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Recent attention has focused on deriving localised pulse solutions to various systems of

reaction–diffusion equations. In this paper, we consider the evolution of localised pulses in

the Brusselator activator–inhibitor model, long considered a paradigm for the study of non-

linear equations, in a finite one-dimensional domain with feed of the inhibitor through the

boundary and global feed of the activator. We employ the method of matched asymptotic

expansions in the limit of small activator diffusivity and small activator and inhibitor feeds.

The disparity of diffusion lengths between the activator and inhibitor leads to pulse-type

solutions in which the activator is localised while the inhibitor varies on an O(1) length scale.

In the asymptotic limit considered, the pulses become spikes described by Dirac delta functions

and evolve slowly in time until equilibrium is reached. Such quasi-equilibrium solutions with

N activator pulses are constructed and a differential-algebraic system of equations (DAE) is

derived, characterising the slow evolution of the locations and the amplitudes of the pulses.

We find excellent agreement for the pulse evolution between the asymptotic theory and the

results of numerical computations. An algebraic system for the equilibrium pulse amplitudes

and locations is derived from the equilibrium points of the DAE system. Both symmetric

equilibria, corresponding to a common pulse amplitude, and asymmetric pulse equilibria, for

which the pulse amplitudes are different, are constructed. We find that for a positive boundary

feed rate, pulse spacing of symmetric equilibria is no longer uniform, and that for sufficiently

large boundary flux, pulses at the edges of the pattern may collide with and remain fixed at

the boundary. Lastly, stability of the equilibrium solutions is analysed through linearisation

of the DAE, which, in contrast to previous approaches, provides a quick way to calculate the

small eigenvalues governing weak translation-type instabilities of equilibrium pulse patterns.
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1 Introduction

Since Turing [27] showed that diffusion-driven instabilities of a spatially homogeneous

steady state could give rise to spatially complex patterns in a mixture of chemically

reacting species, reaction–diffusion equations have been paradigms of spatio-temporal

pattern formation. Much of the analysis since has been weakly non-linear, involving

small amplitude patterns arising from small perturbations of the unstable uniform

steady state. However, numerical studies (see, e.g. [25] for numerical simulations of the
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two-dimensional Gray–Scott model) have shown that large-amplitude perturbations can

lead to the formation of localised structures, solutions far from equilibrium and thus

not amenable to weakly non-linear analysis. Instead, the method of matched asymptotic

expansions has been applied to construct such localised solutions. Early works involving

the one-dimensional Gray–Scott model on the infinite line include Doelman et al. [3–5],

where a dynamical systems approach was taken to construct localised pulse solutions

and study their stability by analysing a non-linear eigenvalue problem. In [21], stability

analysis of a one-dimensional pulse to transverse perturbations in the second dimension

was performed. Extensions of these results to incorporate finite domain effects for models,

such as the Gray–Scott (e.g. [1, 17]), Gierer–Meinhardt (e.g. [10, 11]) and Schnakenberg

(e.g. [19, 30]) models, have been of recent interest. In one dimension, behaviours such as

slow pulse evolution, pulse splitting, and pulse oscillations, have been predicted analyt-

ically and confirmed numerically. In this work, we consider the slow evolution of pulses

in the one-dimensional activator–inhibitor Brusselator model (see, e.g. [28] and references

therein), long a paradigm of non-linear analysis.

The Brusselator model describes the space–time dependence of the concentrations of

the intermediate products U (the activator) and V (the inhibitor) in the sequence of

reactions

E → U, B + U → V + P , 2U + V → 3U, U → Q. (1.1)

The global reaction is E+B → P +Q, corresponding to the transformation of reactants E

and B into products P and Q. The third reaction of sequence (1.1) is autocatalytic in that

U drives its own production; thus, U is the activator. The autocatalytic reaction requires

the presence of V to proceed; the depletion of V in the autocatalytic process acts as an

inhibition mechanism to limit the growth of U. Thus, V is the inhibitor and is subject to

low concentrations in regions of high activator concentration. A different scenario is seen

in the Gierer–Meinhardt model [8] where the autocatalytic reaction is impeded by the

presence of an inhibitor. In this case, high concentrations of the inhibitor are observed in

regions of high activator concentration.

Due to the third reaction in (1.1), the Brusselator model shares the same cubic non-

linearity as the Gray–Scott and Schnakenberg models but differs in that the former

contains a global feed term of the activator and not of the inhibitor. The feed of the

activator comes from the first reaction in (1.1). The result of a global activator feed term is

that localised pulses in the concentration of the activator can decay to either a zero or non-

zero value away from their centres, depending on the value of the feed term. We find that

the absence or presence of the activator feed term has an important role in the evolution

of the pulses. This is in contrast to the Gray–Scott and Schnakenberg models, where

pulses always decay to zero away from their centres. Further, while many previous studies

considered pure Neumann boundary conditions for both the activator and inhibitor, we

allow for the possibility of a boundary feed term of the inhibitor, which we find alters the

equilibrium solutions as well as the interaction between pulses and boundaries.

In [22], localised solutions were computed numerically and analysed for a variation of

the conventional Brusselator model. Instead of the concentration of the reactant E being

kept constant as is the case in most studies of the Brusselator model, it was allowed to

vary with space and time. The diffusion rate of E was also taken to be significantly larger
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than those of U and V . Localised structures exhibited by the conventional Brusselator

model near a co-dimension two point were numerically observed under periodic [26]

and, additionally, pure Neumann [2] boundary conditions with similar diffusivities of the

activator and inhibitor. In the following analysis, we consider a singular perturbation

of the conventional Brusselator model with an asymptotically small activator–inhibitor

diffusivity ratio, leading to the formation of localised pulses in the concentration of the

activator. Assuming (without loss of generality) that all rate constants of the reactions

in (1.1) are unity, the conventional dimensionless Brusselator model in a one-dimensional

domain with slow diffusion of the activator and constant influx of the inhibitor from the

boundaries can be written as

ut = ε2uxx + E − (B + 1)u + vu2, −1 < x < 1, ux(±1, t) = 0, t > 0, (1.2a)

vt = Dvxx + Bu − vu2, −1 < x < 1, vx(±1, t) = ±A, t > 0, (1.2b)

supplemented by appropriate initial conditions, where u � 0 is the activator concentration

(which will be seen to be the localised variable), v � 0 is the inhibitor, 0 < ε � 1, and A,

B, D and E are non-negative constants. In a study of mesa-type patterns, Kolokolnikov

et al. [15] consider a slightly different form in which the first and last steps of (1.1) occur

much more slowly than the other reactions, leading to the kinetic terms of (1.2a) being

rE − (B + r)u + vu2 with r small.

The activator drives its own reaction through a positive feedback (the vu2 term in

(1.2a)), while its growth is controlled by the inhibitor, for which there is negative feedback,

represented by the −vu2 term in (1.2b) (see [14]). The condition that the inhibitor diffuses

significantly faster than the activator (D � ε2) is essential for the formation of pulses,

as in [20]. Indeed, the self-production of the activator in a region of length O(ε) cannot

be sufficiently suppressed by the inhibitor as the strong inflow of the inhibitor from the

peripheral regions continues to feed the production of the activator (see [13, 14]). It is for

this reason, along with the slow diffusion of the activator, that we expect the formation

of localised pulses in the activator, while the inhibitor varies over an O(1) length scale. As

a result, the leading order interaction between pulses is due to the slow spatial variation

of the inhibitor variable, this interaction having thus been termed semi-strong [6]. This

regime is in contrast to the weak interaction regime, in which D = O(ε2), ε � 1 and

studied in [23] and [24] for the Gray–Scott model, yielding both pulse-splitting behaviour

and pulse collisions. In this latter regime, both the activator and the inhibitor are localised,

hence the weaker pulse interaction.

As mentioned, pulse patterns in reaction–diffusion models in one dimension (e.g. [11,

17, 30]) have previously been considered with no-flux boundary conditions, leading to

repulsive pulse–boundary interactions. In contrast, we will show that, in this Brusselator

model with boundary flux, the boundaries of the domain can be attracting for large enough

boundary flux. We begin in Section 3 by using matched asymptotic expansions to derive a

system of differential-algebraic equations (DAE) describing the slow evolution of N-pulse

quasi-equilibrium patterns (see [7] for a treatment of slow pulse evolution in a regularised

Gierer–Meinhardt model). Considering special two and three-pulse cases, we demonstrate

that pulses at the edges of the pulse pattern (edge pulses) can be captured by the boundary

when the boundary feed increases such that their equilibrium positions no longer lie inside
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the domain. The term ‘capture’ herein will refer to the event in which a pulse collides with

and remains fixed at the boundary and, in the cases that we considered, its amplitude

changes dramatically over a relatively short time. The presence of boundary flux also

affects equilibrium pulse spacing and requires modification of the ‘gluing’ construction

for equilibrium pulse patterns employed in [18] and [29] for the Gray–Scott and Gierer–

Meinhardt models. Instead, in Section 4, we construct equilibrium solutions by deriving an

algebraic system for equilibrium pulse amplitudes and locations from equilibrium points

of the DAE. As in the aforementioned studies, symmetric equilibria, corresponding to a

common pulse amplitude, and asymmetric pulse equilibria, for which pulse amplitudes are

different, are found. For symmetric equilibria, we show that pulse spacing is non-uniform

due to boundary flux, and we also give a general criterion for edge pulses to be captured

by the boundary. Finally, in Section 5, the stability of the equilibrium points of DAE

dynamics is calculated analytically, which, in contrast to the approach in [18] and [29]

for Gray–Scott and Gierer–Meinhardt models, provides a quick way to calculate the

small eigenvalues governing the weak translation-type instabilities of pulse patterns. In

this paper, however, no analysis of O(1) time-scale fast instabilities of the pulse profile,

typically governed by a non-local eigenvalue problem (see, e.g. [16, 30]), is carried out.

2 Scalings

To motivate the scalings with respect to ε of the parameters and variables in (1.2), we

first note that u is the localised variable for which the inner region of each pulse has O(ε)

width. We also assume that, since v is the slowly varying global variable, it is of the same

order in both the inner region and the outer region away from each pulse. Thus, in order

to balance vx to the boundary feed rate term A in (1.2b), v = O(A) in all regions. In the

inner region, we let u = O(Uin) and assume that Uin � E. In order for the cubic term in

(1.2a) to balance the derivative and linear terms and yield a homoclinic solution in u, we

require that UinA = O(1), or Uin = O(A−1). In the outer region, the term vu2 in (1.2b) as

ε → 0 can be represented as a delta sequence with weight O(εU2
inA), which must balance

the vxx term, yielding A = O(εU2
inA). Thus, Uin = O(ε−1/2) and A = O(ε1/2). The same

scaling is obtained from repeating this argument for the Bu term in (1.2b) with B = O(1).

Finally, from (1.2a), assuming vu2 � u, we have u = O(Uout) = O(E) in the outer region,

which must balance the vxx term in (1.2b) so that E = O(ε1/2). Thus, u = O(ε−1/2) in

the inner region while u = O(ε1/2) in the outer region. Globally, v = O(ε1/2). With these

scalings for A and E, we rewrite (1.2) as

ut = ε2uxx + ε1/2E − (B + 1)u + vu2, −1 < x < 1, ux(±1, t) = 0, t > 0, (2.1a)

vt = Dvxx + Bu − vu2, −1 < x < 1, vx(±1, t) = ±ε1/2A, t > 0. (2.1b)

All subsequent analysis and computations will be performed on this system.

3 Evolution of multiple pulses

Using matched asymptotic expansions, we now construct an N-pulse quasi-equilibrium

solution to (2.1) that evolves on an asymptotically slow time scale T = ε2t; the scale
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determined by enforcing consistency in the solvability condition in the inner problem.

Assuming an O(1) separation distance between adjacent pulses and between edge pulses

and the boundaries, we separately consider the inner problem for each individual pulse j.

That is, in the jth inner region, we recall the inner scalings in Section 2 and introduce the

inner variables

u ∼ 1

ε1/2
Uj(yj) =

1

ε1/2
(Uj0 + εUj1 + . . . ), v ∼ ε1/2Vj(yj) = ε1/2(Vj0 + εVj1 + . . .);

yj =
x − xj(T )

ε
, (3.1)

where we assume xi < xj for i < j. The solution is thus characterised by N pulses whose

form remains constant while their centre and amplitude may vary on a slow time scale.

Substituting (3.1) into (2.1), we find the leading order equations for Uj0 and Vj0 :

U ′′
j0

− (B + 1)Uj0 + Vj0U
2
j0

= 0, −∞ < yj < ∞, (3.2a)

Uj0 → 0 as |yj | → ∞, (3.2b)

and

DV ′′
j0

= 0, −∞ < yj < ∞, (3.3a)

Vj0 bounded as |yj | → ∞, (3.3b)

where the decay condition on Uj0 at ±∞ and the boundedness condition on Vj0 are

required to match to the outer solution. We remove the translational invariance of (3.2)

by requiring that U ′
j0
(0) = 0. Here, the primes indicate differentiation with respect to yj .

Since (3.3) leads to Vj0 being a constant, the leading order inner equations are uncoupled.

We can then readily solve (3.2) and (3.3) as

Vj0 = V̄j(x1, . . . , xN) ≡ V̄j , j = 1, . . . , N,

and

Uj0 (yj) =
3(B + 1)

2V̄j

sech2

(√
B + 1

2
yj

)
, (3.4)

where V̄j is spatially independent but can depend on x1, . . . , xN . We refer to the pre-factor

in (3.4) as the pulse amplitude, which is inversely proportional to V̄j . We will see below

that, like xj , V̄j evolves on an O(ε2) time scale. At the next order, we obtain for Uj1 and

Vj1

U ′′
j1

− (B + 1)Uj1 + 2V̄jUj0Uj1 = −x′
j(T )U ′

j0
− Vj1U

2
j0

− E, −∞ < yj < ∞, (3.5a)

Uj1 → E

B + 1
as |yj | → ∞, (3.5b)

and

DVj1 = Vj0U
2
j0

− BUj0 , −∞ < yj < ∞. (3.6)

The limiting condition (3.5b) follows from the fact that in the outer region u ∼ ε1/2E/

(B + 1), which can be deduced from applying the outer region scaling u = O(ε1/2) = v
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and solving for u in (2.1a). In the far field, we allow Vj1 to grow linearly in yj , with the

precise conditions to come from matching to the outer solution. The solution to (3.6) can

then be readily obtained, which we write as

Vj1 (y) = −3(B + 1)

2DV̄j

sech2

(√
B + 1

2
yj

)
+

6

DV̄j

log

(
cosh

(√
B + 1

2
yj

))
+ cj1yj + cj2 , (3.7)

where cj1 and cj2 , which may depend on x1, . . . , xN , are integration constants. The former

determines the linear behaviour of Vj1 in the far-field and will be calculated when the

inner solution is matched to the outer. Determining cj2 requires higher order matching

and is not needed for our purposes.

To use the Fredholm alternative to find an expression for x′
j(T ) from (3.5a), we make

the substitution Uj1 = Wj + E/(B + 1) to obtain

W ′′
j − (B + 1)Wj + 2V̄jUj0Wj = −2Uj0 V̄j

E

B + 1
− x′

j(T )U ′
j0

− Vj1U
2
j0
, −∞ < yj < ∞,

(3.8a)

Wj → 0 as |yj | → ∞. (3.8b)

Differentiating (3.2a) with respect to yj , we find that W = U ′
j0

is a solution to the

homogeneous problem of (3.8a) satisfying (3.8b); thus, the right-hand side of (3.8a) must

satisfy the Fredholm condition∫ ∞

−∞
U ′

j0

(
−2Uj0Vj0

E

B + 1
− x′

j(T )U ′
j0

− Vj1U
2
j0

)
dyj = 0. (3.9)

Noting that Vj0 is a constant and that Uj0 is an even function (from (3.4)), we use (3.7) to

obtain from (3.9)

dxj

dT
=

2cj1
V̄j

, j = 1, . . . , N.

Here, cj1 , introduced in (3.7), and V̄j will be determined by matching the inner solution

of v to the outer solution along with a solvability condition. In general, cj1 and V̄j can

depend on xj , j = 1, . . . , N, resulting in coupling between the N pulses. Since xj varies

slowly in time, so too will V̄j , j = 1, . . . , N, and consequently, the pulse amplitudes.

To solve for v in the outer region, we proceed as in [30] and use the assumption of

sufficiently separated pulses to express each term involving u in (2.1b) as a sum of N

appropriately weighted delta masses, with each delta mass representing a pulse. With

weights equal to the area under each function involving u, we approximate the Bu term

in (2.1b) as

Bu ∼ ε1/2 BE

B + 1
+

N∑
j=1

wj1δ(x − xj); wj1 = ε1/2

∫ ∞

−∞
Uj0 dyj = ε1/2 6B

√
B + 1

V̄j

, (3.10)

and the vu2 term in (2.1b) as

vu2 ∼
N∑
j=1

wj2δ(x − xj); wj2 = ε1/2

∫ ∞

−∞
Vj0U

2
j0
dyj = ε1/2 6(B + 1)3/2

V̄j

. (3.11)
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Then, using (3.10) and (3.11) in (2.1b), and re-scaling v = ε1/2ν, we find that, to leading

order, ν satisfies

Dνxx +
BE

B + 1
− 6

√
B + 1

N∑
j=1

1

V̄j

δ(x − xj) = 0, −1 < x < 1, νx(±1) = ±A. (3.12)

Integrating (3.12) over −1 < x < 1 and applying the boundary conditions on νx, we find

that V̄j must satisfy the solvability condition

N∑
j=1

1

V̄j

=
AD + F

3
√
B + 1

, (3.13)

where

F ≡ BE

B + 1
. (3.14)

With the constraint (3.13), we solve for ν(x) up to an arbitrary constant ν̄ in terms of a

modified Green’s function G(x; xj),

ν = ν̄ +
A

2
x2 + 6

√
B + 1

N∑
j=1

1

V̄j

G(x; xj), (3.15)

where G(x; xj) satisfies

DGxx(x; xj) +
1

2
= δ(x − xj), −1 < x < 1, Gx(±1; xj) = 0,

∫ 1

−1

G(x; xj) dx = 0,

(3.16)

with uniqueness achieved through the constraint in (3.16). The solution to (3.16) is

G(x; xj) = − 1

4D
(x2 + x2

j ) +
1

2D
|x − xj | − 1

6D
.

Now to determine ν̄ and ci1 , we match the behaviour of ν and Vi near xi for i = 1, . . . , N.

Expanding ν(x) in (3.15) in powers of (x − xi) as x → x+
i , we find

ν ∼ ν̄ +
A

2
x2
i + 6

√
B + 1

N∑
j=1

1

V̄j

G(xi; xj) +

⎛
⎝Axi + 6

√
B + 1

N∑
j=1

1

V̄j

Gx(x
+
i ; xj)

⎞
⎠ (x − xi) ,

(3.17)

which must match the behaviour of Vi as yi → ∞:

Vi ∼ V̄i + ε

(
3
√
B + 1

DV̄i

yj + ci1yj + ci2 − log 2

)
. (3.18)

Matching the appropriate terms in (3.17) and (3.18) while recalling that yi = (x − xi)/ε,

we find that

ν̄ = V̄i − A

2
x2
i − 6

√
B + 1

N∑
j=1

1

V̄j

G(xi; xj),
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and

ci1 = −3
√
B + 1

DV̄i

+ Axi + 6
√
B + 1

N∑
j=1

1

V̄j

Gx

(
x+
i ; xj

)
, (3.19)

where ν̄ is independent of i. Matching the behaviours of ν and Vi as x → x−
i and yi → −∞,

respectively, yields the equivalent expression

ci1 =
3
√
B + 1

DV̄i

+ Axi + 6
√
B + 1

N∑
j=1

1

V̄j

Gx(x
−
i ; xj). (3.20)

We now summarise the results for an N-pulse quasi-equilibrium solution to (2.1) in the

following result.

Principal Result I Let ε → 0 in (2.1) and assume O(1) separation between adjacent pulses

as well as O(1) separation between edge pulses and nearest boundaries. Then, the leading

order quasi-equilibrium N-pulse solutions for u and v are given by

u(x) ∼ 1

ε1/2

⎛
⎝ N∑

j=1

3(B + 1)

2V̄j

sech2

(√
B + 1

2

x − xj

ε

)⎞⎠+ε1/2

⎛
⎝ E

B + 1
+

N∑
j=1

Wj

(x − xj

ε

)⎞⎠ ,

(3.21a)

v(x) ∼ ε1/2

⎛
⎝ν̄ +

A

2
x2 + 6

√
B + 1

N∑
j=1

1

V̄j

G(x; xj)

⎞
⎠ , (3.21b)

where Wj is the even solution to (3.8), and ν̄ and V̄j , j = 1, . . . , N are determined by the

system of N + 1 equations

ν̄ − V̄i + 6
√
B + 1

N∑
j=1

1

V̄j

G(xi; xj) = −A

2
x2
i , i = 1, . . . , N, (3.22a)

N∑
j=1

1

V̄j

=
AD + BE

B+1

3
√
B + 1

. (3.22b)

The O(ε2) time scale evolution of the pulse locations can be computed from

dxi

dt
= ε2 2ci1

V̄i

, i = 1, . . . , N, (3.23)

where ci1 is computed from (3.19) and V̄i, i = 1, . . . , N are computed from (3.22). Equations

(3.22) and (3.23) with (3.19) form a DAE for the evolution of the pulse locations and

V̄i, the inverse proportionality constant of pulse amplitudes, which along with ν̄, uniquely

parameterise a quasi-equilibrium state.

We now consider special cases for which simplifications of the DAE are possible. The

simplest is the one-pulse case for which, by (3.22b), V̄1 remains constant for all time. To
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leading orders, the solutions u and v are then given by

u(x) ∼ 1

ε1/2

(AD + F)(B + 1)

2
sech2

(√
B + 1

2

x − x1

ε

)
+ ε1/2

[
E

B + 1
+ W1

(x − x1

ε

)]
,

(3.24a)

v(x) ∼ ε1/2

[
− F

2D

(
x2 − x2

1

)
+

(
A +

F

D

)
|x − x1| +

3
√
B + 1

AD + F

]
, (3.24b)

while the centre of the pulse evolves on a slow time scale as

x1(t) = x1(0)e−ε2k1t; k1 ≡ 2
EB (AD + F)

3(B + 1)3/2D
, (3.25)

where x1(0) is the initial position of the pulse and F is defined in (3.14). From (3.24a),

we see that if E = 0, that is, if the pulse decays to a trivial background state, no pulse

can exist unless A > 0. This is because the non-trivial background state of activator acts

as a source for the inhibitor through the Bu term in (2.1b), and without this source,

feed of the inhibitor must enter through boundaries. Further, for E = 0 and A > 0,

(3.25) predicts that the pulse will remain stationary to all orders of ε. However, in this

case, exponentially slow dynamics due to the failure of the pulse profile to satisfy the

no-flux boundary conditions become important. This is analogous to the metastable pulse

solution in a non-local reaction–diffusion equation derived from a certain limit of the

Gierer–Meinhardt model (see [9]) and is addressed in Appendix A.

The evolution of two pulses centred at (−α(t), α(t)) can also be obtained explicitly, the

evolution of α(t) given by

α(t) =

[
α(0) − AD + F

2F

]
e−ε2k2t +

AD + F

2F
; k2 ≡ BE (AD + F)

3(B + 1)3/2D
. (3.26)

Comparing (3.26) to (3.25), we see that the evolution of a symmetric two-pulse pattern

when A = 0 is simply that of a one pulse pattern on a domain of half the size. When

A > 0, the equilibrium locations of the pulses are given by α = (AD + F)/(2F) so that

when A exceeds the critical value Ac2
given by

Ac2
=

F

D
, (3.27)

equilibrium locations of the pulses are outside of the domain. We will illustrate the

importance of this threshold below.

For a three-pulse pattern symmetric about x = 0 with pulses located at (x1(t), x2, x3(t)) =

(−α(t), 0, α(t)), we argue by symmetry that V̄1 = V̄3 ≡ V̄ . Then, the evolution of α(t) is

given by

dα

dt
= ε2 2

V̄

(
−α

F

D
+ A +

F

D
− 3

√
B + 1

V̄D

)
, (3.28)

where V̄ is solved in terms of α using (3.22). As we discuss in Section 5, only symmetric

patterns are stable; thus, in equilibrium, all pulse amplitudes are equal so that V̄i =

9
√
B + 1/(AD + F), i = 1, 2, 3. Applying this in (3.28), we find that in equilibrium

α = 2(AD + F)/(3F), leading to the three-pulse threshold for existence of equilibrium
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locations inside the domain

Ac3
=

F

2D
. (3.29)

When the boundary feed exceeds the respective thresholds above, pulses at the edges of

the pattern are captured by the boundary. Thus, whereas when the boundary feed rate is

sufficiently small, the boundaries repel the pulses, when the boundary feed is sufficiently

large, the boundaries become attractive, leading to equilibrium patterns where pulses are

centred at the boundary. We illustrate this point in the figures below in which we compare

asymptotic results to those obtained numerically from solving (2.1) using the MATLAB

function pdepe(). The locations of the centres of the pulses are simply taken to be the

locations on the grid where local maxima of u occur; we do not perform an interpolation

near the maxima to compute a more accurate location. The asymptotic results may be

obtained from either numerically solving the DAE (3.22) and (3.23) with (3.19), or from

(3.26) and (3.28). In all plots containing u and v, the plotted quantities are ε1/2u (solid

line) and ε−1/2v (dashed line). Lastly, in plots comparing the asymptotic prediction of the

pulse location(s), the solid line represents the numerical result while the circles represent

the asymptotic result.

In Figures 1(a)–(c), we show the case of repulsive boundaries resulting from A < Ac2
.

Figure 1(a) shows the quasi-equilibrium initial conditions for u and v. In Figure 1(b),

we compare the asymptotic prediction of the pulse locations to that of the numerical

solution. As predicted, the pulses evolve to symmetric equilibrium locations inside the

domain as seen in Figure 1(c). Note that, as expected, locations of activator maxima

coincide with locations of inhibitor minima. Figures 1(d)–(f) show the A > Ac2
case for

attractive boundaries. In Figure 1(d), we see that the asymptotic prediction of the pulse

locations is accurate until the pulses become sufficiently close to the boundary, at which

point the asymptotic results become invalid. Figure 1(e) shows the evolution of the right

pulse as it approaches and is captured by the boundary at x = 1. From the times given

in the caption, it is seen that the capture process is rapid relative to the evolution of the

pulse when sufficiently far from the boundary. During this time as the pulse approaches

the boundary, its amplitude doubles. Thus, as the pulses approach the boundaries, their

amplitudes change dramatically in a short time. Lastly, we plot the equilibrium pattern in

Figure 1(f) with two pulses centred at the boundary with twice their original amplitudes

due to the fact that only half of each pulse is inside the domain. The Neumann conditions

for v are met by boundary layers near x = ±1.

In Figures 2(a)–(c), we show the case of attracting boundaries for a three-pulse example

symmetric about x = 0. The centre pulse remains stationary, while the two edge-pulses

drift towards the boundaries. As before, the asymptotics are able to predict the evolution

of the pulses until they are too close to the boundaries (Figures 2(a) and (b)). In contrast

to the two-pulse case, the pulse amplitudes must be calculated as a function of the pulse

locations, and thus, vary in time (Figure 2(b)). The difference between the asymptotic and

numerical results in Figure 2(b) can be attributed to not including the second term in the

expansion for u in (3.1). In Figure 2(c), we show the equilibrium state with one pulse in

the centre and two pulses centred at the boundaries.

In further numerical computations (not shown), we observed that any quasi-equilibrium

pattern evolves to a symmetric equilibrium as long as pulses are not captured by the
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Figure 1. Illustration of the effect of boundary feed rate on the behaviour of boundaries with

ε = 0.01, B = 2, D = 0.5 and E = 3 so that Ac2 = 4. In (a)–(c), A = 3 while in (d)–(f), A = 6. In

both cases, the initial conditions (plotted for the former case in (a)) are (x1, x2) = (−0.5, 0.5). When

A < Ac2 , the boundaries are repulsive and the pulses evolve to equilibrium locations inside the

domain ((b) and (c)). When A > Ac2 , the boundaries are attractive so that the pulses are captured

by the boundaries ((d) and (f)). Note that the axis breaks in (f). In (e), we show the evolution of the

right pulse as it propagates to the right towards boundary at x = 1. The dotted line is a snapshot

of ε1/2u taken at t = 2341, the dashed-dotted line at t = 2561 and the dashed line at t = 2576. The

two solid lines correspond to t = 2577 and t = 2583, the taller pulse being the equilibrium shape.
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Figure 2. Illustration of the effect of boundary feed rate on the behaviour of boundaries with

ε = 0.00125, B = 5, D = 1 and E = 40 so that Ac3 = 16.67. Here, A = 20 > Ac3 so that the two

edge-pulses are captured by the boundary. In (a) and (b), we compare the asymptotic to numerical

results for pulse locations and amplitudes. In (c), we plot the equilibrium state with two pulses

centred on the boundary.
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boundaries (rapid pulse collapse events, discussed briefly in Section 6, leading to a

decrease in the number of pulses are possible, though are not studied in this paper). In the

next section, we construct such equilibria by deriving an algebraic system from equilibrium

points of the DAE obtained in this section. In addition, we construct asymmetric equilibria

characterised by pulses of different amplitudes and find conditions for their existence.

4 Symmetric and asymmetric equilibria

In this section, we construct equilibrium states of (2.1) by finding equilibrium solutions

of the DAE (3.22)–(3.23). By (3.23), equilibrium solutions for xi, V̄i, i = 1 . . . , N, and

ν̄ must satisfy the system (3.22) along with ci1 = 0, i = 1, . . . , N, where ci1 is given in

(3.19). We begin by considering symmetric equilibria for which all pulse amplitudes have

a common value, but for which inter-pulse spacing may be non-uniform in the presence

of a boundary feed rate. We will find that a positive boundary feed rate increases both the

pulse amplitudes as well as inter-pulse spacing. Also, in particular, we derive a threshold

for the boundary feed rate at which the interaction between the boundary and the edge

pulses changes from repulsive to attractive. In previous similar studies with no boundary

feed, the boundaries were shown to be repulsive. The other main focus of this section is to

show that, in addition to symmetric equilibria, there exist asymmetric equilibria in which

the pulse amplitudes can differ from one another. The existence of asymmetric equilibria

arises from the multi-valued property of the inverse of a function obtained from solving

(3.22) and ci1 = 0. No general statement can be made about the effect of boundary feed

on asymmetric equilibria; its effect depends on specific cases and will not be discussed

here.

We begin by obtaining a general relation between equilibrium pulse locations and their

amplitudes, applicable to both symmetric and asymmetric patterns. We then consider the

two cases separately. Using (3.20) for ci1 , we obtain

3b

DV̄i

+ Axi + 6b

N∑
j=1

1

V̄j

Gx(x
−
i ; xj) = 0, (4.1)

where

b ≡
√
B + 1. (4.2)

Using

Gx(x; xj) = − x

2D
+

1

2D
sgn(x − xj)

in (4.1), we find that the equilibrium pulse locations satisfy

1

V̄i

− xi

N∑
j=1

1

V̄j

+

N∑
j=1

1

V̄j

sgn(x−
i − xj) = −AD

3b
xi. (4.3)

Using (3.22b) for the first sum in (4.3), and defining �j in terms of V̄j by

V̄j =
3b

(AD + F)�j
, (4.4)
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we split the second sum in (4.3) according to sgn(x − xj) and simplify to find

�i +

i−1∑
j=1

�j −
N∑
j=i

�j = Cxi, (4.5)

where

C ≡ F

AD + F
� 1. (4.6)

Note that equality in (4.6) holds if A = 0. We make two remarks about �j . First, since V̄j

is inversely proportional to the amplitude of pulse j, �j is proportional to the amplitude.

Second, the equivalent statement to (3.22b) in terms of �j is

N∑
j=1

�j = 1, (4.7)

which we use to write the second sum in (4.5) in terms of the first sum to calculate an

expression for xi in terms of �j , j � i:

xi =
1

C

⎛
⎝2

i−1∑
j=1

�j − 1 + �i

⎞
⎠ . (4.8)

From (4.8), we obtain the recursion relation for the pulse locations

x1 =
1

C
(−1 + �1) , xi+1 = xi +

1

C
(�i + �i+1) , xN =

1

C
(1 − �N) . (4.9)

If C = 1, the quantity 2�j can be interpreted as the space occupied by pulse j. This

interpretation was used in [30] to construct asymmetric pulse equilibria to the zero-

boundary-flux Schnakenberg model, where equilibrium solutions allowed for pulses of

two different amplitudes. The method of constructing the asymmetric equilibria was

different from that employed in this section, as single pulses solved for on a domain of

length 2�j were ‘glued’ together to form a multi-pulse solution. That method does not

extend as naturally here because we allow for non-homogeneous boundary conditions.

However, we will see below that asymmetric equilibria of the Brusselator model arise in

the same manner as in the Schnakenberg model.

We first consider the simple case of symmetric solutions. Since all pulse amplitudes are

equal, (4.7) yields �j = 1/N for all j = 1, . . . , N, leading to V̄j = 3
√
B + 1N/(AD + F).

Since pulse amplitudes are inversely proportional to V̄j , we see that increasing boundary

feed leads to increasing pulse amplitudes in the case of symmetric solutions. The recursion

relation (4.9) also simplifies, yielding

xj =
1

C

(
−1 +

2j − 1

N

)
. (4.10)

With C given in (4.6), it is evident from (4.10) that the presence of boundary feed

increases inter-pulse spacing and also leads to equilibrium edge-pulse locations closer
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to the boundaries. The condition for all pulses to be inside the domain is xN < 1, or

C > (N−1)/N. That is, as the boundary feed increases to some critical value AcN , the edge

pulses become centred on the boundary, and as the feed is increased past this threshold,

no equilibrium positions within boundaries exist for the edge pulses. In terms of the slow

evolution of Section 3, the boundaries when A > AcN are said to be attracting. This leads

to the main result of this section.

Principal Result II Let ε → 0 in (2.1) and assume O(1) separation between adjacent pulses

as well as O(1) separation between edge pulses and nearest boundaries, and consider the slow

evolution of the quasi-equilibrium pattern given in Principal Result I. Then, the threshold

AcN for the boundary feed A at which the boundaries change from repelling to attracting the

pulses at the edges of an N-pulse pattern (N> 1) is given by

AcN =
F

(N − 1)D
. (4.11)

When A < AcN , the boundaries repel pulses at the edges of the pattern, while when A � AcN ,

the boundaries attract the edge pulses.

We note that the result (4.11) is consistent with those obtained in (3.27) and (3.29) for the

two- and three-pulse cases and also that E > 0 is required for equilibrium locations inside

the boundaries to exist. Because it appears that all asymmetric equilibria are unstable, as

we will discuss in Section 5, this analysis is not worth repeating for asymmetric solutions,

as quasi-equilibrium patterns will always evolve towards symmetric equilibrium points.

To construct asymmetric equilibria, we compute �j using (3.22a) to find N−1 equations

of the form

V̄i+1 − 6b

N∑
j=1

1

V̄j

G(xi+1; xj) − A

2
x2
i+1 = V̄i − 6b

N∑
j=1

1

V̄j

G(xi; xj) − A

2
x2
i , i = 1, . . . , N − 1.

(4.12)

Using (4.4) to write V̄j in terms of �j , (4.12) becomes

3b

AD + F

(
1

�i+1
− 1

�i

)
= 2(AD+F)

N∑
j=1

�j(G(xi+1; xj) − G(xi; xj))+
A

2

(
x2
i+1 − x2

i

)
. (4.13)

We calculate the sum in (4.13) to be

N∑
j=1

�j(G(xi+1; xj) − G(xi; xj)) = − 1

4D

(
x2
i+1 − x2

i

)
+

1

2CD
(�i + �i+1)

⎛
⎝ i∑

j=1

�j −
N∑

j=i+1

�j

⎞
⎠ .

(4.14)

To write the difference of squares term in (4.14) in terms of �i and �i+1, we write

x2
i+1 − x2

i = (xi+1 − xi)(xi+1 − xi + 2xi) = (xi+1 − xi)
2 + 2xi(xi+1 − xi),
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Figure 3. Plots of the functions β(z) (a) and f(z) (b). The domain over which f(z) is plotted

is z ∈ (0, zc).

and, upon applying (4.8) for xi and (4.9) for (xi+1 − xi), we find that

x2
i+1 − x2

i =
1

C2
(�i+1 + �i)

⎛
⎝4

i∑
j=1

�j + �i+1 − �i − 2

⎞
⎠ . (4.15)

Using (4.15) and (4.14) in (4.13) and recalling (4.7), we find that, upon rearranging,

1

�i+1
− 1

�i
=

(AD + F)3

6bDF

(
�2
i − �2

i+1

)
. (4.16)

Making the substitution

�i = qzi, q ≡ (6bDF)1/3

AD + F
, (4.17)

in (4.16) and (4.7), we find that zi must satisfy

β(zi) = β(zi+1), i = 1, . . . , N − 1, (4.18a)

N∑
j=1

zj =
1

q
, (4.18b)

where β(z) ≡ z2 + 1
z
. Note that the amplitude of pulse j is proportional to zj . The function

β(z), plotted for a select range of z in Figure 3(a), has a global minimum at z = zc, where

zc = 2−1/3. (4.19)

Further, β′(z) < 0 on (0, zc) and β′(z) > 0 on (zc,∞). Thus, for any z ∈ (0, zc), there exists

a unique point z̃ ∈ (zc,∞) such that β(z) = β(z̃). That is, the inverse function β−1(z)

is multi-valued. Consequently, because (4.18a) must be satisfied for i = 1, . . . , N − 1, zi
can take on two and only two possible values, yielding two possible pulse amplitudes in

a given equilibrium state. It is not restricted, however, in which value it does take on,
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meaning that the left-to-right order in which the pulses appear in the domain is arbitrary.

Since the amplitude of pulse i is proportional to zi, zi = z would correspond to a small

pulse at location i, while zi = z̃ would correspond to a large pulse at location i. The

system (4.18) is the same system that also led to the possibility of two-pulse amplitudes

in equilibrium solutions constructed in [30].

To find solutions to (4.18), we first solve β(z̃) = β(z) for z̃ > z in terms of z. There are

two positive solutions for z̃; clearly one solution is z̃ = z. The other is given by

z̃ = f(z) =
−z +

√
z2 + 4/z

2
> z.

The function f(z) is plotted in Figure 3(b).

Letting N1 be the number of small pulses and N2 = N − N1 be the number of large

pulses, allowing (4.18b) to be written as N1z + N2z̃ = 1/q, we find that an equilibrium

solution exists if there is at least one intersection between the curves

z̃ = −N1

N2
z +

1

qN2
, (4.20a)

z̃ =
−z +

√
z2 + 4/z

2
. (4.20b)

Analysis concerning the existence and uniqueness of solutions to (4.20) can be found in

[30]. We give here a short discussion leading to the results. The important properties of

the function f(z) are that f(zc) = zc, f
′′(z) > 0 on (0, zc), f

′(0) = −∞ and f′(zc) = −1.

We can then conclude that f′(z) < −1 on (0, zc). Thus, if N1/N2 � 1, there can be at

most one intersection between the two curves in (4.20) in the interval z ∈ (0, zc). For a

given N1 and N2, the value of z̃ at which the intersection occurs decreases as q increases;

that is, the line (4.20a) shifts downwards as q increases. As q increases above a critical

value qm, the two curves can no longer intersect. When q = qm, the intersection occurs at

(z, z̃) = (zc, zc). Using this fact in (4.20a), we find that

qm =
1

Nzc
, (4.21)

where N = N1 +N2 is the total number of pulses, and zc is given in (4.19). The intersection

of the two curves at (z, z̃) = (zc, zc) when q = qm leads to the small and large pulses being

of equal amplitude. Thus, when N1 � N2, asymmetric equilibria exist only when q < qm.

If N1/N2 > 1, there can be either zero, one or two points of intersection in the interval

z ∈ (0, zc). The three ways in which intersections can occur are depicted for N1 = 3 and

N2 = 1 in Figure 4. Similar to the previous case, as q increases past a critical value qm1
,

no intersection is possible. When q = qm1
, the two curves are tangent at z = z∗ (the

bottommost curve in Figure 4), where 0 < z∗ < zc is given by

z∗ =

[
2(1 + γ2) − 2

√
(1 + γ2)2 − (1 − γ2)

(1 − γ2)

]1/3

, γ = 1 − 2N1

N2
. (4.22)
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Figure 4. Plot of f(z) (solid curve) and the linear function (4.20a) (dashed lines) for N1 = 3,

N2 = 1. When q = qm1
, the two curves are tangent. When qm < q < qm1

, there are two intersections

and when q < qm, there is only one intersection. Here, qm ≈ 0.31498 and qm1
≈ 0.3886. The three

values of q, from lowest line to highest line, are q ≈ 0.3886, q ≈ 0.33498 and q ≈ 0.26498.

Using (4.22) in (4.20a), we obtain the expression for qm1

qm1
=

1

N1z∗ + N2f(z∗)
. (4.23)

As q decreases below qm1
, the curves intersect in two locations (the middle line in Figure 4)

until the rightmost intersection point reaches (z, z̃) = (zc, zc). The value of q at which

this occurs is q = qm. For q < qm, only one intersection on z ∈ (0, zc) is possible (the

uppermost line in Figure 4).

We now summarise the results of asymmetric equilibria. The forms of u and v are the

same as those of the quasi-equilibrium solution given in (3.21), where the pulse locations

xj are given by the recursion relation (4.9), with �j = qz corresponding to a small pulse

centred at x = xj , or �j = qz̃ corresponding to a large pulse centred at x = xj . Here, q is

defined in (4.17), and (z, z̃) is given by an intersection of the right-hand sides of (4.20a)

and (4.20b). The inverse proportionality constant of the amplitude of each pulse, V̄j , is

given in terms of �j by (4.4). The last parameter needed to construct the solution is ν̄,

which may be calculated from xj and V̄j independent of i from (3.22a). The left-to-right

ordering of small and large pulses is arbitrary.

In Figures 5(a) and (b), we demonstrate the arbitrary left-to-right ordering of small

and large pulses using a five-pulse example with N1 = 2 and N2 = 3. Even though the

same parameters were used to generate Figures 5(a) and (b), the arbitrary left-to-right

ordering predicted above allows for different equilibrium states. However, since N1 < N2,

only two possible pulse amplitudes are possible. That is, while other left-to-right orderings

are possible, the pulse amplitudes in Figure 5 are the only amplitudes allowed by the

parameter set.

In Figures 6(a) and (b), we demonstrate the non-uniqueness of the solutions to (4.20)

when N1 > N2. We illustrate the point on a four-pulse example with N1 = 3 and N2 = 1.

The parameters are the same as those used to generate the middle line in Figure 4.

With the same left-to-right ordering of small and large pulses, we plot the solutions
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Figure 5. Two asymmetric equilibrium states with N1 = 2 and N2 = 3 and the same parameters

but different left-to-right ordering of small and large pulses. The parameters are ε = 0.01, A = 3,

B = 5, D = 1 and E = 40. The small and large pulses of (a) are of the same amplitude as those

in (b).
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Figure 6. Four-pulse asymmetric solutions with N1 = 3 and N2 = 1 and the same left-to-right

ordering but corresponding to different intersections of f(z) and the middle curve of Figure 4. The

parameters are ε = 0.01, A = 0, B = 5, D ≈ 0.25576 and E = 12 so that qm ≈ 0.31498, qm1
≈ 0.3886

and q ≈ 0.34498. We plot ε1/2u in (a) and ε−1/2v in (b). The solid curves correspond to the left

intersection, while the dashed curves correspond to the right intersection.

corresponding to the left (solid) and right (dashed) intersections in Figure 4. The left

intersection corresponds to more disparate values for z and z̃, leading to more disparate

pulse amplitudes and inter-pulse spacings while the right intersection corresponds to less

disparate values for z and z̃, and thus, the pulse amplitudes are less disparate with the

pulses more evenly distributed across the domain.

In Section 5, we analyse the stability of N-pulse equilibria to small (O(ε2)) eigenvalues

corresponding to perturbations that either grow or decay on an O(ε2) time scale. They

do not account for pulse collapse events in which one or more pulses collapse relatively
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rapidly on an O(1) time scale, nor do they predict oscillations of pulse amplitudes. Such

instabilities are governed by large (O(1)) eigenvalues and are not studied here.

5 Stability of equilibria to small eigenvalues

In this section, we study the stability of the equilibrium solutions constructed in Section 4

to O(ε2) eigenvalues. The class of perturbations that we consider accounts only for slow

drift instabilities that occur on an O(ε2) time scale; analysis of these perturbations cannot

predict instabilities that occur on an O(1) time scale. Thus, stability with respect to this

class of perturbations does not guarantee that such solutions are stable though solutions

found to be unstable to these perturbations are certainly unstable. Two approaches

were taken to analyse the stability to such perturbations. The first approach in which

an eigenvalue problem is derived by linearising the system (2.1) around an N-pulse

equilibrium solution is analogous to that taken in the small eigenvalue analysis of [30]. As

in [30], we found that the eigenvalues scaled as O(ε2) and were eigenvalues of a certain

N×N matrix MP . In the other approach, instead of linearising (2.1), we linearise the DAE

system (3.22)–(3.23) around an N-pulse equilibrium solution. The associated eigenvalues

are eigenvalues of an N × N matrix MD . Since the DAE evolves on an O(ε2) time scale,

perturbations of the DAE also grow or decay on an O(ε2) time scale, consistent with the

first approach. Moreover, further calculations (not shown) show that MD = rMP , where

r is a positive constant. The two analyses thus yield the same results in terms of stability

and are equivalent. Because of the length of the first analysis and its similarity to that

given in [30], we only present the stability analysis of the DAE in this section.

We first introduce the N-dimensional column vectors x = (x1, . . . , xN)T and V =

(V̄1, . . . , V̄N)T containing the pulse locations and inverse pulse amplitudes, respectively,

where T denotes the transpose. We also denote

C(x,V) = (C1(x,V), . . . , CN(x,V))T, (5.1a)

Ci(x,V) ≡ ci1 = − 3b

DV̄i

+ Axi + 6b

N∑
j=1

1

V̄j

Gx

(
x+
i ; xj

)
, i = 1, . . . , N, (5.1b)

where ci1 was defined in (3.19). We lastly rewrite the N + 1 algebraic equations in (3.22)

in vector form as

H(x,V, ν̄) = 0, S(V) = 0,

where

H(x,V, ν̄) = (H1(x,V, ν̄), . . . , HN(x,V, ν̄))T, (5.2a)

Hi(x,V, ν̄) = ν̄ − V̄i + 6b

N∑
j=1

1

V̄j

G(xi; xj) +
A

2
x2
i , i = 1, . . . , N, (5.2b)

and

S(V) =

N∑
j=1

1

V̄j

− AD + F

3b
,
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with F defined in (3.14) and b defined in (4.2). An equilibrium solution (x,V, ν̄) = (xe,Ve, ν̄e)

thus satisfies the 2N + 1 system of equations

C(xe,Ve) = 0, (5.3a)

H(xe,Ve, ν̄e) = 0, (5.3b)

S(Ve) = 0. (5.3c)

To derive the eigenvalue problem that determines stability, we perturb the equilibrium

solutions according to

x = xe + δξ, V = Ve + δφ, ν̄ = ν̄e + δµ, (5.4)

with δ � 1. We then use (5.3b) and (5.3c) to determine φ and µ in terms of ξ, which we

then use in (5.3a) to compute C(x,V) = δMξ for some matrix M. Using this for C in

(3.23), the leading order terms yield the eigenvalue problem dξ/dt = 2ε2V(e)Mξ, where

V(e) is the matrix

V(e) ≡

⎛
⎜⎜⎜⎜⎝

1/V̄1e 0 . . . 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · 1/V̄Ne

⎞
⎟⎟⎟⎟⎠ , (5.5)

where Vie is the ith component of Ve. The eigenvalues of the matrix V(e)M then determine

the stability of the equilibrium solutions with respect to perturbations of the DAE.

We begin by substituting the perturbed solutions (5.4) into (5.3b) and expanding to first

order in δ to calculate that

H(e)
x ξ + H(e)

V φ + µH(e)
ν̄ = 0, (5.6)

where, for some N-dimensional column vector w, scalar s and N-dimensional vector

function F, Fw(w, s) denotes the Jacobian matrix

(Fw(w, s))ij =
∂Fi

∂wj

, 1 � i, j � N; F = (F1, . . . , FN)T, w = (w1, . . . , wN)T,

and Fs denotes the derivative of F with respect to s, (Fs)i = ∂Fi

∂s
. The superscript (e)

indicates that the quantity is evaluated at the equilibrium solution (x,V, ν̄) = (xe,Ve, ν̄e).

Next, expanding (5.3c) to first order in δ, we find that ∇S(e)Tφ = 0.

Since we require φ in terms of ξ, we must first calculate µ in terms of ξ. We first use

(5.6) to write

φ = −H(e)−1
V

(
H(e)

x ξ + µeN
)
, (5.7)

where we have used (5.2) to calculate that H(e)
ν̄ is the N-dimensional vector eN ≡ (1, . . . , 1)T.

Then, using (5.7) for φ in ∇S(e)Tφ = 0, we find that

µ = −
∇S(e)T

(
H(e)−1

V H(e)
x ξ

)
∇S(e)TH(e)−1

V eN
. (5.8)
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Using (5.8) for µ in (5.6), we arrive at

H(e)
V φ = −H(e)

x ξ +
∇S(e)T

(
H(e)−1

V H(e)
x ξ

)
∇S(e)TH(e)−1

V eN
eN,

which, upon some matrix algebra, yields φ = Rξ, where R is defined as

R = H(e)−1
V

[
−H(e)

x +
1

∇S(e)TH(e)−1
V eN

eN
(
∇S(e)TH(e)−1

V H(e)
x

)]
. (5.9)

Finally, to derive the eigenvalue problem, we rewrite (3.23) in matrix form as

dx

dt
= 2ε2VC(x,V), V ≡

⎛
⎜⎜⎜⎜⎝

1/V̄1 0 . . . 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · 1/V̄N

⎞
⎟⎟⎟⎟⎠ , (5.10)

where C is defined in (5.1). Using the perturbations (5.4) for x and V in (5.10) and

expanding to the first order in δ, we arrive at the eigenvalue problem

dξ

dt
= 2ε2V(e)Mξ, M ≡ C(e)

x + C(e)
V R, (5.11)

where V(e) and R are defined in (5.5) and (5.9), respectively. This leads to the main result

of this section.

Principal Result III Let ε → 0 in (2.1) and assume O(1) separation between adjacent pulses

as well as O(1) separation between edge pulses and nearest boundaries, and consider an

equilibrium solution as constructed in Section 4 parameterised by (x,V, ν̄) = (xe,Ve, ν̄e). Then,

the solution is stable with respect to small eigenvalues if all eigenvalues of the matrix V(e)M
have negative real parts. Here, V(e) and M are defined in (5.5) and (5.11), respectively. It

is unstable if at least one of the eigenvalues has positive real part. The entries of the vectors

and matrices defined above are given as follows:

(
H(e)

x

)
ij

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6
√
B + 1

V̄je

∂

∂xj
G(xie; xj)

∣∣∣∣
xj=xje

, i� j,

Axie + 6
√
B + 1

N∑
k=1

1

V̄ke

∂

∂xi
G(xi; xke)

∣∣∣∣
xi=xie

, i = j,

(
H(e)

V

)
ij

= −δij − 6
√
B + 1

V̄ 2
je

G(xie; xje),

where δij is the Kronecker delta function, and

(∇S(e)T)i = − 1

V̄ 2
ie

,
(
C(e)

V

)
ij

= δij
3
√
B + 1

DV̄ 2
ie

− 6
√
B + 1

V̄ 2
je

Gx(x
+
ie ; xje),

(
C(e)

x

)
ij

= −δij
F

D
,

where F is defined in (3.14). This stability result is equivalent to that obtained from analysing

perturbations within the original system (2.1).
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While, as expected, the above analysis predicts that some symmetric solutions are stable,

it predicts that some asymmetric solutions are also stable. However, when solving (2.1)

numerically with such asymmetric solutions as initial conditions, we have observed in all

cases a pulse collapse event in which one or more pulses collapse relatively rapidly on an

O(1) time scale. Thus, it appears that no asymmetric solutions are stable. In the symmetric

case with A = 0, the matrix V(e)M reduces to a positive multiple of a matrix analysed in

[12], the eigenvalues ωj of which were calculated as

ω1 = − N

2D
, ωj = − N

2D

⎡
⎢⎢⎢⎢⎣

(
1 −

(
qm

q

)3
)

tan2

(
θj

2

)

tan2

(
θj

2

)
−
(
qm

q

)3

sec2

(
θj

2

)
⎤
⎥⎥⎥⎥⎦ , j = 2, . . . , N,

where θj = π(j − 1)/N, j = 2, . . . , N, and q and qm are defined in (4.17) and (4.21),

respectively. Thus, we find that w2 crosses into the right-half plane on the real axis when

q is increased from q−
m to q+

m . When q = qm, there are N − 1 eigenvalues equal to 0,

equalling the number of asymmetric branches that bifurcate from the symmetric branch

(ignoring the permutations in left-to-right ordering of small and large pulses). We note

that, for q sufficiently larger than qm, all eigenvalues wj become negative. However, it

has been observed that these symmetric solutions are unstable to relatively rapid pulse

collapse events (Figure 8(c)). We note that increasing ε from ε = 0.01 to ε = 0.015 in

Figure 8(c) did not change the time at which the middle pulse collapsed, indicating an

O(1) instability.

Note that the value q = qm at which stability changes is also the value at which

asymmetric patterns bifurcate from a symmetric branch with A = 0. This is found to be

true also for A > 0 and is illustrated in Figures 7(a) and (b), where we plot bifurcation

diagrams for one and two pulses (see Figure 7(a)) and three pulses (see Figure 7(b)). The

horizontal axis is the bifurcation parameter A, while the vertical axis is the norm defined

by

|u|2 =

[
N∑
i=1

(
3(B + 1)

2V̄j

)2
]1/2

.

In the annotations, sN is the symmetric N-pulse branch, and a 101 label represents a

large–small–large ordering of a three-pulse asymmetric pattern. Parts of the branch that

are stable (unstable) to small eigenvalues are depicted by a solid (dashed) line. Note that

permutations of such a pattern would trace out the same curve though we have plotted

the curve for the permutations for which the pulse locations are between −1 and 1 for the

values of A depicted. Lastly, Am and Am1
are values of A such that q = qm and q = qm1

,

respectively, where q, qm and qm1
are given in (4.17), (4.21) and (4.23), respectively. As

previously stated in terms of q, stability of the symmetric branches changes at when

A = Am. In Figure 7(b), two 001 solutions exist in the interval Am1
< A < Am as found in

Section 4 for the N1 > N2 case. The lower branch corresponds to the solution of (4.20)

with large z and small z̃, while the opposite is true for the upper branch. The upper

branch ends when the location of an edge-pulse is outside of the domain. If the 010
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Figure 7. Bifurcation diagrams for one and two pulses (a) and three pulses (b) with B = 2

and E = 10. In (a), D = 1.3 while in (b), D = 0.6. The solid (dashed) lines indicate solutions

that are stable (unstable) to slow instabilities. In (a), a single asymmetric branch (ignoring the 10

permutation) bifurcates from s2 when A = Am. In (b), two branches (again ignoring permutations)

bifurcate from s3 when A = Am. In the region Am1
< A < Am, two 001 solutions exist.

solution were plotted instead, the stability properties of the branches would change. In all

cases, asymmetric equilibria are unstable to small eigenvalues for A sufficiently near Am,

the value where they bifurcate from the symmetric branch. We emphasise that while some

parts of asymmetric branches may be stable to small eigenvalues sufficiently far from the

bifurcation point, numerical computations on (2.1) show that such solutions are unstable

to rapid collapse events; we have not numerically observed a stable asymmetric solution.

Lastly, in the context of the DAE, there is no contradiction in the existence of multiple

stable equilibria for a given value of A; different solutions of the algebraic part of the

DAE lead to different systems of differential equations whose stationary points (and their

stability) are independent of one another.

In Figures 8(a) and (b), we show space–time plots of symmetric solutions starting

from perturbations of two different three-pulse equilibria, both of which are stable to

large eigenvalues, one for which q < qm (stable, Figure 8(a)) and the other for which

q > qm (unstable, Figure 8(b)). The perturbation in the pulse locations was taken to be

in the (−1/
√

2, 0, 1/
√

2) direction, with the perturbation in Figure 8(a) taken to be larger

for illustrative purposes. In Figure 8(b), the solution drifts on an O(ε2) time scale to a

solution near a three-pulse asymmetric equilibrium observed numerically to be stable to

large eigenvalues. However, because it is unstable to small eigenvalues, the pattern drifts

for a duration of O(ε−2) until the pulse locations are such that the right pulse collapses

(if the perturbation was in the −(−1/
√

2, 0, 1/
√

2) direction, it is the middle pulse that

collapses). As was the case for the Gierer–Meinhardt model in [11], stability to collapse

events is sensitive to instantaneous pulse locations; thus, in Figure 8(b), it is likely that

the slow drift instability has triggered a fast collapse instability. While, as previously

stated, the collapse event in Figure 8(c) occurs at a time independent of ε, the time of

the collapse event in Figure 8(b) scales as O(ε−2), confirming that the initial instabilities

in these two figures are of different nature. We finally note that all three-pulses drift in
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Figure 8. Space–time plot of u(x, t) starting from perturbations of three-pulse equilibria. The dark

(light) regions represent large (small) values. The parameters are ε = 0.01, A = 0, B = 2 and

E = 10. Here, qm ≈ 0.41997. The pulses are initially perturbed from their equilibrium locations

at (x1e, x2e, x3e) = (−2/3, 0, 2/3). In (a), D = 0.29 (q ≈ 0.40778 < qm) so that the symmetric

three-pulse equilibrium is stable. In (b), D = 0.37 (q ≈ 0.44228 > qm) so that the symmetric three-

pulse equilibrium is unstable and the pulse locations drift away from the equilibrium locations.

Eventually, one of the pulses collapses and the solution evolves to a stable two-pulse equilibrium

(qm ≈ 0.63 > q). The apparent discontinuity near t = 4 × 104 is due to the low temporal resolution

used only for plotting purposes. In (c), D = 2 (q ≈ 0.7762) so that ωj < 0 for j = 1, 2, 3. However,

two pulses collapse relatively rapidly.

the same direction at the onset of the pulse collapse due to the fact that the unstable

eigenvector ξ in (5.11) of the aforementioned asymmetric three-pulse equilibrium is in the

(0.38671, 0.83720, 0.38671) direction.

6 Conclusion

The method of matched asymptotic expansions was used to construct quasi-equilibrium

pulse solutions to a singularly perturbed Brusselator model in the semi-strong pulse-

interaction regime. We introduced a particular scaling of the parameters of the Brusselator

model to analyse the regime in which pulses move towards equilibrium positions on an

O(ε2) time scale. Using solvability conditions and matching the inner and outer solutions,

we derived a DAE for the evolution of the pulse locations and inverse pulse amplitudes.

We found excellent agreement between the asymptotic and numerical results computed

from the Brusselator equations. We observed that the presence of a boundary feed term

shifted the equilibrium positions of the edge pulses towards the boundaries and increased

inter-pulse spacings as well as pulse amplitudes. Further, based on the condition that

edge pulses of an N-pulse symmetric equilibrium lie outside of the domain, we derived

a critical boundary feed rate above which the pulse–boundary interaction changes from

repulsive to attractive. When the boundary feed rate exceeded this threshold, we found

that edge pulses of quasi-equilibrium solutions are captured by the boundary, leading to

an equilibrium solution in which two pulses are centred at the boundary.

We also found equilibrium points of the DAE to construct equilibrium solutions. We

found that, in addition to symmetric equilibria with equal pulse amplitudes, asymmetric

solutions are also admitted for certain ranges of the parameter q defined in (4.17). The

asymmetric equilibria are characterised by N1 small and N2 large pulses spaced unevenly
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across the domain with arbitrary left-to-right ordering. Numerical evidence suggests that

asymmetric equilibria are always unstable, resulting either in a slow evolution to a

symmetric equilibrium or in the rapid collapse of one or more pulses.

Finally, we analysed the stability of N-pulse equilibria to perturbations that evolve on an

O(ε2) time scale. Calculations (not shown) reveal that analysing perturbations within the

differential-algebraic system (3.22)–(3.23) is equivalent to analysing perturbations within

the original reaction–diffusion system (2.1). Combining the stability results of Section 5

with those of numerical computations, we found that only symmetric solutions may be

stable to both small and large eigenvalues and that asymmetric solutions appear to be

always unstable to at least one of the modes of instability. Instability to large eigenvalues

may manifest in rapid collapse events (depicted in Figure 8(c) for which the value of D

is larger) or in pulse amplitude oscillations (not yet observed for this model). Study of

such instabilities typically requires analysis of a non-local eigenvalue problem and has

been performed for the Gierer–Meinhardt (see [10, 11, 31]) and Gray–Scott (see [16])

models. The study of large eigenvalues for the Brusselator model is an open problem.

Another interesting problem might be to find if there exists a regime such that pulse-

splitting behaviour may occur (as in, e.g. [17] and discussed qualitatively in [4]). It would

also be interesting to study the evolution of spots in a two-dimensional singularly per-

turbed Brusselator model. In [19], spot replication was studied for a singularly perturbed

Schnakenberg model on a unit square and unit disk.
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Appendix A Exponentially slow evolution of a single pulse when E = 0 and A > 0

In Section 3, the analysis predicted that for the single-pulse case with E = 0 and A > 0,

the pulse would remain stationary for all time regardless of its position in the domain.

However, as we will show below, the single-pulse solution is in fact only metastable;

the eigenvalue problem linearised around this solution admits an eigenvalue that is

exponentially small but positive. We further find that the exponentially small eigenvalue

is the principle eigenvalue, that is, the eigenvalue with the largest real part. Following

closely the analysis of [9] for a particular limit of the Gierer–Meinhardt model, we

begin by first casting (2.1) in the form of a non-local reaction–diffusion system and

linearising around the quasi-equilibrium solution. We then analyse the resulting non-

local eigenvalue problem and derive an asymptotic expression for the exponentially small

(positive) eigenvalue. Numerical methods will be used to confirm the analysis as well as to

show that no other eigenvalues have positive real parts. Finally, we derive an ODE for the

exponentially slow dynamics of the centre of the pulse, which we confirm by numerically

solving (2.1). Because the following analysis and arguments are similar to those in [9], we

omit much of the detail.
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For the purpose of the following analysis, it is convenient to consider a re-scaled form

of (2.1). We introduce the new variables and parameters1

u = ε−1/2B

A
U, v = ε1/2AV , t =

1

B + 1
τ, ε =

√
B + 1ε0,

resulting in

Uτ = ε2
0Uxx + ε0E0 − U + fVU2, Ux(±1, τ) = 0, (A 1a)

σVτ = DVxx +
1

ε0
(U − VU2) Vx(±1, τ) = ±1, (A 1b)

where

f =
B

B + 1
, E0 =

EA

B
√
B + 1

, D = D
√
B + 1

A2

B2
, (B + 1)3/2

A2

B2
.

We will consider the case where E0 = 0 in (A 1a).

We assume as before that U has a localised solution of width O(ε0) while V to leading

order is equal to the constant V̄ in the inner region and varies on an O(1) length scale in

the outer region. Then, in the outer region, treating functions of U as multiples of delta

functions, (A 1b) must satisfy the Fredholm condition

V̄ =
2Dε0 +

∫ 1

−1U(x) dx∫ 1

−1 U
2(x) dx

.

Then, solving for the leading order solution of V in the outer region and matching it to

the constant leading order inner solution, we write (A 1) as a non-local reaction–diffusion

system

Uτ = ε2
0Uxx − U + fVU2, Ux(±1, τ) = 0, (A 2a)

V = |x − x0| +
2Dε0 +

∫ 1

−1U(x) dx∫ 1

−1 U
2(x) dx

, (A 2b)

where we have set E0 = 0. The leading order quasi-equilibrium solution is then

UE(x; x0) =
1

fV0
uc

(x − x0

ε

)
; uc(y) ≡ 3

2
sech2

(y
2

)
,

VE(x; x0) = |x − x0| + V0; V0 ≡ 3(1 − f)

Df2
,

where x0 is the centre of the pulse.

To derive the eigenvalue problem, we linearise (A 2) around UE and VE by introducing

perturbations φ and η according to

U = UE(x; x0) + eλtφ(x), (A 3a)

V = VE(x; x0) + eλtη, (A 3b)

1 This scaling was suggested to us by a reviewer.



Pulses in a singularly perturbed Brusselator model 27

where η is a constant. Substituting (A 3) into (A 2a), we obtain the following non-local

eigenvalue problem:

Lε0
φ ≡ ε2

0φxx +(−1+2uc)φ+
1

6ε0
u2
c

∫ 1

−1

[
f − 2uc

(
x − x0

ε0

)]
φ(x) dx = λφ, φx(±1) = 0,

(A 4)

where we have used (A 3) in (A 2b) to compute η in terms of φ. Equation (A 4) may also

be obtained by substituting (A 3) into (A 1), where η would then be computed in terms

of φ by applying the Fredholm alternative to the linearised equation for η. We note that

(A 4) is similar to the non-linear eigenvalue problem considered in [9], differing only in

the non-local term.

If (A 4) was posed on an infinite domain, φ = u′
c would be an eigenfunction corres-

ponding to λ = 0. This is the translation mode. On a finite domain, u′
c fails to satisfy

the equation and boundary conditions by exponentially small terms as ε0 → 0. Thus, we

expect that Lε0
has an exponentially small eigenvalue and also that φ1 is exponentially

close to u′
c. In order for the single-pulse solution to be metastable, however, we require

that all other eigenvalues have negative real parts. This is where the non-local term of

(A 4) becomes important; as argued in [9] (and references therein), (A 4) without the

non-local term has an O(1) positive real eigenvalue that is exponentially close to 5/4. This

was confirmed numerically by discretising the local part of Lε0
using the second-order

difference approximation of the second derivative with grid spacing ∆x and computing

the eigenvalues of the resulting matrix A∆x. To add the contribution of the non-local part

of Lε0
, we used the trapezoidal rule also with grid spacing ∆x to approximate the integral

term, constructing the matrix B∆x. Computing the eigenvalues of A∆x + B∆x ≡ C∆x, we

found that, aside from the expected small (positive) eigenvalue, all eigenvalues had neg-

ative real parts, regardless of the value of f between 0 and 1. Thus, the small eigenvalue

is the principle eigenvalue of (A 4).

The analysis required to estimate the exponentially small eigenvalue λ1 corresponding

to the eigenfunction φ1(x) is similar to that performed in [9]. As such, we only show the

steps that are specific to this problem. We first give Lagrange’s identity for (v, Lε0
u), where

(u, v) =
∫ 1

−1uv dx:

(v, Lε0
u) = ε2(uxv − vxu)

∣∣1
−1

+ (u, L∗
ε0
v), (A 5a)

L∗
ε0
v ≡ ε2

0vxx + (−1 + 2uc)v +
1

6ε0
(f − 2uc)

∫ 1

−1

u2
cv dx. (A 5b)

We now multiply (A 4) by u′
c and integrate over −1 < x < 1, to obtain

λ1(u
′
c, φ1) = −ε0u

′′
cφ1|1−1 + (φ1, L

∗
ε0
u′
c), (A 6)

where we have applied (A 5a) to the (u′
c, Lε0

φ1) term and used φ1x(±1) = 0 to eliminate

the boundary terms involving φ1x. The terms in (A 6) are the same as those in [9], with the

exception being that the non-local part of the adjoint operator L∗
ε0

is different. However,

the term involving L∗
ε0

was shown to be exponentially negligible in [9]; if the same were

true in (A 6), we may conclude that the eigenpair λ1, φ1 is the same as that found in [9]

to within exponentially negligible terms. To show this, we first calculate L∗
ε0
u′
c. Since u′

c is
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a solution of the local part of L∗
ε0

,

L∗
ε0
u′
c =

1

6ε0
(f − 2uc)

∫ 1

−1

u2
cu

′
c dx

∼ 12(f − 2uc)
(
e

− 3
ε0

(1−x0) − e
− 3

ε0
(1+x0)

)
,

where we have used that

uc(y) ∼ 6e∓y as y → ±∞. (A 7)

To estimate (φ1, L
∗
ε0
u′
c), we first recall that φ1 is exponentially close to u′

c, differing only

in exponentially small boundary layer terms required to satisfy the no-flux boundary

conditions. That is,

φ1(x) ∼ C1u
′
c

(
x − x0

ε0

)
+ e.s.t,

where C1 is a normalising constant, and e.s.t denotes exponentially small terms. Thus, by

integrating and applying (A 7), it can be shown that the term

(φ1, L
∗
ε0
u′
c) = 12

(
e

− 3
ε0

(1−x0) − e
− 3

ε0
(1+x0)

)∫ 1

−1

(f − 2uc)φ1 dx (A 8)

is exponentially smaller than the other two terms in (A 6), leading to the result

λ1 = 60
(
e

− 2
ε0

(1+x0) + e
− 2

ε0
(1−x0)

)
. (A 9)

As a check, we see from (A 8) that (φ1, L
∗
ε0
u′
c) is exponentially smaller than O(e−3/ε0 ), while

λ1 = O(e−2/ε0 ). Thus, the term in (A 8) is indeed exponentially negligible. Result (A 9) was

confirmed by calculating the eigenvalues of the matrix C∆x. Eigenvalues were computed

using grid spacings of ∆x, 2∆x and 4∆x so that Richardson extrapolation could be applied

twice to increase the accuracy required for small ε. The agreement between (A 9) and the

numerical computations is shown in Figure A 1. It should not be surprising that (A 9) is

the same expression as that obtained in [9]; the non-linear eigenvalue problem in [9] has

the same local terms while the non-local terms in both non-linear eigenvalue problems

contribute terms exponentially smaller than the exponential terms in (A 9), and thus in

both cases have an exponentially negligible effect on the eigenpair λ1, φ1.

Since the linearisation around the single-pulse quasi-equilibrium solution yields a prin-

ciple eigenvalue that is positive but exponentially small as ε0 → 0, we expect the pulse to

evolve on an exponentially slow time scale. As in the calculation of λ1, the non-local term

in (A 4) is insignificant and we thus recover the same result for the motion of the pulse as

in [9]:

dx0

dτ
= 60ε0

(
e

− 2
ε0

(1−x0) − e
− 2

ε0
(1+x0)

)
,

or in terms of the original variables t, B and ε,

dx0

dt
= 60ε

√
B + 1

(
e− 2

√
B+1
ε

(1−x0) − e− 2
√
B+1
ε

(1+x0)
)
. (A 10)

Thus, for x0 � 0, the pulse drifts towards the nearest boundary instead of towards
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Figure A 1. Plot λ1 versus ε, where the solid line is the asymptotic estimate (A 9) and the circles

are from numerical computations.
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Figure A 2. Comparison of asymptotic and numerical results for exponentially slow dynamics of

a single pulse starting at x0 = 0.4 for parameters ε = 0.082, A = 2, B = 1, D = 1 and E = 0. The

solid line (circles) represents the numerical (asymptotic) result.

x = 0, the latter of which was observed when E > 0. The result (A 10) is compared

to a numerical solution of (2.1) in Figure A 2, the results of which were verified by

grid refinement. We note that the numerical solution is extremely sensitive to the ratio√
B + 1/ε, and for values of the ratio either too large or too small, the match is not as

close.
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