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a b s t r a c t

Long-wave stability of spatiotemporal patterns near a codimension-2 Turing–Hopf point
of the one-dimensional superdiffusive Brusselator model is analyzed. The superdiffusive
Brusselator model differs from its regular counterpart in that the Laplacian operator of
the regular model is replaced by ∂α/∂ |ξ |α , 1 < α < 2, an integro-differential operator
that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a
measure of the rate of superdiffusion, which, in general, can be different for each of
the two components. We first find the basic (spatially homogeneous, time independent)
solution and study its linear stability, determining both Turing and Hopf instabilities, as
well as a point at which both instabilities occur simultaneously. We then employ a weakly
nonlinear stability analysis to derive two coupled amplitude equations describing the slow
time evolution of the Turing and Hopf modes. We seek special solutions of the amplitude
equations: a pure Turing solution, a pure Hopf solution, and a mixed mode solution, and
analyze their stability to long-wave perturbations. We find that the stability criteria of all
three solutions depend strongly on the superdiffusion rates. Also, when compared to the
regular model and depending on specific values of the orders of the operators, the effect of
anomalous diffusion may change the stability characteristics of the special solutions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Studies of anomalous diffusion have recently been appearing in the literature as more processes have been observed to
exhibit behavior that cannot be described in terms of regular (Fickian) diffusion. These processes can often be described
using models with subdiffusion or superdiffusion, where, under a randomwalk description, the mean square displacement
of a particle scales as 〈x2(t)〉 ∼ tγ , with 0 < γ < 1 for subdiffusion, and 1 < γ < 2 for superdiffusion, rather than linearly
in time. Subdiffusion has been observed in many applications, including charge carrier transport in amorphous semicon-
ductors, and nuclear magnetic resonance diffusometry in percolative and porous systems, while superdiffusion has been
observed in e.g. transport in heterogeneous rocks, quantum optics, and single-molecule spectroscopy [1]. We consider an
especially interesting case of superdiffusion, Lévy flights, which is characterized by a jump length distribution having infi-
nite moments. On the macroscopic scale, Lévy flights are described by a diffusion equation where the second-order spatial
derivative is replaced by a fractional derivative ∂α/∂ |ξ |α , 1 < α < 2, defined as a non-local integro-differential opera-
tor [2]. Previous works on reaction–superdiffusion equations have derived and studied amplitude equations near a Hopf [3]
or Turing [2] bifurcation point. There have also been similar studies near a codimension-2 Turing–Hopf point (C2THP) of the
regular Brusselatormodel [4]. In thiswork, we investigate the effects of superdiffusion on the interactions betweenHopf and
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Turing instabilities of the Brusselator model by deriving amplitude equations analogous to those given in [4] and studying
instabilities of their solutions to long-wave perturbations, thus leading to the identification of parameter values at which
new solutions may bifurcate.

2. The model, the basic solution, and its linear stability

We consider the Brusselator model, long a paradigm for nonlinear analysis, given by

∂ f
∂τ
= Df

∂α f
∂ |ξ |α

+ E − (B+ 1)f + f 2g (1)

∂g
∂τ
= Dg

∂βg
∂ |ξ |β

+ Bf − f 2g, τ > 0, ξ ∈ R. (2)

The diffusion coefficients Df ,Dg , the activator input rate E, and the control parameter B are positive quantities. The action of
the operator ∂γ /∂ |ξ |γ in Fourier space isF [∂γ u(ξ)/∂ |ξ |γ ](k) = −|k|γF [u(ξ)](k) for 1 < γ < 2. The equilibrium (basic)
state of this system is (f , g) = (E, B/E) for all values of the parameters.
Rescaling (1) and (2) using f = E + u∗u, g = B/E + v∗v, τ = t , and ξ = `∗x, where u∗ = (Dg/D

β/α

f )1/2, v∗ = 1/u∗, and
`∗ = D

1/α
f , the Brusselator system becomes

∂u
∂t
=

∂αu
∂ |x|α

+ (B− 1)u+ Q 2v +
B
Q
u2 + 2Quv + u2v (3)

η2
∂v

∂t
=

∂βv

∂ |x|β
− Bu− Q 2v −

B
Q
u2 − 2Quv − u2v, (4)

where η =
√
Dβ/αf /Dg > 0, Q = Eη > 0, and x and t represent the rescaled spatial and temporal variables, respectively.

The equilibrium state is now at u = v = 0.
To determine the stability of the critical point, we consider the normal mode solution, obtaining the dispersion relation

between the growth rate σ and the wavenumber k > 0, η2σ 2 + M1σ + M2 = 0, whereM1 = Q 2 + kβ − η2(B − 1 − kα),
andM2 = BQ 2 + (kβ + Q 2)(1+ kα − B).
Hopf bifurcation occurs if M1 = 0 and M2 > 0, which yields two pure imaginary eigenvalues. M1 = 0 corresponds to

B = kβ/η2 + kα + 1 + Q 2/η2, which has a minimum, B(H)cr = 1 + Q 2/η2 at k = 0. The basic state is stable (unstable) for
B < B(H)cr (B > B

(H)
cr ). In the unstable case, a spatially homogeneous oscillatory mode emerges. For k = 0 and B = B

(H)
cr ,

the eigenvalue σ = iQ/η ≡ iω, where ω is the frequency of the oscillatory mode, while cĎ =
(
1,Qη2/(Q + iη)

)
and

c =
(
1, (iη − Q )/(Qη2)

)> are the left and right eigenvectors, respectively.
Turing instability occurs whenM2 = 0, which yields B = (Q 2+kβ)(1+kα)/kβ . It has a single minimum (kcr , B

(T )
cr ), given

parametrically by

B(T )cr =
(1+ z)2

1+ (1− s)z
, Q 2 =

sz1+1/s

1+ (1− s)z
, kcr = z1/α,

where s = α/β . Since Q is real, we find that 0 < z < ∞ if 1/2 < s ≤ 1, and 0 < z < 1/(s − 1) if 1 < s < 2.
The corresponding left and right eigenvectors of the zero eigenvalue are, respectively, aĎ =

(
1, szη2c /(1+ z)

)
and a =(

z1/s,−1− z
)>. For the Turing instability, a time-independent spatially periodic pattern emerges, with spatial wavenumber

k = kcr .
Turing and Hopf instability thresholds coincide at the C2THP where B = B(T )cr = B(H)cr ≡ Bcr , which occurs when

η = ηc ≡
√
sz1/s/(z + s+ 1). Thus, as the control parameter B is increased beyond Bcr , a Turing mode and a Hopf mode

simultaneously bifurcate from the basic state, giving rise to terms of the form Aaeikcr x and Cceiωt , respectively, in (u, v)>.
We note that Q , ηc , and the activator input rate, E = Q/ηc , are increasing functions of z for all allowed values of z.

3. Weakly nonlinear analysis

We analyze the system near the C2THP, i.e., let η = ηc + ε
2η2(0 < ε � 1). If η2 > 0 (< 0), the Hopf (Turing) mode

appears first as the parameter B is increased. We interpret this as changing the parameter E, keeping Q constant. Thus,
changing η2 will only affect the Hopf stability curve, not the Turing curve. Also, let B = Bcr+ε2µ, whereµ > 0 is a real O(1)
quantity. This leads to the presence of two time scales. The original time scale, t , appears with oscillation frequencyω, while
the slow time scale, T = ε2t , accounts for the slow time evolution of the Turing and Hopf modes. The three relevant spatial
scales are x, X1 = εx, and X2/α = ε2/αx, where the scaling for X2/α is chosen under the condition that α < β . If α > β , the
third spatial scale would instead be X2/β . While we consider both cases in Section 4, the explicit expressions are for α < β .
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With the relevant scales established, we allow for the possibility that both A and C are functions of the slow time scale
as well as the two long spatial scales. Then, since the Turing mode may be a function of all three spatial scales and the Hopf
mode a function of the two long spatial scales, we require analogues of the chain rule to obtain expressions for how the
operator ∂γ /∂ |x|γ acts on u and v. While nothing in the linear stability analysis of Section 2 prevents the Hopf mode from
being a function of the two long spatial scales, solvability conditions discussed below in the weakly nonlinear analysis limit
the Hopf mode dependence to X2/α only. Then, since the expression obtained by applying dγ /d|x|γ to a function of the form
F(x, X1, X2/α) does not reduce to the expression obtained by applying the operator to a function of the form G(X2/α) simply
by letting ∂/∂x = ∂/∂X1 = 0, we decompose the solutions u and v into sums of functions of the form F(x, X1, X2/α, t, T ) and
G(X2/α, t, T ). Since F accounts for all x-dependent terms, whether or not they depend on X1 and/or X2/α , while G accounts
for all x-independent terms, this decomposition captures all possible terms that can arise in u and v. We utilize the product
rule [5] for 1 < γ < 2,

dγ (fg)
d|x|γ

=

∞∑
j=0

(
γ
j

)
dγ−jf
d|x|γ−j

djg
dxj
,

to compute (suppressing time dependence for now)

dγ F(x, X1, X2/α)
d|x|γ

=

(
∂γ

∂|x|γ
+ γ

∂γ−1

∂|x|γ−1

(
ε
∂

∂X1
+ ε2/α

∂

∂X2/α

)
+ ε2

γ (γ − 1)
2

∂γ−2

∂|x|γ−2
∂2

∂X21
+ · · ·

)
F(x, X1, X2/α), (5)

where we have discarded terms smaller than O(ε2). The computation of dγG(X2/α)/d|x|γ requires a simpler version of the
chain rule, which gives dγG/d|x|γ = ε2γ /αdγG/d|X2/α|γ , where γ is either α or β .
Due to the fractional powers of ε in (5), we include fractional powers in the expansions of u and v:(

u
v

)
∼ ε

(
u1
v1

)
+ ε2/α

(
u2/α
v2/α

)
+ ε2

(
u2
v2

)
+ ε1+2/α

(
u1+2/α
v1+2/α

)
+ ε3

(
u3
v3

)
+ · · · . (6)

We decompose ui and vi as(
ui
vi

)
=

(
u(A)i (x, X1, X2/α, t, T )
v
(A)
i (x, X1, X2/α, t, T )

)
+

(
u(C)i (X2/α, t, T )
v
(C)
i (X2/α, t, T )

)
, (7)

where we associate the letter A with the Turing mode (though u(A)i and v
(A)
i also account for products of pure Turing and

pure Hopf terms), and the letter C with the Hopf mode. If α > 4/3, we must also include an O(ε4/α) term in the expansion.
Recalling the decomposition in (7), we substitute (6) into (3) and (4), and find that u1 and v1 satisfy(

∂

∂t
− D0D −M0

)(
u(A)1
v
(A)
1

)
+

(
∂

∂t
−M0

)(
u(C)1
v
(C)
1

)
= 0, (8)

where

D0 =

1 0

0
1
η2c

 , D ≡


∂α

∂|x|α
0

0
∂β

∂|x|β

 , M0 =

Bcr − 1 Q 2

−
Bcr
η2c

−
Q 2

η2c

 .
Thus, (

u1
v1

)
= A(X1, X2/αT )aeikcr x + C(X2/α, T )ceiωt + c.c.,

where c.c . denotes complex conjugate.We have allowed only A to depend on both long scales. If we had assumed that C also
depended on both long scales, O(εα) and O(εβ) terms would need to be included in (6). In this case, solvability conditions
at O(ε1+α) and O(ε1+β) would require that C be independent of X1. These are the solvability conditions mentioned above
that dictate that the Hopf mode can only be a function of X2/α .
The O(ε2/α) equation is the same as the O(ε) equation, with u2/α and v2/α satisfying the same homogeneous equation as

u1 and v1. Thus we may take u2/α = v2/α = 0 without loss of generality (the same applies for u4/α and v4/α).
While the left hand side of the O(ε2) equation is the same as that in (8), its right hand side contains secular-producing

terms proportional to eikcr x. However, the solvability condition is satisfied (the secular-producing terms are orthogonal to
aĎ), which leads to the solution(

u2
v2

)
= A2p2se

i2kcr x + C2p2te
i2ωt
+ ACpLe

iφL + AC∗pRe
iφR + |A|2p0s + |C |

2p0t + pse
ikcr x + c.c.,

where φL = kcrx+ ωt and φR = kcrx− ωt .
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The O(ε1+2/α) equation, like the O(ε2) equation, contains secular-producing terms orthogonal to aĎ. However, while
u1+2/α and v1+2/α are non-zero, they do not enter the O(ε3) equation. Upon solving for the vectors p2s, p2t , etc., and applying
the solvability condition at O(ε3), upon rescaling, we obtain the amplitude equations

∂A
∂T
= A+

∂2A
∂X21
+ ζA|A|2 + ψ2A|C |2, (9)

∂C
∂T
= ρC + (α1 + iα2)

∂αC
∂|X2/α|α

+ (−|β1| + iβ2) C |C |2 + (δ1 + iδ2) C |A|2, (10)

where ζ = ±1 and ψ2, α1, α2, β1, β2, δ1, and δ2, are real and functions of α, β , and z. The coefficient ρ, while also real, is a
function of α, β , and z, as well as µ and η2.
We restrict z to the interval I such that ζ = −1, i.e., there exists nonlinear saturation of the Turing mode. I increases

(decreases) as β (α) increases, as do the corresponding intervals of Q , ηc , and the activator input rate E. Also, if ρ < 0, the
system only exhibits the Turing bifurcation while if ρ > 0, it also exhibits the Hopf bifurcation. Finally, it can be shown that
α1 > 0. We also note that Eqs. (9) and (10) were derived under the necessary condition that C be independent of X1. Since
(10) contains terms involving both A and C , |A|must be spatially homogeneous. Thus, (9) and (10) describe only amplitudes
Awhose dependence on X1 takes the form eih(X1) for a real function h. Since A can depend on both X1 and X2/α , there are no
restrictions on the way in which C can depend on X2/α .
Lastly, the techniques used here resemble those used for the regular diffusion Brusselator model. There are, however,

important differences, one being that two long spatial scales are present instead of the single long scale X1 in the regular
model. Secondly, the expansions of u and v include fractional orders of ε, whereas only integer powers were required in
the regular model. Thirdly, the rules of differentiation require that the solution be decomposed into separate functions that
depend differently on the relevant variables. The resulting forms of the amplitude equations are also different in that the
equation for C is now an integro-differential equation.

4. Solutions of the amplitude equations and their long-wave instabilities

In this section, we seek special solutions of Eqs. (9) and (10), namely a pure Turing solution, a pure Hopf solution, and a
mixed mode solution. We then study the stability of these solutions to long-wave perturbations. We first consider the pure
Turing solution, given by C = 0 and A = ÃeiKAX1 with Ã = (1 − K 2A )

1/2. To study its stability, we linearize around it using
A = (Ã + a(X1, T ))eiKAX1 , and C = c(X2/α, T ). The resulting linearized equations decouple, so we analyze each separately.
A long-wave perturbation a(X1, T ) yields the familiar Eckhaus stability criterion |KA| < 1/

√
3. If |KA| > 1/

√
3, the

perturbation grows, changing the spatial frequency of the solution. A long-wave perturbation c(X2/α, T )with wavenumber
k � 1 results in the dispersion relation σ = ρ − α1|k|α + Ã2δ1 ± i| − α2|k |α +Ã2δ2|, whose real part must be negative
for long-wave stability. If the real part is positive, the perturbation grows, changing the spatial structure of the solution and
also introducing a time-oscillatory component. The long-wave stability criterion is ρ + Ã2δ1 < 0. If δ1 < 0, long-wave
perturbations of the Hopf amplitude decay for all ρ < 0, or even if ρ > 0 as long as ρ remains sufficiently small. If δ1 > 0,
long-wave perturbations of the Hopf amplitude can grow even for ρ < 0, as long as ρ is sufficiently close to 0.
For the regular diffusion model, δ1 > 0 for z . 0.26, or equivalently, ηc . 0.34, meaning that the inhibitor (g) diffuses

significantly faster than the activator (f ). In the anomalous model, we obtain an analogous result for α and β , since these
two parameters have a greater impact on the rate of diffusion than do the diffusion coefficients. In contrast to the regular
model case, δ1 can be positive even if α < β , that is, if the inhibitor diffuses more slowly than the activator. For α . 1.67,
δ1 < 0 for all z ∈ I , meaning that sufficiently fast diffusion of the activator makes it impossible for long-wave perturbations
of the Hopf mode to grow if ρ < 0. This behavior is not seen in the regular model.
Next, we consider the pure Hopf solution, given by A = 0 and C = C̃eiKCX2/α+iΩT with C̃ = ((ρ − α1|KC |α)/|β1|)1/2 and

Ω = −α2|KC |α + β2C̃2. We note that, since the quantity ρ − α1|KC |α must be positive, ρ must be positive for the pure Hopf
solution to exist. Long-wave perturbations of the form eσT+ikX2/α yield two growth rates, one of which is negative, the other
of which has the expansion for small k, σ = a1k+ a2k2 + O(k3), where

a1 = −i
α (α1β2 + α2|β1|) |KC |α−1

|β1|

and

a2 =
α(α − 1) (α2β2 − α1|β1|)

2|β1|
+
α2α21(β

2
1 + β

2
2 )|KC |

α

2|β1|3C̃2
.

Requiring a2 < 0 for stability leads to the generalized Eckhaus criterion,

|KC |α <
ρ

Rα1
(11)
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where

R = 1+
αα1

(
β21 + β

2
2

)
(α − 1)|β1|(α1|β1| − α2β2)

.

Thus, if (11) is not satisfied, both the spatial and temporal structures of the solution are altered as a long-wave perturbation
grows with amplitude oscillating at a frequency different from Ω . As in the regular diffusion case, the magnitude of R is
greater than unity for all z ∈ I . However, if α < β , unlike for the regular diffusion case, R is positive only for z sufficiently
small. Beyond this interval, R becomes negative so that (11) is never satisfied, in which case the pure Hopf solution must
be long-wave unstable. Restricting z to sufficiently small values for which R is positive implies that Q , ηc , and E must all
be sufficiently small. For example, ηc must be less than ∼0.62, and thus, while the rate of diffusion is dominated by the
diffusion exponents α and β , ηc still impacts whether or not the Hopf mode can be long-wave stable. Note, however, that ηc
is not a strict comparison between the diffusion coefficientsDf andDg , as these parameters do not even have the same units.
The qualitative behavior of R in the α > β case is the same as for regular diffusion, where R > 1 for all z ∈ I , suggesting
that faster diffusion of the activator versus the inhibitor may contribute to instability of the pure Hopf solution.
Finally we consider the mixed mode solution, given by A = ÃeiKAX1 and C = C̃eiKCX2/α+iΩT with

Ã =

(
ψ2 (ρ − α1|KC |α)+ |β1|

(
1− K 2A

)
∆

)1/2
, C̃ =

(
ρ − α1|KC |α + δ1

(
1− K 2A

)
∆

)1/2
,

where∆ = |β1| − ψ2δ1, andΩ = −α2|KC |α + β2C̃2 + δ2Ã2. Of course, we must restrict KA and KC so that Ã and C̃ are real.
Linearizing (9) and (10) around this mixed mode solution with small perturbations a(X2/α, T ) and c(X2/α, T ) results in the
coupled equations

∂a
∂T
= (1− K 2A )a− Ã

2(a∗ + 2a)+ ψ2
[
ÃC̃
(
c∗ + c

)
+ aC̃2

]
, (12)

and

∂c
∂T
= −iΩc + ρc + (α1 + iα2)

(
−|KC |αc + iα|KC |α−1

∂c
∂X2/α

+
α(α − 1)
2

|KC |α−2
∂2c
∂X22/α

)

+ (−|β1| + iβ2)C̃2(c∗ + 2c)+ (δ1 + iδ2)
[
ÃC̃
(
a∗ + a

)
+ cÃ2

]
. (13)

Eqs. (12) and (13) contain terms involving both a and c , and so, for consistency, we require a to depend only on X2/α . We
consider perturbations of two types: spatially homogeneous perturbations of a spatially dependent solution (KA, KC 6= 0),
and long-wave perturbations of a spatially homogeneous solution (KA = KC = 0). For the first case, the resulting dispersion
relation yields two zero eigenvalues and two negative eigenvalues as long as ∆ > 0, with one of the eigenvalues turning
positive if ∆ < 0. If ∆ > 0, the amplitudes of the Turing and Hopf modes grow in time, with the spatial and temporal
frequencies remaining unchanged. Thus, a necessary (and sufficient) condition for stability of the spatially dependentmixed
mode solution to homogeneous perturbations is∆ > 0. As in the regular case, there are values of α and β for which stability
is possible for both sufficiently large and small values of z. These occur for (α, β) pairs that are near (2, 2). Sufficiently small
(large) z refers to an interval of z that ranges from the smallest (largest) z ∈ I to some larger (smaller) z ∈ I . For (α, β)
pairs where α is sufficiently large, it is possible that∆ > 0 only for z sufficiently small. More specifically, for all such (α, β)
pairs, stability is possible only if ηc . 0.42. Similarly, for all (α, β) for which stability is only possible for sufficiently large
z, stability is possible only if ηc & 0.65. For some (α, β) pairs with β sufficiently small, stability is impossible.
For the spatially homogeneous solution, taking KA = KC = 0, (12) remains the same, while the derivative term in (13) is

replaced by ∂αc/∂|X2/α|α . Upon inserting long-wave perturbations of the form eσT+ikX2/α , the resulting dispersion relation
yields two zero eigenvalues and one negative eigenvalue as long as ∆ > 0, while the fourth eigenvalue has the expansion
for small k, σ ∼ aα|k|α , where

aα =
α2(β2 + ψ2δ2)− α1∆

∆
.

Thus, long-wave stability of the spatially homogeneous solution requires∆ > 0 and aα < 0. If either one of these conditions
is not satisfied, a long-wave spatial pattern appears, breaking the spatial homogeneity. As in the regular diffusion case, there
exist (α, β) pairs such that stability is possible only for sufficiently large z. More specifically, for all such (α, β) pairs, long-
wave stability of the spatially homogeneousmixedmode solution is possible only if ηc & 0.65. These occur for α sufficiently
close to β , but only for α > β . As in the pure Hopf stability analysis, it appears that the α > β case more closely resembles
regular diffusion in terms of stability properties. For α < β with α and β sufficiently large, stability is possible only for z
sufficiently small. For all such (α, β) pairs, ηc . 0.37. For both mixed mode solutions, α and β determine whether or not
there exist values of parameters, such as ηc , for which stability is possible, as for many (α, β) pairs, stability is impossible.
In summary, the evolution equations (9) and (10) appear similar to their regular diffusion counterparts, but differ both

in the behavior of their coefficients, as well as their overall form, as (10) reflects non-local effects. As a result, the stability
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criteria differ greatly from those of regular diffusion. In the stability analysis of the pure Turing solution, there exist (α, β)
such that long-wave perturbations of the Hopf mode cannot grow if ρ < 0 for any value of z. This is contrary to the regular
diffusion case, for which growth is possible if the inhibitor diffuses sufficiently faster than the activator. Further, we found
that there exist (α, β) for which long-wave perturbations of the Hopf mode can grow for ρ < 0 even if the inhibitor diffuses
more slowly than the activator. We also found that, for α < β , there exist values of z ∈ I such that stability of the pure Hopf
solution is impossible, while for α > β , the stability criteria remain qualitatively similar. Finally, for the mixed mode, there
exist (α, β) pairs sufficiently close to (2, 2) for which the stability requirements are similar to those of regular diffusion.
Away from this regime, these requirements can either change or stability may simply not be possible.
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