
2shij

1−exp(−2shij)
otherwise

(12)
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The corresponding site-specific rate matrix Ah = M◦W h was then constructed by taking the element-

wise product of the matrix of mutation rates M and the matrix of fixation probabilities W h.

The expected number of single nucleotide substitutions per codon per unit branch length at each site was

then computed as follows:

rh =
∑
i 6=j

πiA
h(i, j){`1 + 2`2 + 3`3} (13)

where the indicator `s is one if i and j differ by s ∈ {1, 2, 3} nucleotides and zero otherwise. When

generating an alignment with no phenotype-genotype association, all rate matrices were divided by r̄ =

(1/n)
∑n

h=1 r
h to make branch lengths equal to the expected number of single nucleotide substitutions per

codon.

A CW shift was implemented by reducing the stringency of selection to σh = 0.0001 at a subset of sites.

Such shifts were made to occur at the ancestral node of the branch over which the phenotype changed

and were made to persist along all descendant branches. This was intended to mimic an increase in the

replacement rate among a subset of sites over a clade; rCW shifts were similarly implemented but with

the stringency of selection increased to σh = 0.01. A BW shift was implemented by drawing new vectors

of fitness coefficients for a subset of sites to mimic peak shifts. These new vectors were scaled to increase

the stringency of selection to σh = 0.01 and were applied starting at the ancestral node of the branch

over which the phenotype changed and along all descendant branches. When CW, rCW and/or BW shifts

were implemented, all rate matrices were scaled by dividing by r̄a = (1/n)
∑n

h=1 r
h with site-specific rates

averaged over branches:

rh =

∑2N−2
b=1 rh(b)t(b)∑2N−2

b=1 t(b)
(14)

Here rh(b) is the rate for the site along branch b computed using (13) and t(b) is the length of that branch.

20



Generating Ancestral Phenotypes

Ancestral phenotypic states were sampled using the marginal approach described in Yang (2006) pp 121.

Consider the root node of the tree where the state xr is unknown. The probability of xr conditioned on

the vector of phenotypes F at the terminal nodes of the tree can be expressed using Bayes’ theorem as

follows (omitting the rate parameter λ and the vector of branch lengths t for brevity):

P(xr = x | F) =
P(F | xr = x)P(xr = x)

P(F)
=

P(F | xr = x)πx
F∑3

x=1 P(F | xr = x)πx
F

(15)

Here we assume three discrete phenotypes. Note that the conditional probabilities P(F | xr = x) are

readily computed using the pruning algorithm (Felsenstein, 1981). The vector

〈P(xr = 1 | F),P(xr = 2 | F),P(xr = 3 | F)〉

can be used to draw a realization of the state at the root node of the tree. This is used in turn to compute

a vector of marginal probabilities for the two nodes that descend from the root node. Thus the algorithm

moves inductively from the root to the terminal nodes of the tree.

Consider the ith internal node of the tree. A realization xa for the parent of the ith node will already

have been drawn. The conditional probabilility of the state at the ith node can be computed as follows:

P(xi = x | xa,Fi) =
P(Fi | xi = x)P(xi = x | xa)

P(Fi)
=

P(Fi | xi = x)Pi(xa, x)∑3
x=1 P(Fi | xi = x)Pi(xa, x)

(16)

Here Fi denotes the vector of phenotypes at terminal nodes that descend from the ith node. Pi(xa, x) is

the element of the transition probability matrix Pi = exp(tiQF ) corresponding to the xa → x change of

state, where ti is the length of the branch connecting the ith node to its parent. The vector

〈P(xi = 1 | xa,Fi),P(xi = 2 | xa,Fi), xa,P(xi = 3 | Fi)〉

can be used to draw a realization of the state at the ith node. The algorithm continues in this way until

all internal nodes have been assigned a phenotypic state. The resulting vector of states then constitutes

one realization of the evolution of the phenotype conditioned on the values F at the terminal nodes of the

tree.
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Computing Scaling Constants for the PG-BSM

All rate matrices included in the PG-BSM were constructed as follows for k ∈ {0, 1, 2}:

Q(ωk) = M ◦ (`S + ωk`N)/rωk
(17)

The value of the common scaling constant was specified so that estimated branch lengths would give the

expected number of single nucleotide substitutions per codon. The scaling contant for any individual rate

matrix depends only on ωk and can be computed as follows:

rωk
=
∑
i 6=j

πiMij(`S(i, j) + ωk`N(i, j)){`1 + 2`2 + 3`3} (18)

If π0 is the proportion of sites that evolved under Q(ω0 = 0), πCL = 1 − π0 the proportion of sites that

evolved covarion-like with random swiching between ω1 < ω2, and p1 the proportion of time a covarion-like

site is expected to spend evolving under ω1, then the scaling constant for the null PG-BSM is:

r = π0rω0 + πCLrCL = π0rω0 + (1− π0)(p1rω1 + (1− p1)rω2) (19)

Under the alternate PG-BSM accounting for cladewise (CW) and branchwise (BW) sites, the scaling

constant is:

r = π0rω0 + (1− π0 − πCW − πBW)rCL + πCWrCW + πBWrBW (20)

Values for rCW and rBW can be calculated using an average that accounts for both the rate ratio at a site on

any particular branch weighted by the length of that branch and for the distribution of ancestral histories

(i.e., via change maps). For example, the scaling factor for the BW process is:

rBW =
∑
z

π̂z

∑2N−2
b=1 r(zb)t(b)∑2N−2

b=1 t(b)
(21)

where r(zb) = rω1 if zb = 0 and rω2 if zb = 1. Scaling factors rCW and rrCW are similarly computed by taking

into account branches over which the site was evolved under ω1 or ω2.
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False Discovery Count Control

The algorithm described by Newton et al. (2004) was applied to naive empirical Bayesian posteriors to

control the false discovery count (FDC) for our post hoc analyses. We aimed to identify as many sites with

evidence of phenotype-genotype association as possible while controlling the number of false discoveries to

some specified value. The procedure was as follows, here described for BW sites:

1. ph = 1 − P(BW | xh) (cf. equation 7) approximates the conditional probability that assigning the

hth site to the BW category is a type I error.

2. Let p1, ..., pn be a list of these probabilities for all n sites.

3. For any specified bound κ, assign a site to the BW category if ph ≤ κ.

4. By this rule, the expected number of false discoveries given the data is (Newton et al., 2004):

E {FDC} =
n∑

h=1

ph`(ph ≤ κ) (22)

where `(ph ≤ κ) is 1 if ph ≤ κ and zero otherwise.

5. To control the false discovery count to be no more than k ∈ {1, 2}, κ can be set to the largest value

for which E {FDC} ≤ k. Note that this expectation is across data sets, and is only approximate

because it depends on how well the fitted model matches the data-generating process (Newton et al.,

2004).
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Dealing with Underflow

Likelihood functions are typically optimized in log-space. For example, the log-likelihood for the alternate

component of PG-BSM is:

ln {Lalt(X,F;λ,θ, t)} = ln {P(F;λ, t)}+ ln

{∑
z

π̂z

n∏
h=1

g(xh; z)

}
(23)

It is convenient to express the second addend of (23) as follows:

ln

{∑
z

π̂z

n∏
h=1

g(xh; z)

}
= ln

{∑
z

π̂z exp (`z)

}
(24)

where `z = ln

{
n∏

h=1

g(xh; z)

}
(25)

A problem arises when the probability exp(`z) is too small to be represented digitally, an issue commonly

referred to as underflow. This can be mitigated by a simple transformation:

ln

{∑
z

π̂z

n∏
h=1

g(xh; z)

}
= max{`z}+ ln

{∑
z

π̂z exp (`z −max{`z})

}
(26)

Since ∀z `z < 0, the transformation `z−max{`z} moves the log-probabilities to the right toward zero (i.e.,

toward larger values), making underflow less likely.

The transformation method can also be used to avoid underflow in equation (9). Let z∗ represent the

change map that maximizes `z (i.e. maximizes the likelihood of the alignment). The natural log of (9) at

z∗ is:

ln {P(z∗ | X,F)} = ln {Lalt(X,F | z∗)}+ ln {π̂z∗} − ln {Lalt(X,F)} (27)

Applying the transformation:

ln {Lalt(X,F)} = ln {P(F)}+ `z∗ + ln

{∑
z

π̂z exp (`z − `z∗)

}
(28)

= ln {Lalt(X,F | z∗)}+ ln

{∑
z

π̂z exp (`z − `z∗)

}
(29)

Substituting into (27) gives:

P(z∗ | X,F) =
π̂z∗

π̂z∗ +
∑

z 6=z∗ π̂z exp (`z − `z∗)
(30)

Equation (30) demonstrates that the strength of the evidence for the ancestral reconstruction corresponding

to z∗ is a function of the relative frequency of the most frequently sampled change map π̂z∗ and the

differences `z − `z∗ in log-likelihoods of the alignment under the various other z. When evidence for

the PG processes dictated by z∗ is strong, it will be the case ∀z 6= z∗ that exp{`z − `z∗} ≈ 0 making

P(z∗ | X,F) ≈ 1.
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