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Abstract

A version of the mechanistic mutation–selection (MutSel) model that accounts for temporal dynamics at a site is
presented. This is used to show that the rate ratio dN/dS at a site can be transiently >1 even when fitness coefficients
are fixed or the fitness landscape is static. This occurs whenever a site drifts away from its fitness peak and is then forced
back by selection, a process reminiscent of shifting balance. Shifting balance is strongest when the substitution process is
not dominated by selection or drift, but admits interplay between the two. Under this condition, site-specific changes in
dN/dS were inferred in 78–100% of trials, and positive selection (i.e., dN=dS > 1) in 10–40% of trials, when sequence
alignments generated under MutSel were fitted to two popular phenomenological branch-site models. These results
demonstrate that positive selection can occur without a change in fitness regime, and that this is detectable by branch-
site models. In addition, MutSel is used to show that a site can be occupied by a sub-optimal amino acid for long periods
on a fixed landscape when selection is stringent. This has implications for the interpretation of constant-but-different site
patterns typically attributed to changes in fitness. Furthermore, a version of MutSel with episodic changes in fitness
coefficients is used to illustrate systematic differences between parameters used to generate data under MutSel and their
counterparts estimated by a simple codon model. Motivated by a discrepancy in the literature, interpretation of dN/dS in
the context of MutSel is also discussed.
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Introduction
Codon substitution models have provided the basis for the
most commonly used methods of inferring positive selection
in protein-coding sequences since the pioneering efforts of
Muse and Gaut (1994) and Goldman and Yang (1994). Such
models produce estimates of the ratio of the nonsynonymous
substitution rate (after adjusting for neutral opportunity, dN)
to the synonymous substitution rate (likewise adjusted, dS).
The rate ratio dN/dS is represented by the parameter x in a
61� 61 substitution rate matrix that is the building block for
a variety of popular models (Yang and Nielsen 1998).

The simplest model is M0 (Yang et al. 2000), which esti-
mates a single x for all sites and branches. The limited sta-
tistical power of M0 spurred the development of models that
account for variation in x across branches (Yang and Nielsen
1998), across sites (e.g., the M-series models of Yang et al.
2000), and across both branches and sites (Guindon et al.
2004; Yang et al. 2005; Kosakovsky Pond et al. 2011; Murrell
et al. 2015; Smith et al. 2015). Positive selection is inferred
when a model that permits x to be >1 fits the data signif-
icantly better than a nested version of the same model for
which all x are restrained to be one or less. Such inferences
are characteristic of two positive selection scenarios: episodic
changes in functional constraints causing transient increases

in x, and frequency-dependent selection causing sustained
elevations in x along an entire lineage. The signal for episodic
selection is typically restricted to a few branches of a phylog-
eny, and can occur in association with events such as hori-
zontal gene transfer (Yang et al. 2013), gene duplication
(Pegueroles et al. 2013), or colonization of a new niche
(Bielawski et al. 2004). The signal of frequency-dependent
selection differs in that x is elevated at some sites over
much longer periods of evolutionary history. Consequently,
frequency dependent selection is easier to detect and has
been consistently connected to immune surveillance
(Hughes and Nei 1988) and reproductive conflict (Swanson
et al. 2003), to name two scenarios (see Yang and Bielawski
2000, for a more comprehensive list of examples of this type).

Codon models are phenomenological in the sense that
they summarize the “net resultants of selection” (Rodrigue
and Philippe 2010) with only limited consideration of gener-
ating mechanisms (also see Liberles et al. 2013). This approach
is necessary when used for inference, largely due to limitations
in the information contained in any given alignment. Such
models are therefore widely used for the purpose of identi-
fying components of genes that have been impacted by pos-
itive selection. They are also used to generate data for the
purpose of model testing and comparison. However, models
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formulated in terms of the population-level generating mech-
anisms can also be used to investigate the properties of codon
models (Spielman and Wilke 2015). Indeed, without such
investigations, we could not understand how phenomeno-
logical models are related to the evolutionary processes that
actually drive the changes we observe among sequences.

The mutation–selection (MutSel) framework proposed
by Halpern and Bruno (1998) provides a mechanistic de-
scription of the evolutionary process that is grounded in
population genetics. Under this approach, a nucleotide mu-
tation model that is the same for all sites is combined with
fixation probabilities computed from site-specific vectors of
fitness coefficients assuming a Wright–Fisher population
with mutation and selection. Because this framework yields
an explicit relationship between dN/dS and fitness differ-
ences between amino acids, it provides a principled means
to generate realistic sequence alignments consistent with
both positive selection scenarios described earlier.
Extensions of the MutSel admit the scenario of episodic
positive selection by imposing changes in fitness coefficients
at specified sites and branches (dos Reis 2015). Frequency-
dependent selection can be modeled by causing fitness co-
efficients to change upon every substitution, as demon-
strated in the section titled “M-Series Models Interpreted
as Frequency-Dependent Selection under the MutSel
Framework” herein. As both scenarios involve temporal
changes in fitness coefficients, they can be viewed as cases
of population evolution on a changing fitness landscape.

The case where a population evolves on a fixed fitness
landscape represents a stark contrast to both the episodic
and frequency-dependent scenarios. In the fixed-landscape
scenario, the population is not considered to be undergoing
adaptation, and an estimate of x obtained from a phenom-
enological codon model is expected to be consistent with
purifying selection (i.e., x < 1). Spielman and Wilke (2015)
investigated this scenario under the MutSel framework, and
asserted that positive selection cannot occur when fitness
coefficients are fixed. Indeed, the long-run average dN/dS at
a site (and thus x derived from a codon model) will always be
<1 under MutSel when fitness coefficients are fixed (provided
synonymous codons have equal fitness). However, character-
izing evolution on a static landscape using the long-run av-
erage rate ratio ignores temporal dynamics that arise due to
population level processes of mutation and drift.

In this article, we employ the MutSel framework to inves-
tigate population level temporal dynamics that can occur on
a static fitness landscape, and explore its implications for
macroevolutionary inference under phenomenological codon
models. We show that a site-specific temporally dynamic dN/
dS that depends on the codon occupying the site results from
what we call shifting balance (cf. Wright 1982), meaning the
process whereby drift causes a site to move away from its
fitness peak and a combination of positive selection and drift
subsequently act to force it back. We show that the shifting
balance phenomenon is detectable by codon models de-
signed to identify site-specific episodic positive selection,
and that estimates of x obtained by these models can be
significantly >1 under certain conditions. This suggests that,

even when fitness coefficients are constant, temporal varia-
tions in x can be misinterpreted as evidence of positive se-
lection due to episodic or frequency-dependent selection,
whereby fitness coefficients change over time. Furthermore,
we show that the expected proportion of substitutions fixed
by positive selection under a shifting balance process (i.e., to
compensate for chance substitutions to deleterious amino
acids), can be substantial under certain conditions. Taken
together, we assert that positive selection can be an impor-
tant process even when fitness coefficients are constant.

Paper Outline
We start by presenting the elements of the MutSel model
following Halpern and Bruno (1998). Motivated by discrep-
ancies in the way dN/dS was formulated by dos Reis (2015)
versus Spielman and Wilke (2015), this section includes a
discussion as to how the “opportunity” for synonymous
and nonsynonymous substitutions can be defined under
the MutSel framework. MutSel is then used to validate the
interpretation of the M-series models of Yang et al. (2000) as
being specific for frequency-dependent selection. Although
hinted at by other authors (Nielsen and Yang 2003;
Kryazhimskiy and Plotkin 2008; Mugal et al. 2013), a demon-
stration of this interpretation has never published (but see
dos Reis 2013, unpublished). We include this because it helps
to elucidate the differences between the mechanistic frame-
work and the standard phenomenological approach. We
then use the MutSel framework to provide a theoretical ex-
planation for what we call the shifting balance phenomenon,
and introduce the notion of a site-specific MutSel landscape.
We use two different ways to represent this landscape to
illustrate an interesting implication of MutSel that has not
been fully appreciated, namely that a site can be occupied by
a sub-optimal amino acid for long periods when selection is
stringent. This results from what we call a “split” MutSel
landscape, the possibility of which has implications for inter-
preting the signal for functional divergence at the molecular
level.

We proceed with the main point of our study by first
constructing a mechanistic model for shifting balance. This
is used to show that site-specific variations in dN/dS due to
shifting balance are most pronounced when the substitution
process is not dominated by selection or drift, but admits
interplay between the two. We then show that a covarion-like
model (CLM3) similar to fitmodel (Guindon et al. 2004), de-
signed to infer site-specific episodic positive selection, can
detect temporal changes in x generated by shifting balance
when this interplay exists. We also show that, under the same
conditions, both CLM3 and the branch-site model BUSTED
(Murrell et al. 2015) can sometimes detect positive selection
due to shifting balance. These results suggest that the two
models cannot always distinguish between episodic changes
in function (i.e., where amino acid fitness have changed) and
shifting balance on a static fitness landscape. We also present
the MutSel model with peak shifts, following dos Reis (2015),
and examine relationships between parameters used to gen-
erate data under this model and their counterparts estimated
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using the codon model M0. Implications of our results are
explored in Discussion.

The Mutation Selection Model
In this section, we first review the mutation–selection frame-
work as presented by Halpern and Bruno (1998). This leads to
a novel definition of the site-specific rate ratio. We then justify
our novel approach with a discussion concerning the best
way to think about substitution rates “before selection”
within the MutSel framework.

Let fh ¼ hf h
1 ; . . .; f h

61i be a row vector of “additive” fitness
coefficients (Sella and Hirsh 2005) for codons at site h in a n-
site protein-coding gene (we assume that mutations to any of
the three stop codons are always lethal). Although it is not a
requirement, here we assume that the f h

j are constant across
synonymous codons. The probability that a mutation from
wild-type codon i to codon j occurs in an individual during
the time interval ½0;Dt� and is subsequently fixed in a haploid
population of effective size Ne, assuming that lijNe � 1 and
jf h

j � f h
i j is small, is:

Pr ¼
lijNeDt� 1

Ne
if sh

ij ¼ 0

lijNeDt
sh

ij=Ne

1� exp ð�sh
ijÞ

otherwise

8>>><
>>>:

(1)

where, sh
ij ¼ 2Neðf h

j � f h
i Þ is the scaled selection coefficient,

lijNeDt approximates the probability that the mutation oc-
curs in one individual during ½0;Dt�, and ðsh

ij=NeÞ=ð1� exp
ð�sh

ijÞÞ (or 1=Ne when sh
ij ¼ 0) approximates the probability

that the mutation is eventually fixed (Kimura 1962). We as-
sume that Dt is large enough (e.g., thousands of generations)
that the mutant gene is highly likely to be either fixed or
eliminated at some time during ½0;Dt�, and that lijNe is small
enough that it is highly unlikely that more than one mutation
occurs during the same time interval.

Equation (1) describes a discrete-time Markov process.
Probabilities approximate rates on the much larger macro-
evolutionary time scale, and the elements of the site-specific
rate matrix Ah for a continuous-time macroevolutionary sub-
stitution process can be defined as follows for all i 6¼ j:

Ah
ij /

lij if sh
ij ¼ 0

lij

sh
ij

1� exp �sh
ij

� � otherwise

8>>><
>>>:

(2)

The implied proportionality constant scales the rate ma-
trix so that branch lengths are measured as the expected
number of single nucleotide substitutions per codon (in-
stead of per generation, see “Methods” section). Diagonal
elements Ah

ii are specified to make rows sum to zero. It is
assumed that Aij¼ 0 unless a single nucleotide change, k to
‘, changes i to j. The neutral substitution rate is then pro-
portional to lij, the rate at which the k! ‘ mutation oc-
curs under a nucleotide model such as HKY (Hasegawa et al.
1984). It can be shown that Ah defines a time reversible

process so that ph
i Ah

ij ¼ ph
j Ah

ji for all i 6¼ j (Halpern and
Bruno 1998). Consequently, the row vector
ph ¼ hph

1; . . .; ph
61i of stationary frequencies for a site is de-

termined by the relation ph
i / p0

i exp ð2Nef
h
i Þ where

p0 ¼ hp0
1; . . .; p0

61i is the vector of stationary frequencies
under the neutral model (see supplementary material section,
Supplementary Material online).

Let dSh be the ratio of the synonymous substitution rate
(rSh) to the rate at which synonymous mutations arise at a
site (i.e., the “opportunity” for a synonymous substitution,
Sh

opp). From equation (1):

dSh ¼ rSh

rSh
opp

¼
P
ði;jÞ p

h
i lijNeDt� 1

Ne
ISP

ði;jÞ p
h
i lijNeDtIS

¼ 1

Ne
(3)

where IS is an indicator for synonymous (i, j). The ratio of the
nonsynonymous substitution rate to the rate at which
nonsynonymous mutations arise is similarly expressed:

dNh ¼ rNh

rNh
opp

¼

P
ði;jÞ p

h
i lijNeDt� sh

ij=Ne

1� exp ð�sh
ij Þ

INP
ði;jÞ p

h
i lijNeDtIN

¼
P
ði;jÞ p

h
i Ah

ij INP
ði;jÞ p

h
i lijIN

� 1

Ne
(4)

The site-specific rate ratio is therefore:

dNh=dSh ¼
P
ði;jÞ p

h
i Ah

ij INP
ði;jÞ p

h
i lijIN

(5)

dNh=dSh ¼ x when Ah is replace by the phenomenolog-
ical rate matrix (e.g., Q of equation (19) in “Methods” section),
so equation (5) is the analogue of x under the mutation–
selection framework. Note that, we use x, and x1 without a
superscript to refer to a rate ratio shared by a number of sites,
whereas superscripts xh and xh

1 indicate site-specific ratios.
The dN/dS notation is reserved for theoretical expressions
derived under MutSel.

Our definitions for dSh and dNh depart from the ap-
proach used by both dos Reis (2015) and Spielman and
Wilke (2015). To illustrate the differences, it is helpful to first
look at how dS has been traditionally defined under a phe-
nomenological codon model. The synonymous substitution
rate under the phenomenological rate matrix can be ex-
pressed as follows:

rS ¼
X
ði;jÞ

jpipjISITs þ
X
ði;jÞ

pipjISITv (6)

where ITs and ITv are indicators for transitions and transver-
sions, respectively, j is the transition/transversion ratio, and
the pi are empirically derived codon frequencies. Under this
framework, opportunity is defined as the substitution rate
between codons that are equally fit, which is obtained by
setting x¼ 1. But since equation (6) does not contain x,
rSopp is identical to rS and dS ¼ rS=rSopp ¼ 1.

Note that rS and rSopp are computed under equation (6)
using the same vector of empirical frequencies. Neutral
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frequencies under the mutation–selection framework, by
contrast, are generally not the same as site-specific frequen-
cies. Perhaps with this in mind, dos Reis (2015) defined dSh

and dSh
opp under the MutSel framework as follows:

rSh ¼
X
ði;jÞ

ph
i l

h
ij IS (7)

rSh
opp ¼

X
ði;jÞ

p0
i l

h
ij IS (8)

where the p0
i are neutral stationary frequencies. By this formu-

lation, rSh
opp can be interpreted as the synonymous substitution

rate that would be realized at a site in a pseudo-gene for which
all codons have the same fitness (i.e., the substitution rate with-
out selection); rSh

opp is consequently the same for all sites. A
different approach was taken by Spielman and Wilke (2015),
who defined rSh as in equation (7), but used site-specific station-
ary frequencies in place of neutral frequencies in their definition
of rSh

opp, making it site-specific. However, this definition negates
the interpretation of opportunity as the substitution rate with-
out selection because the ph

i are determined by selection.
We take a different approach by defining opportunity as

the rate at which mutations arise at a site under its current
selection regime. It is, after all, the mutations that are actually
realized at a site that come under selection. By this definition,
rSh

opp is computed using the site-specific stationary frequen-
cies (the ph

i ). Furthermore, rSh
opp now counts mutations, not

substitutions. It is therefore derived from the probability of a
synonymous mutation (/ lijNeIS) instead of the probability
of a synonymous substitution (/ lijIS). By this approach,
equation (3) is the ratio of the rate at which synonymous
substitutions are realized at a site to the rate at which syn-
onymous mutations arise at the site under the current selec-
tion regime specified by a vector of fitness coefficients and Ne.
The ratio dSh is therefore 1=Ne instead of one as it is under the
traditional phenomenological approach. But note that our
approach does not impact the rate ratio dNh=dSh, since 1=
Ne appears as a factor in the expression for dNh as well. As a
result, our equation (5) is the same as that used by Spielman
and Wilke (2015); it is only our interpretation of rSh

opp and r
Nh

opp that is novel.
To reiterate, whereas rNh=rSh is the ratio of the expected

number of nonsynonymous substitutions to the expected
number of synonymous substitutions at a site, rNh

opp=rSh
opp

by our definition is the same ratio but for mutations, some of
which will be fixed and some lost. Thus, for instance, when
the ratio of realized substitutions rNh=rSh is less than the ratio
of potential substitutions rNh

opp=rSh
opp, the expected propor-

tion of nonsynonymous mutations that are fixed is smaller
than the expected proportion of synonymous mutations that
are fixed, resulting in dNh=dSh < 1, a signature of purifying
selection. Furthermore, as will be shown in the section titled
“MutSel on a Changing Fitness Landscape”, the rate ratio can
be transiently >1 following a change in fitness coefficients.
Equation (5) is therefore consistent with what the rate ratio
was intended to measure.

Results

M-Series Models Interpreted as Frequency-
Dependent Selection under the MutSel Framework
The basis of most phenomenological codon models (e.g., the
M-series models of Yang et al. 2000) is a 61� 61 substitution
rate matrix Q with one x (see “Methods” section). This matrix
characterizes the substitution process either for all sites (e.g., as
it would under M0) or for some subset of sites (e.g., under M3
sitesareapportionedbetweenseveralx-categories).Q issimilar
to the rate matrix for MutSel, as Qij¼ 0 unless codons i and j
differ by a single nucleotide substitution and Qij / lij, the neu-
tral substitution rate, when i and j are synonymous. The two
rate matrices differ only in their treatment of nonsynonymous
substitutions. Rates under Q are scaled by a constant factor x
when iand jarenonsynonymous, so thatQij / xlij for all pairs
of nonsynonymous codons. By comparison, substitution rates
between nonsynonymous codons can be different for each (i, j)
pair in the rate matrix A defined by equation (2).

The rate ratio for a set of sites evolving under Q is con-
stantly x, consistent with the stationary process that Q de-
fines. However, this constancy belies an implicit assumption
of a constantly changing fitness landscape. For this reason, x
> 1 under any M-series model can be interpreted as an in-
dication of adaptive evolution by frequency-dependent selec-
tion. Here we demonstrate the veracity of this statement
using a formal MutSel model for frequency-dependent selec-
tion. For an alternative demonstration see dos Reis (2013).

Consider a variation of MutSel where: (i) the incumbent
amino acid at a site has one fitness coefficient fh while all
others have fitness f h þ Df h; and (ii) when a substitution
occurs, the incumbent and incoming amino acids swap fit-
nesses so that condition (i) still holds (Nielsen and Yang 2003;
Mugal et al. 2013). The vector of site-specific fitness coeffi-
cients fh under assumptions (i) and (ii) is a time-dependent
random variable that has no analogue in the x-model frame-
work. Nevertheless, because the parameters of the process at
a site do not change until a substitution occurs, Markov chain
properties imply:

(i) The probability that codon i is substituted by j is pro-
portional to Ah

ij , with Ah
ij ¼ lij for synonymous and xh

lij for nonsynonymous (i, j), where xh ¼ 2NeDf h=
ð1� exp ð�2NeDf hÞÞ.

(ii) For wild-type codon i, the time until a substitution
occurs is an exponential random variable with mean
ri ¼ �1=Ah

ii .

Significantly, properties (i) and (ii) define a Markov process
with rate matrix Ah ¼ Qh (Ross 1996, Chapter 5) (using the
formulation with nucleotide frequencies, see “Methods” sec-
tion). Note that the vector of fitness coefficients fh at a site is
dynamic since it depends on the codon currently occupying
the site. It can therefore be different from one site to the next
at any instant. All sites that share the same Df h nevertheless
evolve under the same phenomenological rate matrix Qh.

The equivalence of the rate matrix Ah for a MutSel process
under (i) and (ii) to the rate matrix Qh (defined in “Methods”
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section) suggests that M-series models can be interpreted as
being designed to detect signatures of frequency-dependent
selection where, for instance, antagonistic interactions be-
tween proteins cause the fitness of any given variant to be
inversely proportional to its frequency in the population. This
interpretation makes sense only when Df h > 0 (i.e., xh > 1)
however, as was pointed out by dos Reis (2013); it is more
appropriate to think of Qh as a model for purifying selection
when Df h < 0 (xh < 1), or neutral selection when Df h �
0 (xh � 1). Furthermore, even when Df h > 0, Qh only cap-
tures the phenomenological effect of frequency-dependent
selection, the sustained elevation of x to a value >1 over a
branch or lineage. MutSel under (i) and (ii) is an extension of
the two-state model in dos Reis (2013). That model was more
mechanistic in the sense that it explicitly accounted for
changes in fitness as a function of changes in frequency.
Nevertheless, dos Reis (2013) showed that under certain strin-
gent conditions his frequency-dependent model was equiva-
lent to a site evolving under a constant rate ratio. The
implication of the interpretation of x > 1 in an M-series
model as an indication of frequency-dependent selection
vis-a-vis our study of shifting balance is raised in Discussion.

Shifting Balance on a Static MutSel Landscape
Turning now to the general MutSel model of the section titled
“The Mutation Selection Model”, Spielman and Wilke (2015)
proved that positive selection signified by a long-run average d
Nh=dSh > 1 is not possible when fitness coefficients are fixed
(provided that synonymous codons have equal fitness and the
mutation process is symmetrical; we establish in supplemen
tarymaterial section,SupplementaryMaterial online, that their
result holds for asymmetric mutation processes as well). Here
we propose a different interpretation of MutSel that takes into
account the temporal dynamics of mutation and drift on a
static fitness landscape. The amino acid occupying the hth

site will vary over population time scales via mutation–selec-
tion as long as at least two amino acids have nonnegligible
stationary frequencies. Under this condition, the expected pro-
portion ph

þ of substitutions due to positive selection is:

ph
þ ¼

P
ði;jÞ p

h
i Ah

ij � lij

� �
IþP

i6¼j p
h
i Ah

ij

(9)

where Iþ is an indicator for sh
ij > 0 (see supplementary mate

rial section, Supplementary Material online, for details). This
proportion is >0 unless only one amino acid is viable at the
site, which is unlikely to occur at all sites in a gene. The model
therefore predicts that some mutations will be fixed by pos-
itive selection. Similarly, some mutations will be lost to puri-
fying selection and some fixed by drift. Time reversibility
implies that the number of deleterious substitutions is exactly
balanced by an equal number that are beneficial when aver-
aged over population time scales (e.g., ph

þ ¼ ph
�, where ph

� is
the proportion of substitutions i! j for which sh

ij < 0).
Hence, beneficial substitutions can be thought of as “repair-
ing” previously deleterious ones (Sella and Hirsh 2005;
Mustonen and L€assig 2009).

To visualize this process, we introduce the notion of a site-
specific MutSel landscape (cf. Bazykin 2015), an analogue of
the traditional fitness landscape constructed by sorting site-
specific stationary frequencies from largest to smallest as de-
picted in figure 1. There, the frequencies were derived from
fitness coefficients drawn from a normal distribution with a
standard deviation r ¼ 0:001 (we use an effective popula-
tion size of Ne¼ 1,000 in all of our analyses unless otherwise
indicated). Positive selection can be seen to occur on this
landscape by considering how dNh=dSh varies over time.
The dNh=dSh ratio for the site depicted in figure 1 is 0.58.
However, this value is a long-run average; the rate ratio in fact
varies depending on the codon currently occupying the site.
The codon-specific dNh

i =dSh
i (where i is the codon currently

occupying the site) can be computed from the ith row of the
rate matrix:

dNh
i =dSh

i ¼
P

j Ah
ij INP

j lijIN
(10)

Equation (10) is approximately equal to x when Ah is
replaced by the rate matrix for M0, with minor variations
due to biases in the mutation process (e.g., the proportion
of single-nucleotide nonsynonymous substitutions from i to j
that are transitions varies slightly between codon pairs when
j > 1). However, dNh

i =dSh
i can undergo substantial varia-

tions under MutSel, depending on the fitness coefficients.
Thelineplotinfigure1showsdNh

i =dSh
i (scaledontherighty-

axis) for each codon. When a codon with low fitness (one far to
the right or in the “tail” of the MutSel landscape) occupies the
site, the majority of mutations are “up-slope” with sh

ij > 0. The
codon-specific rate ratio (eq. 10) is consequently greater than
dNh=dSh ¼ 0:58 (as large as 4.10 in this example). As the site
moves in the up-slope direction, the proportion of mutations
that are further up-slope diminishes and dNh

i =dSh
i decreases to

a value<0.58 (as small as 0.24 in this example). By this process,
chancesubstitutions(e.g.,drift)thatmoveasitedown-slopeare
balanced by a combination of drift and positive selection
(dNh

i =dSh
i > 1) that move the site back toward its peak. We

suggest calling temporal variation in the site-specific rate ratio
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FIG. 1. Bars show stationary frequencies sorted from largest to small-
est. The line shows the codon-specific rate ratio dNh

i =dSh
i for the

sorted codons. The rate ratio varies depending on the codon cur-
rently occupying the site, and can be> 1 following a chance substi-
tution into the tail (to the right) of the landscape. In this case the
codon specific rate ratio for the site ranges from 0.24 to 4.10 with a
temporal average of dNh=dSh ¼ 0:58.
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“shifting balance” because the process is evocative of Wright’s
theory (Wright 1982).

Split MutSel Landscapes
Sites are considered to be homogeneous under a codon sub-
stitution model such as M0. MutSel, by contrast, is site-specific.
Here we make use of this property to investigate the dynamics
of the MutSel substitution process at an individual site. We
show that a site-specific landscape can be quite complex, and
that the temporal dynamics of evolution implied by such a
landscape can change dramatically with changes in population
size alone (i.e., even while fitness coefficients are fixed).

Under a stringent selection regime, a landscape can be very
sparse; that is, it is possible for the site-specific vector of sta-
tionary frequencies to be nearly zero for all but a few amino
acids. Some sparse landscapes can be structured such that the
shifting balance process can reside for nonnegligible periods
of time at sub-optimal amino acids. We call these “split land-
scapes” because a sequence alignment derived from evolution
on such a landscape will tend to consist of site patterns that
are split between the optimal and a sub-optimal amino acid.

The method of visualizing a landscape introduced by
McCandlish (2011) is particularly useful in this context (see
“Methods” section). An example is shown in figure 2. There,
only three amino acids occur with nonnegligible frequencies
(fig. 2A), all of which are in the region we call the peak of the
landscape, where dNh

i =dSh
i < 1 for all codons i. The vertices

in figure 2B mark locations of the eight codons for these
amino acids in the 2-dimensional landscape (codons with
negligible stationary frequencies were omitted for clarity).
The diameter of each circle is proportional to the stationary
frequency of the codon at its center. The length of each line
connecting a pair of vertices is approximately proportional to

the expected number of single nucleotide substitutions it
would take for the site to move from one vertex to the other
and back again via any and all available pathways. Pairs of
codons that are very close to one another (e.g., ACA and
ACG) are synonymous and differ by one transition; they are
close because the site can move rapidly between them.

The depicted site will spend most of its time moving be-
tween T (with stationary frequency pT ¼ 0:76), E
(pE ¼ 0:19), and K (pK ¼ 0:05), since all other amino acids
have negligible frequencies. The dynamic is largely governed
by that fact that T and E differ by at least two nucleotides. A
site that starts at one must therefore be occupied by an alias
of K before reaching the other. However, K is the least fit of
the three, and so can only be reached after a long expected
waiting time. This means that the site can become stuck at
the sub-optimal E for extended periods. This effectively
“splits” the MutSel landscape. Note that allowing double
and triple mutations would not necessarily change this dy-
namic but would only replace low substitution rates between
T and E via K with low rates of double and triple mutations
that take a site from T (or E) directly to E (or T) (for example,
Tamuri et al. (2012) estimated that double mutations com-
prise 0.58%, and triple only 0.002% of all mutations in their
analysis of 12 proteins in the mitochondrial genome of 244
mammal species). The landscape remains split either way.

To highlight the role of drift on a static landscape, we
reduced the effective population size Ne by a factor of 10,
which allows drift a much larger role in the evolutionary
process. Figure 3 depicts the landscape after this reduction
(note that the fitness coefficients are the same as those used
in fig. 2). The MutSel landscape shown in figure 3A is now
much broader, reflecting an increase in frequencies that were
previously negligible. The 2-dimensional landscape in figure
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FIG. 2. A MutSel landscape for a site under stringent selection pressure. A: Only three amino acids have nonnegligible frequencies. B: The 2-
dimensional landscape provides information about the substitution dynamics at the site. Vertices indicate the location of codons in the 2-
dimensional space; circle diameters are proportional to stationary frequencies; edge lengths are proportional to the expected number of single
nucleotide substitutions required for the site to move from one vertex to the other and back again.
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3B depicts a much larger network of connections between
viable amino acids. By increasing the role of drift, we reduced
the effectiveness of selection, and thereby freed the site to
move more rapidly between T and E (third column, table 1),
whose stationary frequencies are now nearly the same
(pT ¼ 0:083; pE ¼ 0:078). This example demonstrates that
site-specific codon frequencies and the expected rate of
nonsynonymous substitutions (table 1) can change dramat-
ically over time due to changes in effective population size
while the underlying relationship of the site to protein func-
tion (i.e., the site’s fitness coefficients) remains constant.

A Mechanistic Model for Shifting Balance
It is reasonable to expect branch-site codon models (Guindon
et al. 2004; Yang et al. 2005; Kosakovsky Pond et al. 2011;
Murrell et al. 2015; Smith et al. 2015) to capture temporal
variations in site-specific rate ratios illustrated in the section
titled “Shifting Balance on a Static MutSel Landscape” when
fitted to data generated under MutSel. In this section, we

derive expressions from the mutation–selection framework
for parameters that have meaningful interpretations in the
context of a branch-site model that allows a site to switch
between two rate ratios, x1 and x2, continuously over time
at a rate d (Guindon et al. 2004). The purpose of this exercise
is 2-fold: first, to demonstrate that there is a mechanism by
which a site can switch between two rate ratios on a static
landscape; and second, to identify the conditions under
which such variations are most pronounced.

Let Ihp be an indicator for codons i for which dNh
i =dSh

i � 1
(e.g., near the peak of the MutSel landscape), and let Iht be the
same for codons for which dNh

i =dSh
i > 1 (in the landscape’s

tail). A site will shift between its peak and tail, corresponding
to switches between xh

1 � 1 and xh
2 > 1, with stationary

proportions

ph
1 ¼

X
i

ph
i Ihp (11)

ph
2 ¼ 1� ph

1 (12)

Expected rate ratios can be computed using equation (5)
restricted to either the peak or tail:

xh
1 ¼

P
ði;jÞ

ph
i

p1
Ah

ij INIhpP
ði;jÞ

ph
i

p1
lijINIhp

(13)

xh
2 ¼

P
ði;jÞ

ph
i

p2
Ah

ij INIhtP
ði;jÞ

ph
i

p2
lijINIht

(14)

The expected number of switches per single nucleotide
substitution is the ratio:
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FIG. 3. The landscape in figure 2 after a 10-fold decrease in the effective population size. A: The MutSel landscape is now broader; many codons have
nonnegligible stationary frequencies. B: The site is now free to move around a large network of connections.

Table 1. Codon-specific Rate Ratios.

Codon Ne¼1,000 Ne¼100

ACA(T) 0.026 0.20
ACT(T) 5:8� 10�10 0.072
ACC(T) 5:1� 10�4 0.35
ACG(T) 0.026 0.19
GAA(E) 0.15 0.38
GAG(E) 0.15 0.40
AAA(K) 0.74 0.55
AAG(K) 0.74 0.49

NOTE.—The Codon-specific rate ratios for each codon listed in the first column as a
function of the effective population size Ne. The site-specific MutSel landscapes for
Ne¼ 1,000 and Ne¼ 100 are shown in figures 2 and 3.
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dh ¼
P
ði;jÞ p

h
i Ah

ij IswitchP
i 6¼j p

h
i Ah

ij

(15)

where Iswitch is an indicator for pairs of codons (i, j) for which
one is in the peak and the other the tail of the MutSel land-
scape. Since a switch can only occur upon a substitution, dh

can be no greater than one.
Fitness coefficient vectors were drawn for 250 sites from a

multivariate normal distribution centered at zero and with
covariance matrix r2I, where I is the 61� 61 identity matrix,
using r 2 f0:0001; 0:001; 0:01g and Ne¼ 1,000; the muta-
tion process was assumed to be HKY with j¼ 4 and uniform
nucleotide frequencies (see “Methods” section). Each vector
was modified to make synonymous codons have the same
fitness. The site-specific rate ratio was then calculated for each
vector. Figure 4 shows how the distribution of dNh=dSh

changes with r. Figure 4A demonstrates that r ¼ 0:0001
corresponds to a nearly neutral selection regime, as the
site-specific rate ratio is very nearly one most of the time
(with a median dNh=dSh of 0.99). Figure 4B shows that sites
evolve over a wide range of site-specific rate ratios when r
¼ 0:001 (dNh=dSh ranges from 0.06 to 0.74 with a median of
0.39). And sites are mostly under stringent selection selection
in figure 4C, when r ¼ 0:01 (with a median dNh=dSh of
1� 10�5). In the remainder of this section, we characterize
the differences between these three selection regimes in
terms of xh

1; xh
2; ph

2 , and dh.
Figure 5 shows box plots for parameter values computed

from an additional draw of 250 vectors of fitness coefficients
for each value of r. We begin by considering the case of nearly
neutral evolution (r ¼ 0:0001). The median expected pro-
portion of single nucleotide substitutions attributed to pos-
itive selection (ph

þ, fig. 5A) is only 3.4%. The median
probability that a site is in the tail of its MutSel landscape
(ph

2, fig. 5B) is just under 43%. The median switching rate (dh,
fig. 5C) is 0.44, indicating approximately one switch for every
two substitutions. The rate ratio from the tail (xh

2 , fig. 5D) is
tightly distributed around a median of 1.1; xh

1 (not shown) is

similarly distributed but with a median of 0.91. In this scenario
the population moves easily in and out of the tail, with only a
small difference between xh

1 and xh
2 , because the landscape is

nearly flat, with only slight variation in the ph
i and dNh

i =dSh
i

across codons. Although transient changes in xh are ex-
pected to occur frequently under this process, they would
be deemed trivial in magnitude within a real dataset.

Next, we consider the case where a population is being
held tightly to its fitness peak (r ¼ 0:01). The median value
ph

2 is much <1%, reflecting a low probability of drift away
from the peak. The rate ratio xh

2 from the tail is relatively
large, with median 2.7 (the median of xh

1 was <1� 10�4).
The median proportion of single nucleotide substitutions due
to positive selection ph

þ and the median switching rate dh are
both very low. This scenario is consistent with strong selective
pressure that mostly prevents the shifting balance process
from moving the population away from its peak.

Interestingly, some parameters have outliers under this
scenario. Outliers in xh

2 tend to correspond to cases where
ph

2 is very small. Among the 53 trials for which xh
2 was>5, for

example, the median value of ph
2 was <2� 10�10. Such val-

ues indicate very strong selection pressure following a very
rare chance substitution into the tail. Outliers in dh and ph

þ
can be attributed to chance relationships in a reduced space
of viable codons (i.e., in a sparse landscape). An example is
depicted in figure 6, where codons were sorted by dNh

i =dSh
i

rather than frequency so that the point of separation be-
tween peak and tail could be represented (vertical dashed
line). Two amino acids M and I dominate the landscape;
almost all substitutions are between them and consist of
single nucleotide substitutions in the third position. Since
M has only one codon alias, any substitution from the peak
can only be nonsynonymous. And since a substitution from
M across the dNh

i =dSh
i ¼ 1 boundary to ATA(I) is quite likely

(e.g., table 2), dh and ph
þ are both unusually large for the r

¼ 0:01 scenario (dh ¼ 0:58 and ph
þ ¼ 0:28).

Lastly, we consider the case between the nearly neutral and
stringent selection scenarios where r ¼ 0:001. Population
dynamics on this landscape lead to a relatively large median
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FIG. 4. The distributions of the site-specific rate ratio dNh=dSh for 250 sites under each of the three values of r used in this study. A: r ¼ 0:0001 is
consistent with nearly neutral evolution, as most sites evolve under a rate ratio close to one. B: the rate ratio varies over a broad range of values
when r ¼ 0:001. C: r ¼ 0:01 is consistent with stringent selection for which most sites evolve under a rate ratio close to zero.
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value of ph
þ, which indicates that �10% of single nucleotide

substitution are due to positive selection acting to “repair”
deleterious substitutions. The median switching rate is 0.26,
one switch for every four substitutions. The median rate ratio

from the tail is 1.5 (its 0.33 from the peak). Whereas the
previous two scenarios represent extreme cases where one
population genetic process strongly dominated the other
(e.g., drift dominated in the r ¼ 0:0001 case, and selection
dominated in the r ¼ 0:01 case), this scenario reflects an
interplay between both processes. Here, the population oc-
casionally moves away from its peak, but such events are
quickly corrected because selection remains an effective force
for moving the population back. This is the scenario that
produces the strongest transient signature of positive selec-
tion on a fixed landscape.

The way fitness coefficients are selected introduces a phe-
nomenological component to the mutation–selection frame-
work, since we use an assumed distribution in lieu of actual
values. Although a few investigations suggest that the distri-
bution of the sh

ij (and therefore the f h
i ) is sometimes consis-

tent with a normal distribution (Nielsen and Yang 2003;
Tamuri et al. 2012), there is no reason not to try alternatives.
When we reproduced figure 5 using an exponential distribu-
tion with variance l2 2 f1� 10�8; 1� 10�6; 1� 10�4g,
we found similar patterns as those described earlier (supple
mentary fig. S1, Supplementary Material online). We expect
that, whatever distribution is used to draw fitness coefficients,
a lower variance corresponds to the nearly neutral scenario
dominated by drift, a higher variance to the stringent scenario
where selection dominates, and something in between to a
balance between selection and drift for which shifting balance
is strongest.

Detecting Transient Changes in x Caused by Shifting
Balance on a Fixed Landscape
In the previous section, we investigated a mechanistic process
by which a site can switch between two rate ratios as it moves
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FIG. 6. The MuSel landscape depicted here was constructed by sorting
codons by dNh

i =dSh
i . The vertical dashed line shows the point of sep-

aration between peak and tail. The site is dominated by substitutions
between M and the three codons for I. Although substitutions from M
are rare, when they do occur they are nonsynonymous since M has
only one alias, and they are almost always to I. Substitutions to
ATA(I), to the right in the tail of the landscape, are favored due to
transition bias. As a result, both dh ¼ 0:58 and ph

þ ¼ 0:28 are unusu-
ally large for this scenario.

Table 2. Substitution Probabilities.

ATG(M) ATT(I) ATC(I) ATA(I)

ATG(M) 0 0.30 0.30 0.39
ATT(I) 0.76 0 0.17 0.07
ATC(I) 0.76 0.17 0 0.07
ATA(I) 0.87 0.06 0.06 0

NOTE.—Numbers give the probabilities that the incumbent codon in a row is next
substituted by the codon in a column for the MutSel landscape depicted in figure 6.
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FIG. 5. Distributions for the parameters of the mechanistic shifting balance model computed from 250 trials. Each set of parameters was derived
from a vector of fitness coefficients drawn from a normal distribution with zero mean and standard deviation r 2 f0:0001; 0:001; 0:01g and with
Ne¼ 1000. The center bar in each box indicates the median. The limits of each box show the first and third quartiles. Circles indicate outliers. A: ph

þ ,
the expected proportion of substitutions due to positive selection; B: ph

2 , the expected proportion of time (single nucleotide substitutions) a site is
in the tail of its MutSel landscape; C: dh, the expected rate a site switches between the peak and tail of its MutSel landscape; D: xh

2 , the expected rate
ratio for the site when it is in the tail of its MutSel landscape.
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over its fixed MutSel landscape. Our objective in this section is
to demonstrate that a version of the switching model of
Guindon et al. (2004), suitably modified to resemble the
mechanistic switching model of the previous section, can
detect site-specific variations in the rate ratio under certain
conditions. We call our phenomenological switching model
CLM3 for covarion-like M3 (see “Methods” section for
details).

Alignments were generated on an 8-taxa symmetrical tree
with branch lengths b 2 f0:25; 0:5; 1g using fitness coeffi-
cients with r 2 f0:0001; 0:001; 0:01g and Ne¼ 1,000 as de-
scribed in “Methods” section. For each scenario defined by
ðr; bÞ the same set of 500 fitness coefficient vectors was used
to generate 50 unique alignments. The data were fitted to
CLM3 to obtain maximum likelihood estimates (MLEs) of
model parameters. Each alignment was also fitted to codon
model M3 (see “Methods” section) to provide a test for the
significance of site-specific switches between x1 and x2.
Table 3 shows the number of trials out of 50 for which the
M3-CLM3 contrast rejected the null hypothesis of no switch-
ing. The test, conducted at the 5% level of significance, seldom
detected evidence for switching under the nearly neutral
(r ¼ 0:0001) and stringent selection (r ¼ 0:01) scenarios,
the exception being the b¼ 1 with r ¼ 0:01 scenario, where
the test was significant in 15 of the 50 trials. Shifting was
detected in all trials when r ¼ 0:001 and b 2 f0:5; 1g,
and in most trials when b¼ 0.25. These results are in agree-
ment with the mechanistic model that indicated that the
scenario where neither drift nor selection dominate
(r ¼ 0:001) would produce the strongest signal for shifting
balance.

Previous investigations indicated that a covarion-like
model can detect switching (i.e., d > 0) even when data is
generated without switching, and that this may occur when
the number of x-categories used to generate the data is
greater than the number assumed by the fitted model (Lu
and Guindon 2013). Under our generating scenario with
r ¼ 0:001, the site specific rate ratio can vary greatly, for
example with values as small as dNh=dSh ¼ 0:06 and as large
as dNh=dSh ¼ 0:74 for the 250 trials depicted in figure 4B. To
rule out the possibility that this variation produced false sig-
natures of switching, an additional set of fitness coefficient
vectors was drawn with r ¼ 0:001. The rate ratio dNh=dSh

was computed for each vector. Each rate ratio was used to
construct a site-specific phenomenological substitution rate
matrix (e.g., Q defined in “Methods” section). The resulting
generating model was thus similar to an M-series model but

with a different xh for each site. This model was used to
generate fifty 500-codon alignments on a symmetrical 8-
taxa rooted tree with all branch lengths b¼ 1. Since each
site was evolved under its own rate matrix with
xh ¼ dNh=dSh, the alignments had a similar distribution of
site-specific rate ratios as data generated under MutSel but
without the rate shifts that can occur under MutSel. The M3-
CLM3 contrast failed to reject the null at the 5% level of
significance in all 50 trials, indicating no detectable switching
(i.e., d was never significantly >0). We concluded that the
results in table 3 can be attributed to rate shifts caused by
shifting balance.

We used the r ¼ 0:001 and b¼ 1 scenario to investigate
relationships between MLEs under CLM3 and site-specific
parameters xh

1; xh
2; ph

2 , and dh of the mechanistic switching
model. Box plots in figure 7 depict the distributions for these
parameters computed from site-specific fitness coefficients. A
different draw of fitness coefficient vectors was used to gen-
erate an 8-taxa alignment for each of the five trials depicted.
Diamonds mark MLEs obtained by fitting each alignment to
CLM3. Whereas the box plots indicate similar distributions for
the site-specific parameters in each trial, the MLEs exhibit
substantial variation. They also appear to be correlated
such that an alignment that produced a larger estimate for
p2 also produced smaller estimates for both x2 and d. This
pattern is consistent with correlations between the 2,500
values computed under the mechanistic switching model
(5 alignments, each with 500 sites), for which
rðph

2;x
h
2Þ ¼ �0:66; rðph

2; d
hÞ ¼ �0:52; rðxh

2; d
hÞ ¼ 0:84.

The correlations between the MLEs for the 50 trials of the r
¼ 0:001; b ¼ 1:0 scenario in table 3 were rðp2;x2Þ ¼ �
0:86; rðp2; dÞ ¼ �0:94; rðx2; dÞ ¼ 0:87 (supplementary
fig. S2, Supplementary Material online).

It is interesting that the MLE for x1 is consistently under-
estimated compared with the median value of xh

1 , as shown
in figure 7A. Here we attempt to explain this result. First note
that, even over a branch as long as one single nucleotide
substitution per codon, a substantial proportion of sites will
remain unchanged. In a simulation of a 500-codon sequence
evolving under the r ¼ 0:001 scenario over a branch length
of one, for example, we found that no substitutions occurred
at �40% of sites (supplementary fig. S3, Supplementary
Material online). It is possible that CLM3 underestimates
x1 relative to the median of xh

1 in part to account for such
sites.

Whereas the five trials in figure 7 each had their own draw
of site-specific fitness coefficients, the same set of 500 fitness
coefficient vectors (but different than any of those in fig. 7)
generated all 50 8-taxa alignments used to produce the box
plots in figure 8. There, the box plots on the left in each panel
show the distributions for xh

1; xh
2; ph

2 , and dh for the 500
vectors. Box plots on the right show the distributions for the
50 MLEs for each parameter estimated using CLM3. The larger
variance exhibited by the MLEs compared with their corre-
sponding site-specific values is likely due to random differ-
ences between the generated alignments. As in figure 7A, the
MLE for x1 is substantially underestimated compared with
the median value of xh

1 . The distribution for the MLEs for x2

Table 3. Results, M3-CLM3 Contrast.

b/r 0.0001 0.001 0.01

1.00 0 (0.51,1.2) 50 (0.00,0.77) 15 (0.00,0.06)
0.50 1 (0.75,1.2) 50 (0.12,0.68) 1 (0.00,0.08)
0.25 2 (0.69,1.1) 39 (0.05,0.79) 1 (0.00,0.08)

NOTE.—The left-most column gives the branch length and the top-most row the
value of r used to generate 50 alignments for the nine ðb; rÞ scenarios. Each cell
shows the number of cases out of 50 for which the M3-CLM3 contrast detected site-
specific switches between x1 and x2. The numbers inside the brackets are the
median values of the MLEs for x1 and x2.
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is centered near the median value of xh
2 . The MLEs for p2 and

d appear to be systematically larger that the median of the ph
2

and dh.
The bias in the median MLEs for x1, p2 and d compared

with the medians of xh
1; ph

2 and dh shown in figure 8 can be
attributed in part to differences between the MutSel gener-
ating process and the assumptions made under CLM3. In
particular, sites each have their own parameters under
MutSel, whereas they are assumed to share parameters under
CLM3. Furthermore, CLM3 assumes a common vector of
stationary codon frequencies, whereas sites under MutSel
have different frequencies. It is not clear how to account
for these differences between the generating process and
the fitted model. It is also possible that some of the discrep-
ancy can be attributed to the small number of taxa used in

our study. It is nevertheless interesting that the phenomeno-
logical estimate of d (as an average over sites) was sometimes
close to the median value computed using equation (15).
Taken together with the results of the M3-CLM3 contrasts
in table 3, these findings support the notion that shifting
balance on a fixed landscape can lead to a phenomenological
signal that is detectable as site-specific changes in x, and that
this is most likely to occur when drift and selection are both
at play, as is the case under the r ¼ 0:001 scenario.

Detecting Positive Selection Caused by Shifting
Balance
In the last section, we focused on the ability of CLM3 to detect
transient changes in x due to shifting balance. Here we shift
our attention to the possibility that phenomenological codon
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FIG. 8. Fifty 8-taxa alignments were generated under MutSel with r ¼ 0:001 and b¼ 1 using the same set of 500 vectors of site-specific fitness
coefficients. Panels compare the distribution of site-specific parameters with the distribution of the MLEs for A: x1, B: x2, C: p2, and D: d. MLEs were
obtained by fitting the alignments to CLM3.
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FIG. 7. Diamonds mark maximum likelihood estimates for A: x1, B: x2, C: p2, and D: d, obtained by fitting each of five 8-taxa alignments to CLM3.
Alignments were generated under MutSel with r ¼ 0:001 and b¼ 1; a different set of 500 fitness coefficient vectors was used for each of the five trials.
Box plots show distributions for corresponding site-specific parameters xh

1 ; xh
2 ; ph

2 , and dh computed using the mechanistic switching model.
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models might detect transient signals for x > 1 under
this process. In addition to a new test for positive selec-
tion based on CLM3, we extend our investigation to in-
clude a popular analytical framework called BUSTED
(Murrell et al. 2015).

First we must place restrictions on the parameters of
CLM3 so that it can be used as the basis of a test for
switches to x > 1. In the basic form CLM3 allows sites
to switch between two x-categories at a rate of d switches
per single nucleotide substitution. In the null model
(CLM3a) for the new test, CLM3 is restricted such that x1

< 1 and x2 ¼ 1; thus, positive selection is not permitted.
In the alternative model (CLM3b), the value of x2 is con-
strained so that it must be >1. As CLM3a and CLM3b are
nested, this model pair comprises a likelihood ratio test for
episodic positive selection. BUSTED (Murrell et al. 2015)
also allows the rate ratio at a site to change over time. This
model estimates a distribution for x, consisting of three
rate ratios x0, x1, and x2 and two proportions p1 and p2,
that is shared by all sites. Sites switch between rate-ratios
from branch-to-branch. That is, unlike CLM3 where a site
can switch its x-category multiple times along a branch, the
rate ratio for a site is constant along any given branch under
BUSTED. The null hypothesis under BUSTED is that
x0 � x1 � x2 ¼ 1. This is contrasted with the alterna-
tive that x0 � x1 � 1 � x2.

The same 50 alignments for each of the nine ðr; bÞ sce-
narios that were used in the previous section were used here.
The test for positive selection under both CLM3 and BUSTED
was conducted only if the maximum likelihood estimate for
x2 was >1 when x2 was unrestricted. All tests were con-
ducted at the 5% level of significance. Table 4 shows the
number of trials in each scenario for which BUSTED and
the CLM3a-CLM3b contrast found evidence of positive selec-
tion. Both models inferred positive selection in substantially
>5% of the trials, as would have been expected under the
null, when r ¼ 0:001 and b¼ 1. BUSTED also detected pos-
itive selection in the same number of cases under the same r
with b¼ 0.5. Both models detected positive selection in data
generated under the r ¼ 0:0001 and r ¼ 0:01 scenario at a
rate consistent with what would be expected by chance un-
der each of their null models (i.e., close to 5% or 2 to 3 trials
out of 50), except that BUSTED found signal in 20% of trials in
the r ¼ 0:01; b ¼ 1 scenario. The distribution of the MLEs
for x2 and p2 among the trials for which the null was rejected
are shown in figure 9, with the exception of 13 trials for which
the MLE for x2 under BUSTED was >50 (supplementary
table S1, Supplementary Material online). These results dem-
onstrate that both models can detect the phenomenological
signature of positive selection due to shifting balance under
the scenario where neither selection nor drift dominate.
Subsequent to our analysis, we also fitted the 50 trials of
each of the nine ðr; bÞ scenarios to aBSREL (Smith et al.
2015), an alternative branch-site model similar to BUSTED
but with fewer constraints. Results show that aBSREL can also
detect positive selection due to shifting balance, especially
under the r ¼ 0:001; b ¼ 1 scenario—see supplementary
table S2, Supplementary Material online).

We used branch lengths b 	 0:25 single nucleotide sub-
stitutions per codon in all of our trials. Positive selection by
shifting balance may be less evident when branches are
shorter. In an additional trial, for example, we generated 50
alignments on a 16-taxa tree with b¼ 0.10 on all branches.
The M3-CLM3 contrast detected significant shifting in 39 of
the trials. However, although the MLE for x2 was>1 in 10 of
those trials, it was never significantly >1 when the CLM3a-
CLM3b contrast was applied. BUSTED also did not infer pos-
itive selection in any of the alignments. This suggests that the
potential of incorrectly attributing positive selection by shift-
ing balance to a change in fitness coefficients is most pro-
nounced when branch lengths are at least �0.25 single
nucleotide substitutions per codon.

MutSel on a Changing Fitness Landscape
Up to this point we have shown that the substitution process
at a site under the mutation–selection framework can be
dynamic or, to put it another way, transiently nonstationary,
even if site-specific landscapes are fixed. By contrast, an epi-
sodic shift in fitness landscapes can produce a long-lasting
nonstationary response if such shifts occur at a number of
sites at the same time. The dynamic following a change in
fitness landscape was recently illustrated by dos Reis (2015)
(also see Mustonen and L€assig 2009). Under his environmen-
tal shift (MutSelES) model, Ah is the rate matrix defining the
selection regime for the hth site of an ancestral sequence. At

Table 4. Results, CLM3a-CLM3b and BUSTED.

b/r 0.0001 0.001 0.01

1.00 (1, 3) (20, 11) (10, 3)
0.50 (1, 2) (20, 1) (3, 1)
0.25 (2, 3) (5, 0) (0, 0)

NOTE.—The left-most column gives the branch length and the top-most row the
value of r used to generate 50 alignments for the nine ðb; rÞ scenarios. Each cell
shows the number of cases (x, y) out of 50 for which positive selection was detected
by BUSTED (x) and the CLM3a-CLM3b (y) contrast.
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FIG. 9. Box plots show the distribution for the MLEs of A: x2 and B: p2

estimated under BUSTED and CLM3b for the trials where the null
hypothesis of no positive selection was rejected under each model.
The plots for BUSTED do not show 13 trials for which x2 was >50.
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t¼ 0 the regime switches to a different matrix Bh. This change
initiates a nonstationary substitution process characterized
by an elevated rate ratio dNhðtÞ=dShðtÞ that can be quanti-
fied in the following way:

dNhðtÞ=dShðtÞ ¼
P
ði;jÞ p

h
i ðtÞBh

ij INP
ði;jÞ p

h
i ðtÞlijIN

(16)

where phð0Þ is the row vector of stationary frequencies for
the site consistent with Ah and phðtÞ ¼ phð0Þ exp ðBhtÞ de-
scribed the process of convergence to the stationary frequen-
cies for Bh. The expected rate for the site at t¼ 0 can be >1,
but will decay exponentially over time until it reaches a value
<1 consistent with shifting balance on its new landscape.

Here we consider what happens when M0 is fitted to data
generated by the nonstationary process that follows simulta-
neous changes in fitness coefficients at all sites. Modeling a
nonstationary process as stationary can be thought of as a
way of estimating an average effect, so it is reasonable to
interpret estimates of x under M0 as a mean taken across
all codon sites (n) and the branch length (b). One possible
way to formulate this under MutSelES is:

�xðbÞ ¼ 1

b

ðb

0

1

n

Xn

h¼1

dNhðtÞ=dShðtÞdt (17)

This provides a way to predict the estimate for x under
M0.

To compare predictions with MLEs, 200 sequence pairs (S1,
S2) 1,000 codons in length were generated under MutSelES
with r ¼ 0:001 and Ne¼ 1,000, and with branch lengths
ranging between 0 and 1. Each site had its own pair of rate
matrices Ah and Bh. Figure 10A shows that the median MLE
for x estimated by M0 is highly correlated with the prediction
�xðbÞ (q ¼ 0:98, P value� 0:0001). However, the estimates
are also positively biased, especially for longer branch lengths.
Branch lengths are also consistently overestimated, as shown
in figure 10B. M0 does not account for monotonic changes in

dN/dS along a branch. It may be that the rapid accumulation
of nonsynonymous substitutions that immediately follows
the Ah ! Bh transition at all sites causes both x and branch
lengths to be overestimated. As a topic for further research, it
might be useful to devise a codon model that can account for
the exponential decay in the rate ratio over time to reduce
these biases.

Discussion
The mutation–selection framework of Halpern and Bruno
(1998) describes a mechanistic substitution process that is
more realistic than that implied by commonly used phenom-
enological codon models. The simplest codon model M0, and
its more sophisticated counterparts, implicitly assume that all
amino acids have the same fitness save the one currently
occupying the site, as was demonstrated in the section titled
“M-Series Models Interpreted as Frequency-Dependent
Selection under the MutSel Framework”. MutSel, by contrast,
permits amino acids to have different fitnesses. This difference
between the two approaches has many implications, several
of which we explored via theoretical arguments and com-
puter simulations.

We showed in the section titled “Split MutSel Landscapes”
that a site-specific MutSel landscape can in theory be split
between two amino acids. Such landscapes can lead to pat-
terns consistent with functional divergence. Suppose a site
were to evolve in two segregated populations under the site-
specific landscape depicted in figure 3 long enough for each
population to be fixed at a different amino acid. Further,
suppose that each population were to then undergo a 10-
fold increase in Ne, so that the site evolves under the MutSel
landscape depicted in figure 2. It could happen that one
population becomes fixed at T, and the other at E, depending
in part on the starting codon for each population.
Subsequent changes at other sites and/or in other genes
might then canalize this difference as the populations diverge
over macro-evolutionary time scales (Pollock et al. 2012). By
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FIG. 10. Circles are median values of maximum likelihood estimates (MLE) produced by fitting data generated under MuSelES to the codon
substitution model M0. Dashed lines indicate their inter-quartile range. A: A comparison of the predicted and estimated rate ratios computed
from pairs of sequences generated under the MutSelES model. B: A comparison of generating and estimated branch lengths.
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this process, a site might eventually exhibit the constant-but-
different pattern of Type II divergence without any change in
its fitness coefficients.

To cite a real case, Gu (2006) identified sites on the COX
gene that exhibited Type II divergence; radical differences in
physicochemical properties that are constant within subtrees
but different between subtrees. This included a site for which
T (categorized as hydrophilic) and E (charge-negative) dom-
inated the COX1 and COX2 clusters, respectively. Although
the change from hydrophilic to charge-negative implies a
change in fitness coefficients, our analysis suggests that the
observed pattern could have arisen under a static MutSel
landscape, and that this is partly due to the fact that T and
E differ by more than one nucleotide (as is frequently the case
for pairs of amino acids with different physicochemical prop-
erties). Further investigation of split landscapes under the
mutation–selection framework might provide insight into
additional mechanisms that can lead to the pattern of
Type II divergence.

Our analysis of the mechanistic model for shifting balance
in the section titled “A Mechanistic Model for Shifting
Balance” indicated that sites are relatively free to move across
their MutSel landscapes under the scenario where neither
selection nor drift dominate. Box plots for ph

2 in figure 5B
show that, under the r ¼ 0:001 scenario, �10% of sites are
in the tail of their landscapes any one time. If a population
evolving under this scenario were to undergo a rapid increase
in effective population size, we could expect these sites to be
forced toward their peaks in concert to produce a transient
dN=dS > 1 signature of positive selection similar to the ele-
vation in the rate ratio following an environmental shift (see
section titled “MutSel on a Changing Fitness Landscape”), but
without changes in fitness. This scenario underlines the po-
tential importance of including changes in effective popula-
tion size in phenomenological codon substitution models.

Setting aside the effect of changes in Ne, it has been com-
monly assumed that statistical evidence for x > 1 at some
sites and/or branches in a tree is indicative of positive selec-
tion due to episodic or continuous (e.g., frequency-
dependent) changes in fitness coefficients. We showed in
the section titled “A Mechanistic Model for Shifting
Balance” that under certain conditions (e.g.,
r ¼ 0:001;Ne ¼ 1000) the substitution process can walk a
site over its MutSel landscape in such a way that it frequently
moves between its peak and tail, a process we call shifting
balance. Shifting balance can manifest as phenomenological
switches between x1 � 1 and x2 > 1 that can be detected
by commonly used branch-site models, as was demonstrated
in the section titled “Detecting Positive Selection Caused by
Shifting Balance”. This suggests that we can never be com-
pletely certain whether a site inferred to have undergone
positive selection did so as a result of changes in fitness co-
efficients or shifting balance based on statistical analysis of the
sequences alone. Additional information about the role of the
protein or the history of the organism would no doubt decide
the issue in many cases. A protein implicated in an arms race
(e.g., an immune surveillance protein in conflict with a path-
ogenic immune evasion protein) is very likely to have

undergone changes in fitness coefficients at some sites
(Hughes and Nei 1988). So too for a protein that has been
linked to variations in phenotype correlated with changes in
habitat (Yokoyama et al. 2008). However, it would seem that,
in the absence of corroborating evidence of some kind, shift-
ing balance should be the null hypothesis when x is inferred
to be >1 at some sites and/or branches (especially when
branch lengths are no shorter than 0.25 single nucleotide
substitutions per codon).

Covarion-like models were originally devised to capture
variations in the rate ratio at a site caused by substitutions
at other interacting sites, a phenomenon predicted by the
covarion hypothesis (Fitch 1971). Such models maintain the
assumption that sites evolve independently to avoid the com-
putational cost associated with modeling epistatic interac-
tions, and aim only to capture site-specific variations in x.
We showed in the section titled “A Mechanistic Model for
Shifting Balance” that variations in the rate ratio at a site can
occur by another process, shifting balance, and in the section
titled “Detecting Transient Changes in x Caused by Shifting
Balance on a Fixed Landscape” that this process is readily
detectable by a covarion-like model. These results suggest
that it might be necessary to modify covarion-like models
to take dependencies between sites into account. A “true”
covarion model of this type could potentially be used to
distinguish between shifting balance and the covarion pro-
cess, and thereby provide a means to estimate how prevalent
shifting balance is in real alignments.

Although branch-site models commonly used to infer site-
specific changes in the rate ratio (CLM3 and BUSTED) can
detect shifting balance under some conditions, M-series mod-
els that do not allow site-specific variations in x are insensi-
tive to this process. Spielman and Wilke (2015) proved that
the site-specific rate ratio dNh=dSh cannot exceed one when
synonymous codons are equally fit. Whereas this proof
applies to a single site, our empirical results suggest that an
equivalent statistical statement holds for the estimate of a
single x for an alignment with variations in dNh=dSh across
sites. The likelihood ratio test for the contrast of M0 with
x¼ 1 versus M0 with x > 1 was applied to all 50 trials in
each of our (r; bÞ scenarios (supplementary table S2,
Supplementary Material online). The test never rejected the
null at the 5% level of significance, and so x was never in-
ferred to be >1. We showed in the section “M-Series Models
Interpreted as Frequency-Dependent Selection under the
MutSel Framework” that an M-series model is consistent
with frequency-dependent selection among sites for which
x is >1. We therefore suggest that it may be more appro-
priate to use M-series models when analyzing a gene sus-
pected to have undergone frequency-dependent selection,
if only to remove the possibility of detecting shifting balance
(as would be possible using a branch-site model) and confus-
ing it for episodic positive selection.

The analysis of MutSelES in the section titled “MutSel on a
Changing Fitness Landscape” underlines the theoretical dif-
ference between shifting balance and episodic changes in
fitness landscapes. Positive selection by shifting balance is
an independent, random, and site-wise process. Some small
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proportion of sites will be in the tail of their landscapes and so
under positive selection at any given time. But the sites un-
dergoing this process changes over time. By contrast, we as-
sume that an episodic change in environment will cause at
least a subset of sites (e.g., sites that correspond to a func-
tional domain or epitope) to undergo changes in their site-
specific landscapes at the same time. This difference impacts
model performance. Our analysis shows that the signature of
positive selection (i.e., x > 1) under MutSelES is strong
enough to be captured by a single x estimated using M0
provided the branch length is small. By contrast, Spielman
and Wilke (2015) showed that M0 will almost always infer x
< 1 when fitness coefficients are fixed (provided synony-
mous codons are equally fit). However, because CLM3 and
BUSTED allow sites to switch rate ratios independently (so
that the efficient pruning algorithm can be used to compute
likelihoods), they are insensitive to the difference between
sites shifting independently and sites switching in concert.
This inability to discriminate between the two scenarios
might be addressed either by introducing dependence be-
tween sites to account for simultaneous changes in land-
scapes (accepting the computational cost), or by
developing post hoc analyses that can make the distinction.
These would both be interesting subjects for future research.

Shifting balance has implications beyond codon substitu-
tion models. For example, consider the method of estimating
the proportion a of amino-acid substitutions attributed to
positive selection (Smith and Eyre-Walker 2002). Estimates of
a range between�10% for humans to >50% for Drosophila
(Grossmann et al. 2014, and references therein). While sub-
stitution by positive selection is often taken as an indication
of adaptive evolution, our analysis in the section titled “A
Mechanistic Model for Shifting Balance” suggested that as
much as 10% of substitutions by positive selection can be
attributed to shifting balance on a static fitness landscape.
Thus, it seems possible that the human genome might not be
evolving in response to changes in selection pressure, but
merely experiencing shifting balance. Likewise, some fraction
of positive selection in Drosophila might be attributable to
the same process. The key question therefore is How preva-
lent is shifting balance in real data? We leave this question
open to future efforts.

Methods

Data Generation
All sequence alignments were generated using the mutation–
selection framework. Mutations were modeled under HKY
for which the mutation rate from nucleotide k to ‘ is:

lk‘ ¼
�jp‘ if k! ‘ is a transition

�p‘ if k! ‘ is a transversion

(
(18)

� is a scaling parameter set so that lk‘ is the expected
number of k! ‘ mutations per generation, and p‘ is the
stationary frequency for nucleotide ‘ 2 fT; C; A; Gg. We
used j¼ 4 and uniform nucleotide frequencies for all of
our simulations. Vectors of site-specific fitness coefficients fh

were drawn from a zero-mean multivariate normal distribu-
tion with covariance matrix r2I, where I is the 61� 61 iden-
tity matrix. Each vector was modified to make synonymous
substitutions equally fit before constructing the site-specific
rate matrix. The effective population size was Ne¼ 1,000 for
all simulations. Variations in the strength of the shifting bal-
ance phenomenon were effected by using values of
r 2 f0:0001; 0:001; 0:01g. All alignments were generated
on a symmetrical 8-taxa rooted tree with uniform branch
lengths b 2 f0:25; 0:50; 1:00g except where indicated
otherwise.

The element Aij of the substitution rate matrix of equation
(2) gives the expected number of codon substitutions i! j
per generation. For purposes of inference however, all Ah were
re-scaled to so that branch lengths measure the expected
number of single nucleotide substitutions per codon. This
was done by computing the expected substitution rate rh ¼
�
P
ði;jÞ p

h
i Ah

ii for each rate matrix and then dividing all Ah by
the mean ð1=nÞ

P
h rh. By this re-scaling, the effect of � in

equation (18) is canceled, so � can remain unspecified. Note
that it is possible to normalize the Ah in other ways, for
example to make b the expected number of single nucle-
otide synonymous (neutral) substitutions per codon
(Tamuri et al. 2012).

Models M0 and M3
The simplest codon substitution model, referred to as M0
(Yang et al. 2000), assumes that all sites evolve under a single
mutation–selection regime characterized by rate ratio x and
transition bias j. The 61� 61 rate matrix Q for this process
can be specified as follows for all i 6¼ j:

Qij ¼

0 if i and j differ by more than one nucleotide

pj for synonymous transversions

jpj for synonymous transitions

xpj for nonsynonymous transversions

xjpj for nonsynonymous transitions

8>>>>>>>><
>>>>>>>>:

(19)

where pi is the stationary frequency for the ith codon. The
diagonal elements Qii are determined by the requirement that
the rows of Q sum to zero. This formulation uses codon
frequencies. It is also possible to use nucleotide frequencies
(Muse and Gaut 1994) by replacing pj with p‘ if the transition
from codon i to j corresponds to the single nucleotide sub-
stitution k! ‘. Using nucleotide frequencies is consistent
the MutSelM0 model described in the section titled “M-
Series Models Interpreted as Frequency-Dependent
Selection under the MutSel Framework”. M0 provides the
basis for mixture models that permit variations in x across
sites, such as the M-series models of Yang et al. (2000). For
example, the model designated M3 assumes that sites are
distributed across k selection categories x1; . . .;xk at pro-
portions p1; . . .; pk that sum to one. The rate matrix for each
category is constructed using equation (19) but with its own
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x. We used the variant of M3 with k¼ 2 for the analyses in
this article.

The Covarion-Like Model
We define the covarion-like model with two x categories
using a 122� 122 rate matrix (cf. Guindon et al. 2004):

Q ¼ 1

r1

Q1 0

0 Q2

" #
þ d

r2

�p2I p2I

p1I �p1I

" #
(20)

where Qk, k 2 f1; 2g, is the 61� 61 substitution rate matrix
constructed with x ¼ xk, I is the 61� 61 identity matrix and
0 is a matrix of the same size with all entries set to zero. The
expected proportion of time a site evolves under xk is pk. The
divisor r1 adjusts the substitution rate so that branch length is
the expected number of single nucleotide substitutions per
codon. The divisor r2 adjusts the switching rate so that d is the
expected number of switches per unit branch length. Other
authors of covarion-like models have neglected to scale the
switching matrix in this way (Guindon et al. 2004); this is the
main reason we used our own covarion-like model instead of
fitmodel. The divisors r1 and r2 were computed as follows:

r1 ¼
X

ðrows;colsÞD
Q1 0

0 Q2

" #

 IN þ IS 0

0 IN þ IS

" #
(21)

r2 ¼
X

ðrows;colsÞD
�p2I p2I

p1I �p1I

" #
(22)

where 
 is the element-wise or Hadamard product. D is the
diagonal matrix whose entries are the stationary frequencies
for the 122 (codon, x) state pairs given by the vector
hp1p1; . . .; p61p1; p1p2; . . .; p61p2i. Summations are across
all rows and columns.

We designate this model CLM3 because it is the same as
M3 (Yang et al. 2000) with two x-categories but with
covarion-like switching. The variant CLM3a sets x1 < 1
and x2 ¼ 1. This is nested in CLM3b for which x2 > 1.
The M3-CLM3 contrast tests for shifting (d > 0). Although
the two models differ by one parameter (d), CLM3 is the same
as M0 only when d¼ 0, on the boundary of the parameter
space. The distribution of the log-likelihood ratio for the M3-
CLM3 contrast is therefore an equal mixture of a point-mass
at zero and a v2

1 (e.g., Case 5 in Self and Liang 1987). The
CLM3a-CLM3b contrast provides a test for positive selection.
The test was conducted only if the maximum likelihood es-
timate for x2 under CLM3 was>1 and d was significantly>0.
The distribution for the log-likelihood ratio for this contrast is
v2

1.

The BSREL Model and BUSTED
The branch-site random effects model or BSREL (Kosakovsky
Pond et al. 2011) was motivated by the limitations of earlier
branch-site models that allowed positive selection to occur at
sites only on a prespecified portion of the tree (Yang et al.
2005). In its most general form BSREL allows each site h to
have its own distribution of x across branch b. This is

specified by a vector of branch-and-site-specific rate ratios h
xhb

1 ; . . .;xhb
k i and their concomitant proportions hphb

1 ; . . .;
phb

k i that sum to one. The transition probability matrix for a
site on a branch of length t is computed as the weighted
average:

PhbðtÞ ¼
Xk

i¼1

phb
i exp ðQxhb

i
tÞ (23)

where Qxhb
i

is the rate matrix for M0 with x ¼ xhb
i . This

approach obviates the need to specify which xhb
i applies to

which branch by allowing the rate ratio for the site to vary
randomly across branches. The branch-site unrestricted sta-
tistical test for episodic diversification or BUSTED (Murrell
et al. 2015) is a simplified version of BSREL. It estimates three
rate ratios along with their proportions to provide a common
distribution for all sites. The unrestrained model allows each
of the three rate ratios to take on any nonnegative value. If
the largest is >1 then a likelihood ratio test for positive se-
lection is conducted. The distribution of the likelihood ratio
statistic for this test is an unknown mixture of v2

0; v2
1 and v2

2.
To be conservative, BUSTED uses v2

2 to compute P-values.

Visualizing the MutSel Landscape in Two Dimensions
Suppose A is the MutSel rate matrix for a site, and that a
substitution to the ith codon occurs at that site at time t¼ 0.
Then the temporal evolution of the 1� 61 vector of expected
frequencies pðtjiÞ can be characterized as follows (following
McCandlish 2011):

pðtjiÞ ¼ pþ pð0jiÞ
X61

k¼2

kt
kD�1=2ekeT

k D1=2 (24)

D is the 61� 61 diagonal matrix whose entries are the site-
specific stationary frequencies p; fekg61

k¼2 and fkkg61
k¼2 are

the eigenvectors and eigenvalues for the matrix D1=2PD�1=2

sorted so that k2 	 k3 	 . . . 	 k61 where P ¼ exp ðAÞ is
the transition probability matrix for the site for a branch of
length one; and pð0jiÞ is a vector of zeros but with one at the
ith entry (i.e., the initial distribution with a point mass at the ith

codon).
Equation (24) shows that the distribution pðtjiÞ of codons

at time t converges to the vector of stationary frequencies p
for the site, and that the departure from p at any time t can
be written as a function of the elements of the eigensystem of
D1=2PD�1=2. This eigensystem will typically be dominated by
e2 and e3, the vectors with the two largest eigenvalues (e1

corresponds to p). A plot of the components of the trans-
formed eigenvectors:

uk ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kk

p
ÞD�1=2ek for k 2 f1; 2g (25)

can be used to depict a 2-dimensional approximation of the
dynamics captured by equation (24). Each coordinate hu2ðiÞ;
u3ðiÞi gives the location of the ith codon in the 2-dimensional
landscape. The transformation ek to uk makes the length of the
edges connecting any two points approximately proportional
to the expected number of single nucleotide substitutions
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required for the site to move from one point to the other and
back again along any possible pathway. Note that McCandlish
(2011) used the Moran process model (Moran 1958) to con-
struct rate matrices, in which case time is measured by gener-
ations rather than single nucleotide substitutions. See
McCandlish (2011) for this and other details.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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