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MEAN FIRST PASSAGE TIME FOR A SMALL ROTATING TRAP
INSIDE A REFLECTIVE DISK∗

J. C. TZOU† AND T. KOLOKOLNIKOV†

Abstract. We compute the mean first passage time (MFPT) for a Brownian particle inside a
two-dimensional disk with reflective boundaries and a small interior trap that is rotating at a constant
angular velocity. The inherent symmetry of the problem allows for a detailed analytic study of the
situation. For a given angular velocity, we determine the optimal radius of rotation that minimizes
the average MFPT over the disk. Several distinct regimes are observed, depending on the ratio
between the angular velocity ω and the trap size ε, and several intricate transitions are analyzed
using the tools of asymptotic analysis and Fourier series. For ω ∼ O(1), we compute a critical value
ωc > 0 such that the optimal trap location is at the origin whenever ω < ωc and is off the origin for
ω > ωc. In the regime 1 � ω � O(ε−1) the optimal trap path approaches the boundary of the disk.
However, as ω is further increased to O(ε−1), the optimal trap path “jumps” closer to the origin.
Finally, for ω � O(ε−1) the optimal trap path subdivides the disk into two regions of equal area.
This simple geometry provides a good test case for future studies of MFPT with more complex trap
motion.

Key words. mean first passage time, narrow escape, diffusion, moving trap, matched asymp-
totics, boundary layer
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1. Introduction. Numerous problems in nature can be formulated in terms of
mean escape time of Brownian particles in the presence of small traps. This is often
referred to as the mean first passage time (MFPT) or the narrow escape problem, and
there is a large and growing literature on the subject; see, for example, reviews [39,
11, 14, 9, 19, 42, 28] and references therein. Examples where first-passage problems
arise include oxygen transport in muscle tissue [47], cold atoms in optical traps [3],
molecular self-assembly [50], the protein target site location in DNAs [33, 5], signal
transduction and immune cell activation [17], search and rescue [34, 35, 19], and
predator-prey interactions [31, 36, 35, 23, 29]. See a recent review of the narrow escape
problem [27] and references therein for more applications and associated methods.

Generally speaking, MFPT problems fall into two classes: either the trap is sta-
tionary or it is moving. In the case of stationary traps, very precise information can be
obtained, in particular when the traps have small area [28, 43, 44, 11, 38, 12, 30, 17].
A scenario involving moving traps was introduced in [48] in the context of an an-
nihilation process A + B → 0. While originally motivated by the annihilation of
monopole-antimonopole pairs in the early universe, the annihilation reaction may
also serve as a model in chemical kinetics and collision-induced quenching of excited-
state particles [45, 41]. Subsequent studies [7, 8] have addressed the asymptotics of
the long time survival probability of a particle diffusing in a continuum distribution
of traps. There is also an extensive literature on searching strategies, where a mov-
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232 J. C. TZOU AND T. KOLOKOLNIKOV

ing trap represents a searcher (e.g., police) and Brownian particles are sought (e.g.,
drunken robbers). See, for example, [31, 4, 36, 23, 15, 29]. In some of this litera-
ture, the seeker is assumed to follow some kind of random strategy. For example,
in [4] it was shown that an intermittent searching strategy consisting of large jumps
and random walks works best under many circumstances where the seeker does not
know anything about the target. Other works study pursuit problems where either
the seeker or the target has some (or full) information about the other party and can
adjust its strategy accordingly.

In a recent review article of first passage problems in finite domains [6], it is
remarked that although problems involving stationary traps have been well studied,
the case of mobile traps still remains largely unexplored. In particular, the only studies
to have considered mobile traps in confined geometries have done so in one dimension
[24, 26, 46, 49]. Mobile traps are not only more realistic in many applications, but they
can significantly increase or decrease MFPT depending on parameters of their motion.
The goal of this paper is to illustrate these effects in a confined two-dimensional
domain.

Let us first briefly review the derivation of the continuum equations for the MFPT
as outlined in [39, page 31]. We first consider the simplified situation of a particle
undergoing a discrete random walk moving in one dimension with a stationary trap
located at x = x0. Assume that within Δt time, the particle jumps a distance Δx
with equal probability to the left and to the right, and let v(x) denote the MFPT of
a particle initially located at x. Then the MFPT at location x may be expressed in
terms of the MFPT of its two neighboring locations as

(1.1) v(x) =
1

2
{v(x +Δx) + v(x −Δx)}+Δt ; v = 0 at x = x0 ,

where the condition v(x0) = 0 indicates that a particle whose starting location co-
incides with the trap location is expected to survive for precisely zero units of time.
Taking the limit Δt,Δx → 0 and expanding (1.1) in Taylor series, we obtain the
continuum equation

(1.2) Dvxx + 1 = 0 , v(x0) = 0 ; D ≡ (Δx)2

2Δt
,

subject to appropriate boundary conditions. Here, D is the diffusion rate, which can
be nondimensionalized to 1. In Figure 1(a), we illustrate a scenario in which a trap
is located at x = 1/2 on a domain with reflecting boundaries at x = 0 and x = 1.
The solid curve denotes the MFPT as obtained from a Monte Carlo simulation of
5000 individual agents undergoing an unbiased random walk starting from location
xi ∈ (0, 1). At each interval of time Δt, each agent takes one step of size Δx to the
left or right with equal probability. The quantities are such that (Δx)2/(2Δt) = 1.
An agent that steps outside the domain is reflected back into the domain. The time
for each agent to hit the trap is recorded and then averaged over all agents. Repeating
the procedure for a set of points on the interval (0, 1), we obtain an approximation
for the MFPT as a function of starting location xi. The dashed curve represents the
true MPFT obtained by solving (1.2) with D = 1, trap location x0 = 1/2, and pure
Neumann boundary conditions vx(0) = vx(1) = 0. Excellent agreement is observed
between the Monte Carlo simulation and the exact solution.

A similar derivation may be used to obtain an ODE describing MFPT on a one-
dimensional circle θ ∈ [0, 2π) with a moving trap traveling with constant velocity.
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Fig. 1. (a) MFPT on a domain of unit length with reflecting boundaries. The dashed curve is
an approximation of the MFPT obtained from a Monte Carlo simulation with Δx =

√
2/100 and

Δt = 1 × 10−4. The diffusion coefficient D defined in (1.2) is then D = 1. For each grid point
in x, an average of capture times of 5000 agents was used to generate the MFPT. The dashed
curve represents the true MPFT obtained by solving (1.2) with D = 1 and pure Neumann boundary
conditions. (b) MFPT on a one-dimensional circle with trap rotating clockwise at constant angular
velocity ω > 0. The plot represents the MFPT for all locations on the circle at the instant when the
trap is located at θ = 0. For the Monte Carlo simulation (solid line), Δθ = 0.01, Δt = 1 × 10−4,
and ω = 2. The results are an average over 500 agents at each grid point. The dashed line is the
solution of (1.4) with D = 0.5 and ω = 2.

Consider a trap rotating clockwise on the circle at constant angular velocity ω > 0.
At the instant when the trap is located at θ = θ0, the MFPT for a particle with initial
location θ can be expressed in terms of the MFPT of neighbors of the site equidistant
from the trap at the previous time step. Since the trap is displaced by an angle of
−ωΔt each time step, we have

(1.3) v(θ) =
1

2
{v(θ + ωΔt−Δθ) + v(θ + ωΔt+Δθ)} +Δt; v = 0 at θ = θ0,

where we have assumed a jump of Δθ per time step with equal probability in each
direction. Expanding (1.3) to leading order, noting that O(Δθ) ∼ O(

√
Δt), we obtain

the ODE for MFPT

(1.4) Dvθθ + ωvθ + 1 = 0, v(θ0) = 0 ; D =
(Δθ)2

2Δt
,

with periodic boundary conditions. The diffusion coefficient in (1.4) may be scaled
to unity, leaving a nondimensional angular velocity in front of the advection term.
The Monte Carlo simulation may be performed in the same way as in the case of
the stationary trap. On a periodic domain of length 2π, we initialize 500 agents at
location θi ∈ [0, 2π) with the trap located at θ0 = 0. For each time step Δt, we allow
each agent to move clockwise or counterclockwise with equal probability, while also
advancing the location of the trap by −ωΔt, where ω is the speed of the trap. The
time required for each agent to be captured is recorded and then averaged over all
agents. Repeating the procedure for a discrete set of points on the interval [0, 2π), we
obtain Figure 1(b). The MFPT in Figure 1(b) therefore represents the MFPT for a
random walker starting at location θ at the instant in time when the trap is located
at θ0 = 0. In Figure 1(b), we observe excellent agreement between the solution of
(1.4) and a Monte Carlo simulation. The trap is located at θ0 = 0, and is moving to
the left, re-entering at θ = 2π by periodicity. Note that, as expected, the MFPT in
front of the rotating trap is lower than that behind the trap.
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The mean-field equation (1.4) bears close relation to the parabolic PDE

(1.5) ut = Duφφ + 1 , u(mod(ωt, 2π), t) = 0 ,

with periodic boundary boundary conditions and appropriate initial conditions. Ap-
plying the transformation θ = φ − ωt and u(φ, t) = v(θ) to (1.5), one recovers (1.4)
with θ0 = 0. Note, however, that with ω > 0 in both (1.4) and (1.5), the trap in (1.4)
rotates clockwise while it rotates counterclockwise in (1.5). The quantity u in (1.5)
is thus different from the MFPT interpretation of v in (1.4). We interpret u as the
rescaled continuum limit of a quantity that satisfies the discrete equation
(1.6)

u(φ, t+Δt) =
1

2
{u(φ+Δφ, t) + u(φ−Δφ, t)} + rΔt ; u = 0 at φ = mod(ωt, 2π) .

A simple interpretation for u in (1.6) is that of a concentration of particles that
undergo an unbiased random walk with a constant external feed rate r, which can
be normalized to unity. The rotating Dirichlet trap acts to remove particles from
the domain. It may also be interpreted as a temperature, with the Dirichlet trap
acting to cool a domain subject to uniform external heat influx. For the same set of
parameters, the solution for u at a specific instant when the trap is located at φ = 2π
is given by Figure 1(b). The trap, however, is to be assumed to be traveling to the
right, re-entering at φ = 0. As expected, the concentration or temperature behind
the trap is lower than that in front.

In this paper, we examine the MFPT for a moving circular trap of small radius ε
inside a unit disk. The trap is assumed to rotate clockwise at a constant rate ω along
a circle of radius r0 < 1 concentric with the unit disk. That is, the location of the
center of the trap is given by

(1.7) (x0, y0) = (r0 cosωt,−r0 sinωt) .
The derivation for the elliptic PDE describing the MFPT with this geometry follows
closely that leading to (1.3). That is, for a trap of radius ε centered at (r0, θ0) in polar
coordinates, the MFPT for a particle initially located at (r, θ) may be expressed in
terms of the MFPT of the neighbors of the point (r, θ+ωt) at the previous time step.
As in the case of the rotating trap on a one-dimensional circle, this equivalence may
be attributed to the dependence of the MFPT on only the relative starting location of
the particle with respect to the trap. In Cartesian coordinates, this may be expressed
as
(1.8)

v(x, y) =
1

4
{v(xp +Δx, yp) + v(xp −Δx, yp) + v(xp, yp +Δy) + v(xp, yp −Δy)}+Δt ,

v = 0 when |(x, y)− (x0, y0)| ≤ ε ,

where we have assumed that, at each time step, the particle may move one step on a
square lattice with equal probability in all four directions. The condition v = 0 when
|(x, y)− (x0, y0)| ≤ ε states that the MFPT of a particle starting inside or on the trap
centered at (x, y) = (x0, y0) is exactly zero. Since the angular coordinate of the trap
location decreases by ωΔt each time step, the location (xp, yp) is

(1.9) (xp, yp) = (r cos(θ + ωΔt), r sin(θ + ωΔt)) .

Expanding (1.9) for small Δt and using (x, y) = (r cos θ, r sin θ), we calculate

(1.10) (xp, yp) = (x − ωyΔt, y + ωxΔt) .
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(a) MFPT from Monte Carlo simulation (b) MFPT from solution of PDE

Fig. 2. (a) Monte Carlo approximation of MFPT on a unit disk with trap located at (x, y) =
(0.6, 0) rotating clockwise with angular velocity of ω = 200. Red (blue) regions indicate large (small)
values of MFPT. The parameters of the random walk are such that D = 1. 1000 trials per grid
point were used to obtain an average approximation. (b) Numerical solution of (1.12) with D = 1
and ω = 200. In both figures, the regions shaded in dark red have a value of approximately 0.13.
Observe that the MFPT is lower in front of the trap than it is behind it. Color is available only in
the online version.

Substituting (1.10) into (1.8) and expanding to leading order, noting that O(Δx) ∼
O(Δy) ∼ O(

√
Δt), we obtain

(1.11)

(Δx)2

4Δt
vxx +

(Δy)2

4Δt
vyy + ω(xvy − yvx) + 1 = 0 ,

v = 0 when |(x, y)− (x0, y0)| ≤ ε .

Letting Δx = Δy = Δ� and D ≡ (Δ�)2/(4Δt) in (1.11) we obtain in polar coordinates

(1.12) DΔv + ωvθ + 1 = 0 ; vr(1) = 0 , v = 0 when |(x, y)− (x0, y0)| ≤ ε ,

where we have used in (1.12) that xvy − yvx = vθ. Both the radius of the disk and
the diffusion coefficient D may be scaled to unity without loss of generality. The pure
Neumann boundary condition indicates a disk with a reflecting wall. To illustrate
the theory, we compare the MFPT obtained from a Monte Carlo simulation (Figure
2(a)) to that of a numerical solution of (1.12) with D = 1, r0 = 0.6, ω = 200, and
ε = 0.1 (Figure 2(b)). The simulations were performed in the same way as that on
the one-dimensional circle, with Δ� and Δt set such that the diffusion coefficient was
unity. That is, with a trap of radius ε centered at (x, y) = (r0, 0), we initialize 1000
agents at a location (xi, yi) in the unit disk. We then evolve each agent according to a
nearest neighbor random walk, as well as the trap according to (1.7). For each agent,
we record the time elapsed before it comes within ε distance of the trap center. The
MFPT at point (xi, yi) is then approximated by the average capture time of the 1000
particles. Repeating over a grid of points inside the unit disk, we generate Figure
2(a). We observe excellent qualitative agreement between the simulation result and
PDE solution. In both figures, the regions with the darkest shade of red have a value
of approximately 0.13, indicating also quantitative agreement. Observe that, similar
to the case of a rotating trap on a one-dimensional circle, the MFPT is lower in front
of the clockwise-rotating trap than it is behind it.

In the same way that the time-independent problem (1.4) may be interpreted
as a transformation of the time-dependent problem (1.5) into a rotating frame, the
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time-dependent analogue of (1.12) may be formulated as
(1.13)

vt = Δv + 1 , x ∈ Ω \ Ωε(x0(t)) ;

∂nv = 0 , x ∈ ∂Ω ; v = 0 , x ∈ ∂Ωε(x0(t)) ; x0(t) = (r0 cosωt, r0 sinωt) ,

supplemented by appropriate initial conditions. Here x = (x, y) is a two-dimensional
vector in Cartesian coordinates, v = v(x, y, t), Ω denotes the unperturbed unit disk,
Ωε(x0) the circular trap of radius ε centered at x = x0, and ∂nv the normal derivative
of v on ∂Ω. With ω > 0, the trap rotates counterclockwise. As in (1.6), v may be
interpreted as a concentration of particles or a temperature, with the trap acting to
remove the quantity from the domain subject to a constant uniform influx. In Figures
2(a) and 2(b), we thus observe the counterclockwise-rotating hole leaving a region of
low particle concentration or temperature in its trail.

Our goal is to describe the “optimal” radius r0 = ropt0 as a function of both
ω and ε. For such a rotating trap, we define the optimal radius as the one that
minimizes the MFPT averaged over all points in the domain. MFPT optimization
problems with absorbing boundaries (stationary traps) were considered for particles
in one dimension under the presence of a time-oscillatory or randomly fluctuating
field in [21, 10, 40, 18, 20, 37]. In these cases, it was found that the average MFPT
could be minimized by careful tuning of the characteristics of the field. In contrast,
we tune characteristics of the trap motion in order to minimize the average MFPT.
In this formulation with the rotating trap, by equivalence between (1.12) with (1.13),
minimization of the average MFPT is equivalent to minimizing the total mass

(1.14) M(r0;ω) =

∫
Ω

v dΩ

of the solution of (1.13) in the limit t→ ∞. We do not consider any transient effects
in our analysis. In the rest of this paper, we adopt this interpretation instead of that
of the MFPT, as it leads to results and calculations that are more easily interpreted
from a physical standpoint.

This is one of the few configurations that is amenable to a full mathematical
analysis for a bounded domain in two dimensions. By taking advantage of the radial
symmetry, the problem becomes “stationary” in the co-rotating coordinate frame,
making it possible to apply a full range of techniques similar to those developed for
small stationary traps in [28, 43, 44, 11, 38, 12, 30]. See [27] for a review of asymptotic
methods used to study narrow escape problems.

Our main results are summarized in Figure 3. For a range of ω, it shows the
optimal radius of rotation ropt0 of the trap that minimizes M(r0;ω) with respect to
r0. The analysis shows four distinguished regimes, depending on the relative sizes of
ω and ε, as summarized in the following table.

Regime Main result

ω = O(1) “bifurcation” near ω = ωc (sections 3, 3.1)

1 � ω � O(ε−1) ropt0 ∼ 1 (section 4)

ω = O(ε−1) transition region, optimal radius depends only on ω0 = εω (section 5)

ω � O(ε−1). ropt0 ∼ 1/
√
2 (section 2)

The left nonzero segment of the solid curve in Figure 3, independent of ε, was
generated by calculatingM(r0;ω) in terms of an infinite series, which may be summed
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Fig. 3. Asymptotic and numerical results for ropt0 in different regimes of ω. Note that the scale
of the horizontal axis is logarithmic. The left nonzero segment of the solid curve was obtained from
a series solution of (1.15) with ω ∼ O(1). The top thin dashed line is the result ropt0 ∼ 1 obtained
from a leading order analysis in the regime 1 � ω � O(ε−1). The circles were obtained from full
numerical solutions of (1.13) with ε = 1× 10−3. The right segment of the solid curve was obtained
from a leading order calculation with ω ∼ O(ε−1). The overlaying circles represent results from
numerical solutions with ε = 1 × 10−3. In this regime, the relevant quantity is εω, not ε and ω
individually. As such, the stars, generated from the same computations with ε = 5 × 10−3 and ω
one-fifth of the value indicated on the horizontal axis, align closely with the circles. The lower thin
dashed line indicates the result ropt0 ∼ 1/

√
2 for ε → 0 and ω → ∞ with ω � O(ε−1).

numerically to determine the optimal value of r0. The analysis, which assumes ω 	
O(ε−1), is presented in section 3. The circular points are the results of full numerically
computed solutions of (1.15) with ε = 1× 10−3. A notable feature seen in Figure 3 is
the presence of a bifurcation near ωc ≈ 3.026, where for ω < ωc, the optimal radius
of rotation is precisely 0. This result is due to the optimal location of a stationary
trap being at the origin, which we show in section 3. The presence of the bifurcation
states that a rotating trap must rotate with a rate above some critical speed in
order to compensate for being located away from this otherwise optimal location. In
section 3.1, we calculate the critical speed exactly. A typical solution in the regime
ω ∼ O(1) is shown in Figure 4(a) for ω = 10 and r0 = 0.6. Note that solutions for
ω ∼ O(1) lack radial symmetry.

The top dashed line of Figure 3 at ropt0 = 1 indicates the value of ropt0 as ω → ∞
in the regime 1 	 ω 	 O(ε−1). In section 4, for large ω, we use boundary layers to
construct a leading order solution of (1.15). Whereas the analysis of section 3 leads
to an expression for M(r0;ω) in terms of an infinite sum, the boundary layer analysis
yields an explicit leading order expression for M(r0;ω), from which we readily show
that ropt0 → 1 as ω → ∞ with ω 	 O(ε−1). A typical solution in this regime is shown
in Figure 4(b). An internal layer develops in the tail behind the trap, while away
from this internal layer, the solution is nearly radially symmetric.

The right segment of the solid curve of Figure 3 is calculated from a boundary
layer solution with ω = ω0/ε and ω0 ∼ O(1). A very delicate analysis of the boundary
layer is required to derive the asymptotic solution. This calculation is presented in
section 5. Unlike the ω 	 O(ε−1) regimes, the results in this regime depend on
ε through the quantity ω0 = εω. Illustration of this dependence may be seen in
Figure 3. While the overlaying circles were determined from numerical solutions with
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(a) u(x, y) with ω = 10
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(b) u(x, y) with ω = 1000
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(c) u(x, y) with ω = 1× 104

Fig. 4. Contour plots of u(x, y) obtained by numerically solving (1.15) with r0 = 0.6 and (a)
ω = 10, (b) ω = 1000, and (c) ω = 1 × 104. In (a), where ω ∼ O(1), the solution exhibits no
radial symmetry. In (b), for larger ω, an internal layer centered on the ring r = r0 develops behind
the trap. The solution is nearly radially symmetric in regions away from the layer. In (c), where
ω ∼ O(ε−1), the layer becomes thinner and the solution exhibits greater radial symmetry. Here,
ε = 1× 10−4. FlexPDE [22] was used for numerical simulations.

ε = 1 × 10−3 and ω given on the horizontal axis, the stars were computed with
ε = 5×10−3 with ω one-fifth the value on the horizontal axis. The dependence on the
product εω and not on ε and ω individually may be inferred from the close agreement
between the circles and stars. A typical solution in this regime is shown in Figure
4(c). Compared to Figure 4(b) with smaller ω, the internal layer in Figure 4(c) is
considerably thinner. Away from the layer, the solution also exhibits a high degree of
radial symmetry.

Finally, for very large ω � O(ε−1), the trap is rotating so fast that from the point
of view of a particle in the domain, it appears simultaneously everywhere along the
circle of radius r0. In this case the optimal radius asymptotes to ropt0 ∼ 1/

√
2. This

has a very nice geometric interpretation: the trap moving along such a radius divides
the unit disk into two regions of equal area. This calculation is presented in section 2.

The first step in the analysis is to transform (1.13) into the rotating frame of
the trap to obtain a time-independent problem. To do so, we first transform to
the polar coordinate system (x, y) → (r, ϕ) so that x(r, ϕ) = r cosϕ, y(r, ϕ) =
r sinϕ, and v(x, y, t) = ũ(r, ϕ, t). The center of the trap is then given by (r, ϕ) =
(r0,mod(ωt, 2π)). Making the transformation into the rotating frame θ = ϕ − mod
(ωt, 2π) with 0 < θ < 2π, and ũ(r, ϕ, t) = u(r, θ(t)), we obtain the stationary problem

Δu+ ωuθ + 1 = 0 , x ∈ Ω \ Ωε(r0) ;(1.15a)

ur = 0 , x ∈ ∂Ω ; u = 0 , x ∈ ∂Ωε(r0) .(1.15b)

Here Δu denotes the Laplacian of u(r, θ) in radial coordinates, uθ and ur denote
differentiation of u with respect to the angular and radial coordinates, respectively,
and Ωε(r0) denotes a circular hole of radius ε centered at a distance r0 from the origin
located along the θ = 0 axis.

2. The regime ω � O(ε−1). This is the simplest regime to analyze, as (1.15)
reduces to a radially symmetry problem for u. To see this, we let ω → ∞ in (1.15a)
so that u = u(r) to leading order when (r, θ) �= (r0, 0). In the inner region ξ =
ε−1(x − x0), η = ε−1y, we have for u = U(ξ, η) that ε−2ΔU + ε−1ωr0Uη + 1 = 0,
which suggests that U = U(ξ) when ω � O(ε−1). With U = 0 on the trap |(ξ, η)| = 1,
and since it matches to a radially symmetric outer solution, we must have that U = 0.

D
ow

nl
oa

de
d 

07
/0

3/
15

 to
 1

34
.1

90
.1

54
.2

29
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEAN FIRST PASSAGE TIME FOR A SMALL ROTATING TRAP 239

In this way, we obtain the limiting outer problem

Δu+ 1 = 0 , x ∈ Ω \ {x : r0 − ε < |x| < r0 + ε} ;(2.1a)

ur = 0 , x ∈ ∂Ω ; u bounded as r → 0 , u = u0 , |x| = r0 − ε , r0 + ε ,
(2.1b)

with u0 = 0. The solution of (2.1) with u0 = 0 is

(2.2) u(r) =
r20 + ε2 − r2

4
+

{ − εr0
2 , 0 < r < r0 − ε ,

εr0
2 + 1

2 log
(

r
r0+ε

)
, r0 + ε < r < 1 .

In this case, with u given by (2.2), the total mass as defined by (1.14) is

(2.3) M(r0;ω) =M(r0) = π

[
r20
2

− 3

8
− 1

2
log(r0 + ε) + εr0(1− r20) +

1

2
ε2 − ε3r0

]
.

The optimal radius of rotation ropt0 that minimizes M satisfies dM/dr0 = 0, yielding

(2.4) ropt0 =
1√
2
− ε

4
+O(ε2) .

The approach to a value of ropt0 slightly less than 1/
√
2 as ω → ∞ with fixed ε was

observed in obtaining the numerical results presented in Figure 3.
For ε→ 0, the optimal radius (2.4) is the same as that obtained in the limit of an

analogous problem studied in [30]. The objective of that work was to find configura-
tions for N identical traps placed inside a unit disk that optimized the fundamental
Neumann eigenvalue of the Laplacian. For the special case where the traps were re-
stricted to lie on a ring of radius r, it can be seen from Proposition 4.4 of [30] that
the optimal value of r tends to 1/

√
2 as N → ∞.

In the following section, we solve (1.15) in the regime ω ∼ O(1) in terms of a series
expansion. Calculating the mass, we find that there exists a value ωc > 0 independent
of ε for which ropt0 = 0 when ω < ωc and 0 < ropt0 < 1 when ω > ωc. In section 3.1,
we use the results of section 3 to determine the exact value of ωc.

3. Asymptotic solution for ω ∼ O(1). For ω = O(1), we solve (1.15) using
the method of matched asymptotics as in [30]. Near the trap, we make the change to
the inner variables

(3.1) y =
x− x0

ε
, u(x) = U(y) ; x0 = (r0, 0) ,

so that the trap, in the inner region, is a circle of unit radius denoted by Ω1. Here,
x0 denotes the center of the trap in Cartesian coordinates. With this scaling, we have
in the inner region that ε−2ΔU + ε−1ωr0Uη + 1 = 0. With ω 	 O(ε−1), the inner
problem for U reduces to

ΔyU = 0 , y /∈ Ω1 ; U = 0 , |y| = 1 ,(3.2a)

U ∼ S log |y| as |y| → ∞ .(3.2b)

With y defined in (3.1), the behavior of u near the trap is determined by the far-field
behavior in (3.2b) as

(3.3) u ∼ S log |x− x0| − S log ε as x → x0 .
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The logarithmic behavior of u as x → x0 suggests that

(3.4) u = −πG(x;x0) +H ,

where G(x;x0) is the Neumann Green’s function satisfying

ΔG+ ωGθ =
1

π
− δ(x− x0) , x ∈ Ω ;(3.5a)

∂rG = 0 , x ∈ ∂Ω ;

∫
Ω

G(x;x0) dΩ = 0 ,(3.5b)

and H is a constant obtained from matching the inner and outer solutions.
The solution for G(x;x0) in (3.5a) can be written as

(3.6) G(x;x0) = − 1

2π
log |x− x0|+R(x;x0) ,

where R(x;x0) remains finite as x → x0 and is referred to as the regular part of
G(x;x0). By (3.4), the behavior of u as x → x0 is then

(3.7) u ∼ 1

2
log |x− x0| − πR(x0;x0) +H as x → x0 .

Comparing (3.7) to (3.3), we find that S = 1/2 and

(3.8) H = πR(x0;x0)− 1

2
log ε .

By (3.4) and (3.5a), we have that the mass of u in Ω is

(3.9) M(r0;ω) = πH ,

with H given in (3.8) and r0 = |x0|. The minimization of M(r0;ω) is thus equivalent
to the minimization of R(x0;x0). In the case of a stationary trap located at x = x0,
an explicit formula for the regular part of the Neumann Green’s function with ω = 0
in (3.5a) is given in [30] as

(3.10) Rm(x0;x0) =
1

2π

[
− log

∣∣∣∣x0|x0| − x0

|x0|
∣∣∣∣+ |x0|2 − 3

4

]
.

With (3.10) for R(x0;x0) in (3.9), a simple calculation shows that M(r0; 0) is mini-
mized when r0 = 0. We show below that M(r0;ω) is minimized at some 0 < r0 < 1
when ω > ωc, where ωc ≈ 3.026 is an O(1) constant that we determine in section 3.1.
When ω < ωc the optimal configuration is a stationary trap located at the origin.

For ω > 0, we now compute G(x;x0) in the form of a Fourier series expansion.
We first write the equation in (3.5a) in polar coordinates as

(3.11) Grr +
1

r
Gr +

1

r2
Gθθ + ωGθ =

1

π
− 1

r
δ(r − r0)δ(θ) ,

where we have used that the location x0 of the trap is along the θ = 0 ray. We use
separation of variables to write G(x;x0) as

(3.12) G(x;x0) = G(r, θ; r0) = R0(r) +
∑
m>0

eimθRm(r) + c.c. ,
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where c.c. refers to the complex conjugate of the term involving the summation.
Substituting (3.12) into (3.11) and recalling the insulating boundary conditions in
(3.5b), we obtain

R′′
0 +

1

r
R′

0 =
1

π
− 1

2πr
δ(r − r0) , R0 bounded as r → 0 , R′

0(1) = 0 ,(3.13a)

R′′
m +

1

r
R′

m +

(
iωm− m2

r2

)
Rm = − 1

2πr
δ(r − r0) ,(3.13b)

m > 0 , Rm bounded as r → 0 , R′
m(1) = 0 .

For m > 0, the homogeneous solution of (3.13b) may be written as

(3.14) Rm(r;ω) = amIm(cmr) + bmKm(cmr) ; cm ≡ −i
√
iωm ,

where Im(r) andKm(r) aremth order modified Bessel functions of the first and second
kinds, respectively. Solving (3.13b) separately for r < r0 and r > r0, and applying
appropriate continuity and jump conditions at r = r0, we obtain the solution for Rm,

(3.15a)

Rm(r;ω) =

⎧⎨
⎩

1
2π

[
−K′

m(cm)
I′
m(cm) Im(cmr0) +Km(cmr0)

]
Im(cmr) , 0 < r < r0 ,

1
2π

[
−K′

m(cm)
I′
m(cm) Im(cmr) +Km(cmr)

]
Im(cmr0) , r0 < r < 1 ,

m > 0 ,

where I ′m(cm) and K ′
m(cm) denote the derivatives of Im and Km evaluated at cm,

respectively. In a similar way, we find that the solution to (3.13a) for R0(r) is

(3.15b) R0(r) =
r2

4π
+ a0 −

{
1
2π log r0 , 0 < r < r0 ,
1
2π log r , r0 < r < 1 .

Note that the jump condition arising from the right-hand side of (3.13a) is automat-
ically satisfied by (3.15b). The constant a0 is determined by the zero-mean condition
in (3.5b), yielding

(3.15c) a0 =
1

8π
[2r20 − 3] .

The solution for G(x;x0) is then given by (3.12) with (3.15).
To calculate R(x0;x0), we use (3.6) to write

(3.16) R(x0;x0) = lim
x→x0

{
G(x;x0) +

1

2π
log |x− x0|

}
.

We next write log |x− x0| in terms of its Fourier series as

(3.17) log |x− x0| =
{

log r0 − 1
2

∑
m>0

1
m

(
r
r0

)m

eimθ + c.c. , r < r0 ,

log r − 1
2

∑
m>0

1
m

(
r0
r

)m
eimθ + c.c. , r > r0 .

Using the solution for G(x;x0) with θ → 0 and r → r0 as x → x0, we then use (3.17)
to write (3.16) as

(3.18) R(x0;x0) =
r20
2π

− 3

8π
+

∑
m>0

(
Rm(r0)− 1

4πm

)
+ c.c.
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(a) u(x, y) (b) regular part of u(x, y)
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(c) contour plot of u(x, y)

Fig. 5. (a) Asymptotic solution u(x, y) of (1.15) with ω = 10, ε = 1 × 10−4, and r0 = 0.6 as
constructed from (3.4). (b) The corresponding regular part of u(x, y). Red (blue) regions indicate
large (small) values of u. (c) The contour plot of (a); compare with Figure 4(a) for the numerical
solution with the same parameters. Color is available only in the online version.

Using (3.18), we may then calculate the constant H from (3.8). The solution for u is
then given by (3.4) with G(x;x0) given by (3.12) with (3.15) and H given by (3.8)
and (3.18). A typical solution for u with ω = 10 and r0 = 0.6 is shown in Figure 5(a).
The corresponding regular part of u is shown in Figure 5(b). The contour plot of u
is shown in Figure 5(c) and agrees with Figure 4(a). Finally, we calculate the mass
M in (3.9) as

(3.19) M(r0;ω) = π

[
r20
2

− 3

8
− 1

2
log ε

]
+ π2

∑
m>0

(
Rm(r0;ω)− 1

4πm

)
+ c.c.

Here, c.c. represents the complex conjugate of the term involving the summation,
while the parametric dependence of M on ω is through the dependence of Rm on cm,
defined in (3.14).

For a range of ω 	 O(ε−1), we use (3.19) to numerically determine the value of
r0 that minimizes M . The results are presented in Figure 6. The first main feature of
Figure 6(a) is the bifurcation that occurs near ω = ωc ≈ 3.026 (closeup in Figure 6(b));
for ω < ωc, the optimal radius of rotation remains zero. In section 3.1, we expand
(3.19) for small r0 	 1 to locate the exact value of ωc at which the bifurcation occurs.
The second main feature of Figure 6(a) is the monotonic approach to ropt0 = 1 for
large ω. In section 4, we construct a solution of (1.15) for 1 	 ω 	 O(ε−1) to show
that ropt0 → 1 as ω → ∞ with ω 	 O(ε−1). Note that this does not conflict with
the result in (2.4), as the analysis above, in particular the inner problem (3.2), is
valid only when ω 	 O(ε−1). The regime ω = O(ε−1) is a distinguished limit and is
discussed in section 5.

3.1. Bifurcation of ropt
0 versus ω. The presence of a bifurcation of ropt0 near

ω = 3 may be confirmed by obtaining numerical solutions of (1.15). The computations
were performed using the FlexPDE finite element PDE solver [22]. In Figure 7, we
compare the mass M(r0;ω) as given by (3.19) with that computed from numerical
solutions of (1.15). In Figure 7(a), we show that when ω = 2, the concavity at the
point r0 = 0 is positive with M(r0;ω) increasing on the entire interval 0 < r0 < 1,
yielding ropt0 = 0. In Figures 7(b) and 7(c) with ω = 3.5, we show that the concavity
at r0 = 0 has become negative, thereby yielding ropt0 > 0. The bifurcation seen in
Figure 6(b) must then occur when the quadratic behavior of M(r0;ω) near r0 = 0
changes from concave up to concave down. We may thus determine the bifurcation
point by expanding M(r0;ω) in (3.19) in powers of r0 and calculating the value of ω
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(a) ropt0 versus ω
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(b) ropt0 versus ω near bifurcation point

Fig. 6. (a) Plot of ropt0 versus ω � O(ε−1) (solid, left vertical axis) and the corresponding mass

M(ropt0 ;ω) (dashed, right vertical axis). The optimal radius remains zero for ω sufficiently small.
(b) Closeup of the bifurcation point near ω ≈ 3 past which the optimal radius becomes nonzero.
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(a) M(r0) for ω = 2
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(b) M(r0) for ω = 3.5
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(c) M(r0) for ω = 3.5 closeup

Fig. 7. Plots of M(r;ω) for (a) ω = 2 and (b), (c) ω = 3.5. The solid curves are calculated
from (3.19), while the circles are obtained from numerical solutions of (1.15). In (a), with ω = 2,

the point r0 = 0 is a global minimum so that ropt0 = 0, while in (b), with ω = 3.5, it is a local

maximum (closeup in (c)), yielding ropt0 > 0. Here ε = 1× 10−3.

at which the coefficient of r20 changes sign. In the following analysis, we assume that
r0 � O(ε).

To simplify calculations, we equivalently seek the leading order term of the ex-
pansion in r0 of the quantity

(3.20) S =
r20
2

− 2

{∑

m>0

(
−πRm(r0;ω) +

1

4m

)}
,

where Rm(r;ω) is given in (3.15a). To do so, we write the ascending series represen-
tation of Iν(z) and Kν(z) for ν > 0 given in [1] as

(3.21a) Iν(z) =
(z
2

)ν ∞∑
k=0

(z2/4)k

k!Γ(ν + k + 1)
,

(3.21b) Kν(z) =
1

2

(z
2

)−ν ν−1∑
k=0

(n− k − 1)!

k!

(
−z

2

4

)k

+ (−1)ν+1 log
(z
2

)
Iν(z)

+ (−1)ν
1

2

(z
2

)ν ∞∑
k=0

[ψ(k + 1) + ψ(ν + k + 1)]
(z2/4)k

k!(n+ k)!
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where γ is Euler’s constant, and ψ(n) is given by

(3.21c) ψ(n) =

{ −γ , n = 1 ,

−γ +∑n−1
k=1

1
k , n > 1 .

With (3.21) and (3.15a), we find that

−πR1(r0;ω) ∼ −1

4
+
c21
8

[
−1

4
− log

(c1r0
2

)
+
K ′

1(c1)

I ′1(c1)
+

1

2
(1− 2γ)

]
r20 ; c1 ≡ −i

√
iω ,

(3.22a)

−πRm(r0;ω) ∼ − 1

4m
+

c2m
8m(m2 − 1)

r20 ; m > 1 , cm ≡ −i
√
iωm .(3.22b)

The (4m)−1 term in (3.20) cancels the leading order constant term in (3.22a) and
(3.22b). Further, since c2m is pure imaginary, only the m = 1 term contributes to the
leading order quadratic behavior of S. We therefore have, for ε	 r0 	 1,
(3.23)

S ∼ a2(ω)r
2
0 ; a2(ω) ≡ 1

2
− 2


{
c21
8

[
−1

4
− log

(c1r0
2

)
+
K ′

1(c1)

I ′1(c1)
+

1

2
(1 − 2γ)

]}
,

where the dependence of a2(ω) on ω is through c1 defined in (3.22a). The value
ω = ωc at which the concavity of S at r0 = 0 changes sign is the value at which the
optimality of r0 = 0 is lost. The bifurcation point therefore must satisfy

(3.24) a2(ωc) = 0 ,

where a2(ω) is defined in (3.23). Solving (3.24) numerically for ωc, we find that the
bifurcation in Figure 6(b) occurs at ωc ≈ 3.026.

4. Leading order solution for large ω with ω � O(ε−1). As ω in (1.15a)
becomes large with ω 	 O(ε−1), an internal layer of width O(ω−1/2) develops in a
trail behind the rotating trap. An example of this is shown in Figure 4(b), obtained by
numerically solving (1.15) with ω = 1000 and ε = 1× 10−4. An asymptotic solution
with the same parameters is shown in Figure 8(a). The internal layer centered on
the ring r = r0 may be clearly seen in the corresponding contour plot in Figure 8(b).
Away from the internal layer, the solution is nearly radially symmetric. We now
construct this solution and derive an approximation to the mass M(r0;ω) in (3.19)
for large ω. We then show that as ω → ∞ with ω 	 O(ε−1), the optimal radius
ropt0 → 1. The analysis below assumes that 1− r0 ∼ O(1) and r0ω � 1.

To construct a solution of (1.15a), we first identify three distinct regions of the
solution of (3.5a). In addition to the O(ε) region identified in (3.2) and the O(ω−1/2)
internal parabolic layer seen in Figure 8(b), there is an elliptic layer of extent O(ω−1)
surrounding the O(ε) region. The solution will be constructed by matching the elliptic
layer to the O(ε) inner region and then the parabolic layer to the elliptic layer.

For the elliptic layer, the Cartesian coordinate system is convenient. In the
O(ω−1) vicinity of the trap, we make the change of variables

(4.1) ξ = ω(x− r0) , η = ωy ; G(r, θ) = Ĝ(ξ, η) .

Substituting (4.1) into (3.11) with Gθ = xGy − yGx and using the scaling property
of the delta function δ(ax) = δ(x)/|a|, the leading order equation for ω � 1 becomes
(4.2)
Ĝξξ + Ĝηη + r0Ĝη = −δ(ξ)δ(η) ; −∞ < ξ , η <∞ , Ĝ bounded as |ξ| , |η| → ∞ .
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(a) u(x, y)

x

y

−0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) contour plot of u(x, y)

Fig. 8. (a) Asymptotic solution u(x, y) of (1.15) with ω = 1000 � 1, ε = 1 × 10−4, and
r0 = 0.6 as constructed from (3.4). Red (blue) regions indicate large (small) values of u. (b) The
corresponding contour plot of u(x, y). An internal layer of width O(ω−1/2) centered on the ring
r = r0 is clearly seen. The solution is nearly radially symmetric away from the internal layer.
Compare with Figure 4(b) for the numerical solution with the same parameters. Color is available
only in the online version.

The condition at infinity in (4.2) is required to match the elliptic intermediate layer
to the parabolic internal layer. To solve (4.2), we proceed as in [25] and write

(4.3) Ĝ(ξ, η) = G(ρ)e− r0
2 η+Ĥ ; ρ2 = ξ2+η2 , −∞ < ξ , η <∞ , 0 < ρ <∞ ,

where Ĥ is a constant to be determined from the zero-mean condition in (3.5b).
Substituting (4.3) into (4.2), we calculate

Gρρ +
1

ρ
Gρ −

(r0
2

)2

G = − 1

2πρ
δ(ρ) ; 0 < ρ <∞ ,(4.4a)

G bounded as ρ→ ∞ .(4.4b)

The homogeneous solution of (4.4a) is given by a linear combination of modified Bessel
functions

(4.5) G(ρ) = c1I0

(r0ρ
2

)
+ c2K0

(r0ρ
2

)
.

In (4.5), c1 = 0 by the boundedness condition in (4.4b), while c2 is determined by
integrating (4.4a) over a circle of radius δ → 0,

(4.6) lim
δ→0

2πδc2
d

dρ
K0

(r0ρ
2

)∣∣∣∣
ρ=δ

= −1 .

Using the small argument asymptotics for K0(z),

(4.7) K0(z) ∼ − log
z

2
− γ ,

we calculate from (4.6) that c2 = (2π)−1 in (4.5). The solution of (4.2) for the elliptic
layer is then given by

(4.8) Ĝ(ξ, η) =
1

2π
K0

(r0
2

√
ξ2 + η2

)
e−

r0
2 η + Ĥ ,
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where Ĥ is a constant to be computed, while ξ and η are defined in (4.1).
For the parabolic layer of thickness O(ω−1/2), we introduce the scaled variables

(4.9) θ̃ = 2π − θ , r̃ =
√
ω(r − r0) ; G(r, θ) = G̃(r̃, θ̃) .

Substituting (4.9) into (3.11) and collecting terms of O(ω), we obtain the parabolic
equation

(4.10) G̃θ̃ = G̃r̃r̃ ; 0 < θ̃ < 2π , −∞ < r̃ <∞ .

We require boundedness of G̃ as |r̃| → ∞ in order to match to the outer region. We
now compute a solution of (4.10) that matches the behavior of the elliptic layer (4.8) as
η → −∞. To do so, we first use the large argument asymptotic formK0(z) ∼

√
π
2z e

−z

as z → ∞ to calculate

(4.11) Ĝ(ξ, η) ∼ 1√
4πr0|η|

e−
r0ξ2

4|η| + Ĥ , η → −∞ .

To write ξ and η in terms of r̃ and θ̃, we first note that, near r = r0 and θ̃ = 0+, we
have that x ∼ r0 + r̃ and y ∼ −r0θ̃. With ξ and η defined in (4.1), we obtain

(4.12) ξ ∼ √
ωr̃ , η ∼ −ωr0θ̃ ; θ̃ > 0 .

Substituting (4.12) into (4.11), we obtain the solution for the parabolic layer

(4.13) G̃(r̃, θ̃) =
1

2r0
√
πωθ̃

e−
r̃2

4θ̃ + Ĥ .

The solution (4.13) may also be obtained in a similar way by explicitly calculating
the initial condition for (4.10) in terms of a weighted delta function

(4.14) G̃(r̃, 0) =
1

r0
√
ω
δ(r̃) + Ĥ .

The solution to (4.10) with initial conditions given by (4.14) may then be written in
terms of the fundamental solution of the diffusion equation, yielding (4.13).

With (4.8) and (4.13), the inner solution for G in (3.11) near the ring r = r0 is
then given by the composite solution Gi(r, θ) = Ĝ+ G̃− cp, where cp is the common
part given by (4.11). We thus calculate

Gi(r, θ) =
1

2π
K0

(r0
2

√
ξ2 + η2

)
e−

r0
2 η

+
1

2r0
√
πω(2π − θ)

e−
ω(r−r0)2

4(2π−θ) − 1

2
√
πr0|η|

e−
r0ξ2

4|η| Θ(−η) + Ĥ ,(4.15)

where ξ = ξ(r, θ) and η = η(r, θ) are defined in (4.1). For the outer solution G0

of (3.11), we note that, to leading order in ω, G0θ = 0. For G0 = G0(r) radially
symmetric, we integrate both sides of (3.11) from θ : 0 → 2π to obtain

(4.16a) G0rr +
1

r
G0r =

1

π
− 1

2πr
δ(r − r0) ; 0 < r < 1 , G0r(1) = 0 .

A unique solution of (4.16a) may be obtained by imposing the matching condition

(4.16b) G0(r0) = Ĥ ,
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obtained from letting ω → ∞ in (4.15) with |r − r0| remaining of O(1). The solution
of (4.16) is then

(4.17) G0(r) =
r2 − r20
4π

− 1

2π
Θ(r − r0) log

(
r

r0

)
+ Ĥ ,

where Θ(r) is the Heaviside step function. The leading order composite solution of
(3.11) for ω � 1 is then given by G = G0 +Gi − Ĥ , yielding

(4.18a) G(r, θ) =
r2 − r20
4π

− 1

2π
Θ(r − r0) log

(
r

r0

)
+

1

2π
K0

(r0
2

√
ξ2 + η2

)
e−

r0
2 η

+
1

2r0
√
πω(2π − θ)

e−
ω(r−r0)2

4(2π−θ) − 1

2
√
πr0|η|

e−
r0ξ2

4|η| Θ(−η) + Ĥ +O(ω−1) ,

where we have used (4.15) and (4.17) for Gi and G0. The constant Ĥ is determined
by the zero-mean condition in (3.5b). Since the solution in (4.18a) omits terms of
order O(ω−1), and with inner layer terms contributing a mean of O(ω−1), we need
only account for the mean of the first two terms in (4.18a). That is,

(4.18b) Ĥ = − 1

π

[
−r

2
0

2
+

3

8
+

1

2
log r0

]
+O(ω−1) .

The solution to u is then given by (3.4) with G and Ĥ defined in (4.18).
We now calculate the constant H in (3.4) by the matching condition given in (3.3)

with S = 1/2. To determine the asymptotic behavior of G as x → x0, we first note
that the second and third terms in (4.15), by construction, cancel near the trap, while
G0(r) → Ĥ. Therefore, using the small argument asymptotics for K0(z) in (4.7), we
calculate that

(4.19) G ∼ 1

2π

[
− log |x− x0| − log

(r0ω
4

)
− γ

]
+ Ĥ as x → x0 ,

where we have used (4.1) to write ξ and η in terms of x and y. With the asymptotics
for G in (4.19), (3.3) and (3.4) yield the matching condition at the trap

(4.20)
1

2

[
log |x− x0|+ log

(r0ω
4

)
+ γ

]
− πĤ +H ∼ 1

2
log |x− x0| − 1

2
log ε .

Solving for H in (4.20), we obtain

(4.21) H = πĤ − 1

2

[
log

(r0ωε
4

)
+ γ

]
.

In Figures 9(a) and 9(b), we show a solution constructed with G and H as given in
(4.18) and (4.21). The parameters are the same as those used in Figures 4(b) and
8. In Figure 9(c), we show the corresponding value of u along the ring r = r0. The
solid curve is computed numerically from the series expansion of section 2, while the
dashed curve is computed from the asymptotic construction (4.18) and (4.21). The
figure indicates excellent agreement between the two results.

Finally, with H given in (4.21) and Ĥ defined by (4.18b), we use (3.9) to calculate
the mass

(4.22) M(r0;ω) = π

[
r20
2

− log r0 − 3

8
− 1

2
log

(εω
4

)
− γ

2

]
+O(ω−1) ,
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(a) u(x, y)
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(b) contour plot of u(x, y)
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(c) value of u on r = r0

Fig. 9. (a) Leading order asymptotic solution u(x, y) of (1.15) with ω = 1000, ε = 1 × 10−4,
and r0 = 0.6 as constructed from (4.18) and (4.21). The parameters are the same as those used in
Figures 4(b) and 8. Red (blue) regions indicate large (small) values of u. (b) The corresponding
contour plot of u(x, y). (c) The value of u along the ring r = r0. The solid curve is computed
numerically from the series expansion, while the dashed curve is computed from (4.18) and (4.21).
Color is available only in the online version.

0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

r0

M
(r

0
;1

00
0)

Fig. 10. Total mass versus r0 as computed from (3.19) (solid), (4.22) (dashed), and the full
numerical solution of (1.15) (circles). The discrepancy near r0 = 1 is likely due to the O(ω−1) terms
neglected in (4.22) and violation of the assumption 1− r0 ∼ O(1). Here ω = 1000 and ε = 1×10−4.

valid for r0ω � 1. Differentiating (4.22) by r0, we find that ropt0 = 1 as ω → ∞ with
ω 	 O(ε−1), consistent with the results of Figure 3. In Figure 10 for ω = 1000 and
ε = 1 × 10−4, we show a plot of the total mass as computed by (3.19) (solid) and
(4.22) (dashed). The circles are data from full numerical solutions of (1.15). In the
case of the former, the optimal value of r0 is slightly less than one, while the latter
case indicates that r0 = 1 is optimal. The discrepancy is likely due to the O(ω−1)
terms neglected in (4.22) and violation of the assumption 1− r0 ∼ O(1).

5. The regime ω ∼ O(ε−1). In Figure 3, we observe a transition from ropt0 ∼ 1
to ropt0 ∼ 1/

√
2 in the regime ω = O(ε−1). In this section, we analyze this transition.

Unlike the analysis of section 4 in which we constructed an explicit solution for u
in the inner region, here we employ a boundary integral method to extract only the
essential information required to determine the optimal radius of rotation. We first
note from section 4 that the elliptic layer of extent O(ω−1) coincides with the inner
layer of extent O(ε) when ω ∼ O(ε−1). The regime ω ∼ O(ε−1) is thus a distinguished
regime not contained in the analysis of section 3 or 4. Indeed, with ω = ε−1ω0 with
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ω0 = O(1), the inner equation for (1.15) becomes the radially asymmetric problem
(5.1)
uξξ+uηη+ω0r0uη = 0, (ξ, η) /∈ Ω1, u = 0, (ξ, η) ∈ ∂Ω1, u ∼ u0(s0) as |(ξ, η)| → ∞ .

Here (ξ, η) = ε−1(x − x0, y) and ∂Ω1 is the unit circle. Our goal is to compute the
value of u0(s0), which determines the value of u on the ring r = r0 in the outer
problem. To do so, we first let u = u0μ(ξ, η) + u0 in (5.1) so that we have
(5.2)
Δμ+ s0μη = 0 , (ξ, η) /∈ Ω1 , μ = −1, ξξξ ∈ ∂Ω1 , μ ∼ 0 as |ξξξ| → ∞ ; s0 ≡ r0ω0 .

In (5.2), ξξξ = (ξ, η) and Δ denotes the Laplacian with respect to the ξξξ. To calculate
u0(s0), we use a boundary integral method to reformulate (5.2) as an integral equation
for the normal derivative ∂μ/∂n on ∂Ω1 (the same approach for solving (5.2) with
different geometry is adopted in [13] in the context of diffusion in the presence of
steady two-dimensional potential flow around a finite absorber). The constant u0(s0)
is then calculated by integrating (1.15) over Ω and imposing the solvability condition
that the flux on ∂Ω1 must be equal to −π. That is, u0(s0) is given by

(5.3) u0(s0) =
−π

Φ(s0)
; Φ(s0) ≡

∫
∂Ω1

∂μ

∂n
dS .

The dependence of u0 on s0 is due to the appearance of s0 as a parameter in the
equation for μ in (5.2).

We first consider the Green’s function for the adjoint problem

(5.4) ΔG̃− s0G̃η = δ(ξξξ − z) , G̃→ 0 as |ξξξ| → ∞ ; z = (z1, z2) .

The solution of (5.4) is given by

(5.5) G̃(ξξξ; z) = − 1

2π
e

s0
2 (η−z2)K0

(s0
2
|ξξξ − z|

)
.

Next, we multiply (5.2) by G̃, integrate by parts, use Green’s second identity, and
apply the boundary conditions to obtain that
(5.6)

μ(ρ cosφ, ρ sinφ) =

∫ 2π

0

∂G̃

∂r̃

∣∣∣∣∣
r̃=1

dθ̃ +

∫ 2π

0

(
G̃
∂μ

∂r̃

)
r̃=1

dθ̃ − s0

∫ 2π

0

G̃
∣∣∣
r̃=1

sin θ̃ dθ̃ .

In (5.6), we have made the substitutions (ξ, η) → (r̃ cos θ̃, r̃ sin θ̃) and (z1, z2) →
(ρ cosφ, ρ sinφ). To obtain an integral equation for σ(θ̃) ≡ ∂μ/∂r̃ on ∂Ω1, we impose
the condition in (5.2) that μ = −1 on (ρ, φ) = (1, φ) for φ ∈ [0, 2π). Imposing this
condition in (5.6), we obtain the integral equation for σ(θ̃)

−
∫ 2π

0

G̃
∣∣∣
r̃=ρ=1

σ(θ̃) dθ̃

=
1

2
+

∫ 2π

0

∂G̃

∂r̃

∣∣∣∣∣
r̃=ρ=1

dθ̃ − s0

∫ 2π

0

G̃
∣∣∣
r̃=ρ=1

sin θ̃ dθ̃ ; σ(θ̃) ≡ ∂μ

∂r̃

∣∣∣∣
r̃=1

.(5.7)

The 1/2 term on the right-hand side of (5.7) is a result of evaluating μ on the boundary
Ω1 and thus integrating over only half of the delta function in its Green’s function
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(b) mass versus r0 with ω0 = 4

0 20 40 60 80 100
0.7

0.75

0.8

0.85

0.9

0.95

1

ω0

ro
p
t

0

(c) ropt0 versus ω0

Fig. 11. (a) Numerically computed values of u0(s0) and u′
0(s0) for a range of s0. Here s0 is

defined in (5.2). (b) Comparison of M(r0;ω) as given by (5.11) with ω0 = 4 (solid curve) and the
numerical solution of (1.15) with ε = 2.5 × 10−3, ω = 1600 (circles) and ε = 5 × 10−3, ω = 800

(stars). (c) Comparison of the asymptotic prediction of ropt0 obtained by solving (5.12) (solid curve)
and results from numerical solutions of (1.15) with ε = 1× 10−3 (circles) and ε = 5× 10−3 (stars).
Here ω0 = εω.

representation. For a range of s0, we finally solve (5.7) as a linear system for σ(θ̃) at
discrete values of θ̃ and use (5.3) to calculate u0(s0). The results of this calculation
are shown in Figure 11(a), where we show both u0 (solid) and u′0 (dashed).

The leading order far-field behavior of μ in (5.2) must be independent of the
geometry of Ω1 so that in the far field, μ must be a constant multiple of F =
K0(s0|ξξξ|/2)e−s0η/2, which satisfies (5.2) in the case where Ω1 is the contour on which
F = −1. Then, for the internal parabolic layer of extent O(

√
ε), we introduce the

rescaled variables r̂ =
√
ω0(r − r0)/

√
ε and θ̂ = 2π − θ and follow the analysis of

section 4 to obtain from (1.15a)

(5.8) ur̂r̂ − uθ̂ = 0 , u(r̂, 0) =
√
εcδ(r̂) + u0 ,

where c is an O(1) constant and u0 is given by (5.3). The solution in the internal
layer then follows directly from (4.13). As discussed in section 4, the only term in
the inner and internal layers relevant to the leading order expression for M(r0;ω) is
the constant term u0, which is required to uniquely determine the leading order outer
solution.

For the outer equation with ω = ω0/ε in (1.15a), the leading order behavior of
the solution must be radially symmetric. With the matching condition u = u0 on the
ring r = r0, we therefore obtain the radially symmetric problem

urr +
1

r
ur + 1 = 0 , x ∈ Ω \ {x : |x| = r0} ;(5.9a)

ur = 0 , x ∈ ∂Ω ; u bounded as r → 0 ; u = u0 , |x| = r0 ,(5.9b)

with u0 determined empirically from Figure 11(a). The dependence of u on ω0 is
through that of u0 on s0 = r0ω0. The solution to (5.9) is

(5.10) u(r) =
r20 − r2

4
+ u0(s0) +

1

2
Θ(r − r0) log

(
r

r0

)
,

where Θ(r) is the Heaviside step function. Integrating u in (5.10) over the domain Ω,
the leading order expression for the mass M(r;ω) may then be written as

(5.11) M(r0;ω) =M(r0;ω0) = π

[
r20
2

− 3

8
− 1

2
log(r0) + u0(r0ω0)

]
; ω0 ≡ εω .
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A comparison of M(r0;ω) as given by (5.11) versus numerical results as computed
from (1.15) is shown in Figure 11(b) for ω0 = 4. The solid curve is calculated from
(5.11) with u0 given in Figure 11(a), while the circles and stars are from numerical
solutions of (1.15) with ε = 2.5× 10−3 and ε = 5× 10−3, respectively. The agreement
between the circles and stars confirms the analytical result that M is independent of
ε for fixed ω0.

To calculate the optimal radius ropt0 , we set to zero the derivative of M(r0;ω0) in
(5.11) with respect to r0. That is, the optimal radius ropt0 satisfies

(5.12) ropt0 − 1

2ropt0

+ ω0u
′(s0) = 0 .

Solving (5.12) numerically for various ω0, we obtain the solid curve in Figure 11(c).
The circles and stars in Figure 11(c) are results obtained from numerical solutions of
(1.15) with ε = 1 × 10−3 (circles) and ε = 5 × 10−3 (stars) and ω = ω0/ε. We make
several remarks. First, the agreement between the circles and the stars confirms that
ropt0 is a function only of the product εω ≡ ω0, not ε or ω individually. The size of
the trap and the frequency of rotation may then be said to be in balance, as doubling
one parameter has the same effect on the optimal radius as halving the other. This
is in contrast to the ω ∼ O(1) regime in which ropt0 depends only on ω and not ε.

Second, the numerical results appear to diverge from the asymptotics for large ω0.
This may be due to the fact that the analysis assumes ω = ε−1ω0 with ω0 = O(1); for
ω0 � 1, we observe numerically that ropt0 asymptotes to a value slightly below the line
ropt0 = 1/

√
2, as predicted by (2.4). Finally, we illustrate in Figure 12 the transition

from ropt0 ≈ 1 in the 1 	 ω 	 O(ε−1) regime to that shown in Figure 11(c) for the
ω ∼ O(ε−1) regime. Figures 12(a) and 12(b), generated from numerical solutions
of (1.15) with ω0 = 1 (left) and ω0 = 1.5 (right), each shows two local minima in
the relationship M(r0;ω0). The minimum located near r0 = 1 is that which has
persisted from the 1 	 ω 	 O(ε−1) regime, while the one located away from r0 = 1
is formed as ω enters the ω ∼ O(ε−1) regime. The results in Figure 12 then suggest

that the transition occurs at some ω
(c)
0 ∈ (1, 1.5) at which the value of M at the

left local minimum dips below that of M at the right minimum. The location of the
left minimum continues to decrease in r0 for increasing ω0, as illustrated by Figure
11(c). The leading order expression for M(r0;ω) in (5.11) does not capture the right
minimum, as its derivation relies on an O(1) distance between the boundaries of the
trap and domain.

6. Discussion. We have studied the average MFPT over a unit disk domain
with a small rotating trap. By taking advantage of the radial geometry, we were able
to extend the asymptotic techniques that were developed for stationary traps to the
problem of a moving trap. With this radial symmetry, we showed that minimizing
the average MFPT was equivalent to minimizing the steady-state mass of a simple
diffusive system with uniform feed and a rotating Dirichlet trap.

Several surprising “bifurcations” emerge. For small angular velocities (0 ≤ ω <
ωc ≈ 3.026), the trap should be located at the center of the disk in order to minimize
the average MFPT. When ω is large but fixed with ε→ 0 (that is, 1 	 ω 	 O(ε−1)),
the trap should be located very close to the boundary of the disk. On the other hand,
when ε is small but fixed with ω → ∞ (that is, ω � O(ε−1)), the optimal trap radius
approaches 1/

√
2. In this case, the path taken by the trap subdivides the unit disk

into two regions of equal area. Because ω is so large, such a regime is equivalent to
having a trapping boundary all along the length of the path: that is, from the particle
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(a) mass versus r0 with ω0 = 1
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(b) mass versus r0 with ω0 = 1.5

Fig. 12. The relationship M(r0;ω0), generated from numerical solutions of (1.15) with (a)
ω0 = 1 and (b) ω0 = 1.5. Here ε = 1× 10−3. In (a), the local minimum away from r0 = 1 is less
optimal than that near r0 = 1. In (b), the situation reverses, whereby the left local minimum dips
below that at the right. The location of the left minimum continues to decrease in r0 for increasing
ω0, as illustrated by Figure 11(c).

point of view, the trap appears to be simultaneously present all along its path. Most
interestingly, there is a discontinuous “jump” in the optimal radius (at around ω ≈ 103

in Figure 3) as ω is increased. This “jump” occurs due to the presence of two local
minima, one of which overtakes the other as ω is increased; see also Figure 12.

The most intricate regime is precisely the transition regime ω = O(ε−1) where
the “jump” occurs. In section 5 we used a boundary integral method approach to
compute the asymptotics of the optimal radius in the regime ω = O(ε−1). By doing
so, we captured the transition between the regime 1 	 ω 	 O(ε−1) in which ropt0 → 1
and the regime Ω � O(ε−1) in which ropt0 → 1/

√
2.

The moving trap is very closely related to problems involving moving sources for
the diffusion equation; see, for example, [2] and references therein. Some applications
include welding [16], calculation of heat flux generated by friction in a pin-on-disc
tribometer [32], and welding with CO2 lasers [2].

Throughout the paper, we considered the problem of computing the optimal ra-
dius as a function of angular velocity ω. Equally, it is interesting to see how the
optimal radius depends on the speed s = r0ω. This dependence is shown in Figure
13. As with Figure 3, note that the optimal radius approaches r0 ∼ 1/

√
2 for large

ω, as well as the presence of the “jump” near ω ≈ 40 independent of ε. Two no-
table differences are that ropt0 does not make an asymptotic approach to 1 for large
speed, and there is also no “bifurcation” near the origin: the optimal r0 is strictly
positive regardless of how small s is. Note that the ropt0 ∼ 1/

√
2 result in both the

1 	 ω 	 O(ε−1) and ω ∼ O(ε−1) regimes may be inferred from (4.22) and (5.11)
by replacing ω and ω0 by s/r0 and εs/r0, respectively, and differentiating the result-
ing expression with s held constant. The same result for the ω � O(ε−1) regime is
immediate from (2.3).

Of course, the problem we studied has a very special geometry and it is an open
question to consider the obvious generalizations: a noncircular domain, more complex
trap motion (with or without a stochastic component), multiple traps, etc. On the
other hand, this simple setting allows for a detailed analysis which shows that even a
very simple situation has a surprisingly rich structure, with several different transitions
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(b) mass versus r0 with r0ω =
39
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(c) mass versus r0 with r0ω =
40

Fig. 13. (a) Asymptotic (solid) and numerical (circles) results for ropt0 for a range of speed

r0ω. Unlike the case with constant ω, no bifurcation is observed so that ropt0 > 0 for any r0ω > 0.

The optimal radius reaches a maximum of ropt0 ≈ 0.85 when r0ω ≈ 39 before a transition occurs to
a smaller optimal radius. The transition is illustrated in the mass versus r0 plots shown in (b) and
(c) for r0ω = 39 and r0ω = 40, respectively. Two local minima are present. As r0ω increases, the
left minimum dips below that at the right. The results were obtained from numerical solutions of
(1.15) with ε = 1× 10−3. The same transition may also be observed from asymptotic results.

depending on the relative strengths of the trap radius ε and its rotation rate ω. As
such, it provides a good test case for future studies of MFPT with moving traps.

Acknowledgment. The authors thank Michael Ward for useful discussions and
suggestions.
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[19] A. Drewitz, J. Gärtner, A. F. Raḿırez, and R. Sun, Survival probability of a random walk
among a Poisson system of moving traps, in Probability in Complex Physical Systems,
Springer, Berlin, 2012, pp. 119–158.

[20] B. Dybiec and E. Gudowska-Nowak, Resonant activation in the presence of nonequilibrated
baths, Phys. Rev. E (3), 69 (2004), 016105.

[21] J. E. Fletcher, S. Havlin, and G. H. Weiss, First passage time problems in time-dependent
fields, J. Statist. Phys., 51 (1988), pp. 215–232.

[22] FlexPDE, A general-purpose commercial package to solve PDEs, http://www.pdesolutions.
com.

[23] A. Gabel, S. N. Majumdar, N. K. Panduranga, and S. Redner, Can a lamb reach a haven
before being eaten by diffusing lions?, J. Stat. Mech. Theor. Exp., 2012 (2012), P05011.
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