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Figure 1: Each branch length in this tree is the differences between the branch length estimated under

RaMoSS and the branch length estimated under RaMoSSwDT. Only differences greater than 0.002 in absolute

magnitude are shown. The scale on the horizontal axis is the number of single nucleotide substitution per

codon. RaMoSS produced larger branch lengths compared to RaMoSSwDT on most branches.
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Figure 2: The distributions of scaled selection coefficients resulting from the proposed method of simulating

vectors of site-specific fitness coefficients for mammal mtDNA. A: all mutations; B: nonsynonymous mutations;

C: all substitutions; and D: nonsynonymous substitutions. These are very similar in shape to empirical

distributions obtained by an analysis of 12 mitochondrial genes of 244 placental mammal species (Tamuri

et al., 2012).
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Figure 3: A comparison of the observed versus simulated amino acid frequencies. A: Frequencies obtained

from the real data; B: the same for the simulated alignment (20 taxon, 3331 sites).

Figure 4: A comparison of the observed versus simulated relative pairwise amino acid frequencies. For any

cell, the value is the proportion of sites where the amino acids indicated were both present. A: Values obtained

from the real mtDNA alignment; B: values obtained from a simulated alignment (20 taxon, 3331 sites). The

same grayscale applies to both panels.
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Figure 5: A comparison of the observed versus simulated distribution of the number of amino acids realized

at a site for mammal mtDNA (20 taxon, 3331 sites).

Supplementary Tables

Model LL rate ratios proportions switching mean S,D,T

M0 -6972 ω̂0 = 0.02

M3 -6890 (ω̂0, ω̂1) = (0.00, 0.08) p̂0 = 0.84

CLM3 -6866 (ω̂0, ω̂1) = (0.00, 0.21) p̂0 = 0.93 δ̂ = 0.06

RaMoSS -6859 (ω̂0, ω̂1) = (0.00, 0.03) p̂M3 = 0.72, p̂0 = 0.86

(ω̂′0, ω̂
′
1) = (0.01, 0.44) p̂′0 = 0.88 δ̂ = 0.17

M0wDT -6960 ω̂0 = 0.01 90.5%, 7.1%,2.4%

M3wDT -6888 (ω̂0, ω̂1) = (0.00, 0.07) p̂0 = 0.85 94.1%, 4.6%,1.3%

CLM3wDT -6866 (ω̂0, ω̂1) = (0.00, 0.19) p̂0 = 0.92 δ̂ = 0.06 98.6%, 1.1%, 0.3%

RaMoSSwDT -6859 (ω̂0, ω̂1) = (0.00, 0.03) p̂M3 = 0.73, p̂0 = 0.85 99.6%, 0.4%, 0.0%

(ω̂′0, ω̂
′
1) = (0.01, 0.43) p̂′0 = 0.88 δ̂ = 0.18

Table 1: Median values for parameter estimates derived from 100 alignments generated under RaMoSS with

α = β = 0.
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Model LL rate ratios proportions switching mean S,D,T

M0 -10,023 ω̂0 = 0.13

M3 -9589 (ω̂0, ω̂1) = (0.01, 0.42) p̂0 = 0.70

CLM3 -9585 (ω̂0, ω̂1) = (0.01, 0.45) p̂0 = 0.71 δ̂ = 0.02

RaMoSS -9551 (ω̂0, ω̂1) = (0.00, 0.31) p̂M3 = 0.69, p̂0 = 0.74

(ω̂′0, ω̂
′
1) = (0.05, 0.69) p̂′0 = 0.65 δ̂ = 0.00

M0wDT -9985 ω̂0 = 0.11 88.7%, 4.5%,6.8%

M3wDT -9588 (ω̂0, ω̂1) = (0.01, 0.41) p̂0 = 0.70 98.5%, 0.7%, 0.7%

CLM3wDT -9583 (ω̂0, ω̂1) = (0.01, 0.44) p̂0 = 0.71 δ̂ = 0.02 99.1%, 0.4%, 0.5%

RaMoSSwDT -9550 (ω̂0, ω̂1) = (0.00, 0.31) p̂M3 = 0.69, p̂0 = 0.74 99.5%, 0.2%, 0.5%

(ω̂′0, ω̂
′
1) = (0.05, 0.70) p̂′0 = 0.65 δ̂ = 0.00

Table 2: Median values for parameter estimates derived from 100 alignments generated under M3(k=n) with

α = β = 0.

Model LL rate ratios proportions switching mean S,D,T

M0 -8056 ω̂0 = 0.05

M3 -7713 (ω̂0, ω̂1) = (0.01, 0.25) p̂0 = 0.76

CLM3 -7698 (ω̂0, ω̂1) = (0.00, 0.30) p̂0 = 0.78 δ̂ = 0.05

RaMoSS -7670 (ω̂0, ω̂1) = (0.00, 0.12) p̂M3 = 0.79, p̂0 = 0.82

(ω̂′0, ω̂
′
1) = (0.00, 0.62) p̂′0 = 0.57 δ̂ = 0.22

M0wDT -8018 ω̂0 = 0.04 80.9%, 13.7%,5.4%

M3wDT -7702 (ω̂0, ω̂1) = (0.00, 0.21) p̂0 = 0.76 90.3%, 7.6%,2.1%

CLM3wDT -7691 (ω̂0, ω̂1) = (0.00, 0.25) p̂0 = 0.78 δ̂ = 0.05 92.8%, 5.7%, 1.5%

RaMoSSwDT -7666 (ω̂0, ω̂1) = (0.00, 0.12) p̂M3 = 0.80, p̂0 = 0.82 96.3%, 2.9%, 0.8%

(ω̂′0, ω̂
′
1) = (0.00, 0.56) p̂′0 = 0.60 δ̂ = 0.20

Table 3: Median values for parameter estimates derived from 100 alignments generated under MutSel-

mmtDNA with α = β = 0.
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Generating Alignments using MutSel-mmtDNA

The most direct way to simulate alignments consistent with real data is to estimate site-specific fitness

coefficients from the real data and then use the MutSel framework of Halpern and Bruno (1998) to construct

site-specific subsitution rate matrices. The Pyvolve software package (Spielman and Wilke, 2015) includes

modules for this purpose. In the course of our study, it was necessary to generate data consistent with the

20-taxon concatenated alignment of H-strand mammalian mitochondrial DNA sequences provided by the

PAML software package (Yang, 2007). This alignment is too small for the direct approach. It was therefore

necessary to devise a more approximate generating procedure, which is described in this section.

The degree to which an alignment generated under MutSel can be said to be realistic is in large part

dependent on how site-specific amino acid fitnesses are constructed. One method is to draw vectors of fitness

coefficients from a normal distribution (e.g, Jones et al., 2017). But since fitnesses are random, it is possible to

draw a vector that assigns nearly the same fitness to a pair of amino acids with very different physicochemical

properties. Hence, a site pattern might easily contain both isoleucine (hydrophobic) and serine (hydrophylic).

This is unlikely to occur at a real site evolving under stringent selection without a drastic change in the

physicochemcial requirements for that site. It would be more realistic to see isoleucine occur together with

the similarly hydrophobic aliphatic amino acids leucine and valine. Furthermore, the stringency of selection,

determined by the standard deviation of the normal distribution, must have a realistic level of variance across

sites.

Taking these requirements into account, the following method was used to generate a vector of fitness

coefficients for a codon site under what we call the MutSel-mmtDNA generating model:

1. A codon for the hth site was randomly drawn using a multinomial distribution with probabilities equal

to the empircal codon frequence for the real mtDNA.

2. The amino acid X corresponding to the chosen codon was assigned a provisional fitness of 0.25.

3. A provisonal vector of fitnesses for the remaining amino acids was constructed by dividing 〈vY1 , ..., vY19〉

by its largest element, where vY is the number of site patterns in the real mtDNA that included both

amino acids X and Y (Figure 4). This gave the amino acid that paired most frequently with X (call it

Z) a fitness of one and all other amino acids Y 6= X a fitness less than one.

4. Each element of 〈vY1 , ..., vY19〉 was then reduced by a random draw from a half-normal distribution

with mean zero and standard deviation one. This was meant to increase the variation in stationary

frequencies across sites. The expected value of the half-normal distribution is
√

2/π ≈ 0.80. The

expected fitness of Z was therefore 0.20, slightly less than the fitness of X. Other amino acids tended to

have lower fitness.
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5. A scaling factor σh ∼ 0.001 + (0.01 − 0.001) × B was drawn to determine the stringency of selection

at the site, where B ∈ [0, 1] is a beta random variable with shape parameters u, v > 0. Values of

σh ∈ [0.001, 0.01] closer to the upper bound correspond to greater stringency, whereas values closer

to the lower bounded correspond to a balance between selection and drift that typically results in

heterotachy (Jones et al., 2017). Parameters u and v for the beta distribution were chosen to make the

distributions of scaled selection coefficients sij match those reported by Tamuri et al. (2012) as closely

as possible, as described below.

6. A vector fh of fitness coefficients for the 60 codons was then constructed from the amino acid fitnesses

assuming synonymous codons to be equally fit. This vector was scaled to make its standard deviation

equal to σh.

7. fh was then used to construct the site-specific rate matrix Ah as described below.

For a given (u, v), 1000 draws of fh were used to approximate the PDFs of the sij for all mutations,

nonsynonymous mutations, all substitution and nonsynonymous substitutions (as detailed in the next section).

Probabilities p(sij < −2), p(−2 < sij < 2) and p(sij > 2) were calculated and compared with empirical

values reported by Tamuri et al. (2012). This process was repeated over a grid of (u, v) coordinate pairs.

The coordinate corresponding to the smallest sum of squared differences between simulated and empirical

probabilities was found to be (u, v) = (0.08, 0.02). These values give σh a U-shaped density function with

most of its mass near the upper and lower bounds of its domain [0.001, 0.01].

Site-specific fitness coefficients fh =
〈
fh
1 , ..., f

h
60

〉
for the 60 codons were converted into scaled selection

coefficients shij = 2Ne(f
h
j − fh

i ) assuming an effective population size of Ne = 1000 and a ploidy of two. These

were used to construct a site-specific matrix of fixation probabilities:

W h
ij ∝

 1 if shij = 0
shij

1−exp(−shij)
otherwise

(1)

The corresponding site-specific rate matrix Ah was then made to be proportional to the element-wise product

of the mutation-rate matrix M , where the mutation rate from codon i = i1i2i3 to codon j = j1j2j3 was

specified as:

Mij ∝


κntΠik 6=jkπ

∗
jk

if n = 1

ακntΠik 6=jkπ
∗
jk

if n = 2

βκntΠik 6=jkπ
∗
jk

if n = 3

(2)

(see main article for details) and W in (1): Ah ∝M ◦W , where M was constructed using model parameters

estimated from the real mtDNA alignment. Each Ah has its own vector of stationary frequencies πh =〈
πh
1 , ..., π

h
60

〉
and its own expected rate rh. All Ah were divided by r, the mean of the rh, so that branch length

could be interpreted as the expected number of single nucleotide substitution per codon.
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