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Social Networks

[Bearman Moody Stovel 2002; image by Mark Newman]

A social network:

a set of people.

a social relationship linking them.
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Analyzing Social Networks, pre-1995

Social Network Analysis: Old S˜ool

social networks have been around for 100K+ years!

before the web, hard to acquire (surveys, interviews, ...).

but many interesting, relevant, generalizable observations!
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Zachary’s Karate Club

[Zachary 1977]

Recorded interactions in a

karate club for 2 years.

During observation,

adminstrator/instructor conflict

developed

⇒ broke into two clubs.

Who joins which club?

Split along administrator/instructor

minimum cut (!)
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Part I:

Search in

Social Networks

∗ with a somewhat biased DLN-centric perspective.
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Milgram: Six Degrees of Separation

Social Networks as Networks: [Milgram 1967]

People given letter, asked to forward to one friend.

Source: random Omahaians;

Target: stockbroker in Sharon, MA.

Of completed chains, averaged six hops to reach target.
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Milgram: The Explanation?

“the small-world problem”

Why is a random Omahaian close to a Sharon stockbroker?

Standard (pseudosociological, pseudomathematical) explanation:

(Erdős/Rényi) random graphs have small diameter.

Bogus! In fact, many bogosities:

degree distribution

clustering coefficients

...
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High School Friendships

White
Black
Other

Self-reported high school friendships. [Moody 2001]
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High School Friendships

[Moody 2001]
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Homophily

homophily: a person x’s friends tend to be ‘similar’ to x.

One explanation for high clustering: (semi)transitivity of similarity.

x, y both friends of u ≈⇒ x and u similar; y and u similar

≈⇒ x and y similar

≈⇒ x and y friends
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Watts/Strogatz: Rewired Ring Lattice

A model with small diameter and large clustering coefficient?

Some well-studied models in graph theory:

e.g., [Bollabas Chung 1988]

e.g., later today (13:30–15:45)!
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Watts/Strogatz: Rewired Ring Lattice

A model with small diameter and large clustering coefficient?

Some well-studied models in graph theory:

e.g., [Bollabas Chung 1988]

e.g., later today (13:30–15:45)!

[Watts Strogatz 1998]

Put people on circle; connect each to δ closest neighbors.
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Navigability of Social Networks

[Kleinberg 2000]

Milgram experiment shows more than small diameter:

People can construct short paths!

Milgram’s result is algorithmic, not existential.

Theorem [Kleinberg 2000]: No local-information algorithm

can find short paths in Watts/Strogatz networks.
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Homophily and Greedy Applications

homophily: a person x’s friends tend to be similar to x.

Key idea: getting closer in “similarity space”

⇒ getting closer in “graph-distance space”

[Killworth Bernard 1978] (“reverse small-world experiment”)

[Dodds Muhamed Watts 2003]

In searching a social network for a target,

most people chose the next step because of

“geographical proximity” or “similarity of occupation”

(more geography early in chains; more occupation late.)

Suggests the greedy algorithm in social-network routing:

if aiming for target t, pick your friend who’s ‘most like’ t.
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Columbia Small-World Experiment

[Dodds Muhamad Watts 2003]
Date: Mon, 25 Mar 2002 02:17:33 -0500

From: Parviz Parvizi <parviz parvizi@mckinsey.com>

To: dln@mit.edu

Subject: Small World Research Project

Dear David Liben-Nowell,

Here’s a message from Parviz Parvizi

who chose you as the next person in this experiment:

sir, i assume that you *must* know this guy personally or know someone who

knows him. (my random guess would be that since this duncan watts character

got his ph.d. at cornell, the person we are trying to reach--steven

strogatz--was one of his advisers/mentors & therefore somehow possibly knows

your pal kleinberg since watts’ work relates to the 6 degrees phenomenon. so,

i would say, forward this to kleinberg unless you happen to know our good man

strogatz yourself.)

We request your assistance with a Columbia University research project.

(An article about this project has just appeared in the New York Times

http://www.nytimes.com/2001/12/20/technology/circuits/20STUD.html)

Our request is simple and will only take a minute or two of your time.

We are a team of sociologists interested in what is known as

the "Small World Phenomenon". This is the idea that

everyone in the world can be reached through
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Homophily and Greedy Applications

homophily: a person x’s friends tend to be similar to x.

Key idea: getting closer in “similarity space”

⇒ getting closer in “graph-distance space”

[Killworth Bernard 1978] (“reverse small-world experiment”)

[Dodds Muhamed Watts 2003]

In searching a social network for a target,

most people chose the next step because of
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(more geography early in chains; more occupation late.)

Suggests the greedy algorithm in social-network routing:

if aiming for target t, pick your friend who’s ‘most like’ t.
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Greedy Routing

Greedy algorithm:

if aiming for target t, pick your friend who’s ‘most like’ t.

Geography: greedily route based on distance to t.

Occupation: ≈ greedily route based on distance

in the (implicit) hierarchy of occupations.

Popularity? choose people with high outdegree?

[Kim Yoon Han Jeong 2002] [Adamcic Lukose Puniyani

Huberman 2001] Combinations? how do you weight various

‘proximities’?

Want Pr [u, v friends] to decay smoothly as d(u, v) increases.

(Need social ‘cues’ to help narrow in on t.

Not just homophily! Can’t just have many disjoint cliques.)
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The LiveJournal Community

[DLN Novak Kumar Raghavan Tomkins 2005]

www.livejournal.com “Baaaaah,” says Frank.

Online blogging community.

Currently 11.6 million users; ∼1.3 million in February 2004.

LiveJournal users provide:

disturbingly detailed accounts of their personal lives.

profiles (birthday, hometown, explicit list of friends)

Yields a social network, with users’ geographic locations.
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LiveJournal

0.1% of LJ friendships

[DLN Novak Kumar Raghavan Tomkins 2005]
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Distance versus LJ link probability

[DLN Novak Kumar Raghavan Tomkins 2005]
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Analyzing Social Networks, pre-1995

Social Network Analysis: Old S˜ool

social networks have been around for 100K+ years!

before the web, hard to acquire (surveys, interviews, ...).

but many interesting, relevant, generalizable observations!

Social Network Analysis: New Sch00l

automatically extract networks without having to ask.

phone calls, emails, online communities, ...

big! but are these really social networks?
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The Hewlett-Packard Email Community

[Adamic Adar 2005]

Corporate research community.

Captured email headers over ∼3 months.

Define friendship as ≥ 6 emails u → v and ≥ 6 emails v → u.

Yields a social network (n = 430),

with positions in the corporate hierarchy.
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Emails and the HP Corporate Hierarchy

black: HP corporate hierarchy gray: exchanged emails.

[Adamic Adar 2005]
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Emails and the HP Corporate Hierarchy

So what?

[Adamic Adar 2005]
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Emails and the HP Corporate Hierarchy

So what?

[Adamic Adar 2005]
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Requisites for Navigability
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[Kleinberg 2000]:

for a social network to be navigable without global knowledge,

need ‘well-scattered’ friends (to reach faraway targets)

need ‘well-localized’ friends (to home in on nearby targets)
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Kleinberg: Navigable Social Networks

[Kleinberg 2000]

put n people on a k-dimensional grid

connect each to its immediate neighbors

add one long-range link per person; Pr[u → v] ∝ 1
d(u,v)α.
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Navigability of Social Networks

put n people on a k-dimensional grid

connect each to its immediate neighbors

add one long-range link per person; Pr[u → v] ∝ 1
d(u,v)α.

Theorem [Kleinberg 2000]: (short = polylog(n))

If α 6= k (Watts/Strogatz: α = 0)

then no local-information algorithm can find short paths.

If α = k

then people can find short—O(log2 n)—paths using

the greedy algorithm.
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Sketch of Kleinberg’s Proof

Kleinberg: n people on k-dimensional grid, with local links.

Kleinberg: Pr[u → v] ∝ d(u, v)−k.

∑

v 6=u
d(u, v)−k ≤

n
∑

d=1
dk−1 · d−k = O(logn)

⇒ Pr[u → v] = Ω

(

1
d(u,v)k·logn

)

.

Claim: Pr
[

s friends with u within d(s,t)
2 of t

]

= Ω
(

1
logn

)

.

After logn halvings, done!

Proof of claim: d = d(s, t)
Number of people within distance d/2 of t is Θ(dk).

Distance from s to any of them is ≤ 3d/2.

Probability of s linking to one of them is Ω(d−k/ logn).

Probability of s linking to any one of them is Ω(1/ logn).
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Going off the Grid

Even for geography,

the uniform grid is

a poor model of

real populations.

Hierarchical models of proximity.

[Kleinberg 2001] [Watts Dodds Newman 2002] ...

An arbitrary metric space of points ...

[Slivkins 2005] [Duchon Hanusse Lebhar Schabanel 2005]

[Fraigniaud Lebhar Lotker 2006] ...

... with arbitrary population distributions.

[DLN Novak Kumar Raghavan Tomkins 2005]

[Kumar DLN Tomkins 2006] ...
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Coastal Distances and Friendships
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Link probability versus distance.

Restricted to the two coasts (CA to WA; VA to ME).

Lines: P (d) ∝ d−1.00 and P (d) ∝ d−0.50.
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Why does distance fail?

500 m
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500 m

Population density varies widely across the US!

and : best friends in Minnesota, strangers in Manhattan.
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Rank-Based Friendship

How do we handle non-uniformly distributed populations?

Instead of distance, use rank as fundamental quantity.

rankA(B) := |{C : d(A, C) < d(A, B)}|

How many people live closer to A than B does?

Rank-Based Friendship : Pr[A is a friend of B] ∝ 1/rankA(B).

Probability of friendship ∝ 1/(number of closer candidates)

30
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Relating Rank and Distance

Rank-Based Friendship: Pr[A is a friend of B] ∝ 1/rankA(B).

Kleinberg (k-dim grid): Pr[A is a friend of B] ∝ 1/d(A, B)k.

Uniform k-dimensional grid:

For a uniform grid, rank-based friendship

has (essentially) same link probabilities as Kleinberg.
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Rank-Based Friendship: Pr[A is a friend of B] ∝ 1/rankA(B).

Kleinberg (k-dim grid): Pr[A is a friend of B] ∝ 1/d(A, B)k.

Uniform k-dimensional grid:

radius-d ball volume ≈ dk

1/rank ≈ 1/dk

For a uniform grid, rank-based friendship
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Population Networks

A rank-based population network consists of:

a k-dimensional grid L of locations.

a population P of people, living at points in L (n := |P |).

a set E ⊆ P × P of friendships:

one edge from each person in each ‘direction’
one edge from each person, chosen by rank-based friendship

e.g.,

locations rounded

to the nearest

integral point in

longitude/latitude.
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Short Paths and Rank-Based Friendships

[Kumar DLN Tomkins 2006]

Theorem: For any n-person rank-based population network

in a k-dimensional grid, k = Θ(1), for any source s ∈ P

and for a randomly chosen target t ∈ P ,

the expected length (over t) of Greedy(s, loc(t)) is O(log3 n).

High-level proof idea:

Intuition: difficulty of halving distance to isolated target t

is canceled by low probability of choosing t.

Fix t; let βt := min{Pr[u is ‘halvingt’] : u found by Greedy}.

Claim: Et[1/βt] = O(log2 n).

Then total path length is O(log3 n).
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Is this just like all the other proofs?

Typical proof of navigability:

Claim: Pr
[

s friends with u within d(s,t)
2 of t

]

= Ω
(

1
polylog

)

.

After logn halvings, done!

s t s t

Claim is false if {u : d(u, t) < d(s,t)
2 } ≪ {u : d(u, t) < d(s, t)}!

Our proof:

Claim′: Pr
[

s friends with u within d(s,t)
2 of t

]

= Ω
(

1
polylog

)

for a randomly chosen target t.

After logn halvings, done!

34



Is this just like all the other proofs?

Typical proof of navigability:

Claim: Pr
[

s friends with u within d(s,t)
2 of t

]

= Ω
(

1
polylog

)

.

After logn halvings, done!

s t s t

Claim is false if {u : d(u, t) < d(s,t)
2 } ≪ {u : d(u, t) < d(s, t)}!

Our proof:

Claim′: Pr
[

s friends with u within d(s,t)
2 of t

]

= Ω
(

1
polylog

)

for a randomly chosen target t.

After logn halvings, done!

34



Is this just like all the other proofs?

Typical proof of navigability:

Claim: Pr
[

s friends with u within d(s,t)
2 of t

]

= Ω
(

1
polylog

)

.

After logn halvings, done!

s t s t

Claim is false if {u : d(u, t) < d(s,t)
2 } ≪ {u : d(u, t) < d(s, t)}!

Our proof:

Claim′: Pr
[

s friends with u within d(s,t)
2 of t

]

= Ω
(

1
polylog

)

for a randomly chosen target t.

After logn halvings, done!

34



Short Paths and Rank-Based Friendships

[Kumar DLN Tomkins 2006]

Theorem: For any n-person rank-based population network

in a k-dimensional grid, k = Θ(1), for any source s ∈ P

and for a randomly chosen target t ∈ P ,

the expected length (over t) of Greedy(s, loc(t)) is O(log3 n).

High-level proof idea:

Intuition: difficulty of halving distance to isolated target t

is canceled by low probability of choosing t.

Fix t; let βt := min{Pr[u is ‘halvingt’] : u found by Greedy}.

Claim: Et[1/βt] = O(log2 n).

Then total path length is O(log3 n).

35



Routing Choices

In real life, many ways to choose a next step when searching!

Geography: greedily route based on distance to t.

Occupation: ≈ greedily route based on distance

in the (implicit) hierarchy of occupations.

Age, hobbies, alma mater, ...

Popularity: choose people with high outdegree.

[Kim Yoon Han Jeong 2002]

[Adamic Lukose Puniyani Huberman 2001]

What does ’closest’ mean in real life?

How do you weight various ‘proximities’?

minimum over all proximities? [Dodds Watts Newman 2002]

a more complicated combination?
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Expected-Value Navigation

[Şimşek Jensen 2005]

Obviously ‘should’ choose as next step in chain

u ∈ Friends minimizing E[length of u → t path]

= u ∈ Friends minimizing
∑

i

i · Pr[∃u → t path of length i]

≈ u ∈ Friends maximizing Pr[∃u → t path of length 1]

= u ∈ Friends minimizing (1 − Pr[one link from u goes to t])degree(u)

Combines (one) proximity

with a high-degree seeking

strategy for search.

(What about > 1?)
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Obviously ‘should’ choose as next step in chain

u ∈ Friends minimizing E[length of u → t path]
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Part II:

The Information Content

of Social Networks∗

∗ the biased DLN-centric perspective continues.
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Two Social Networks

One Fortune 500 executives; one terrorist network.

[Krebs 2002]
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Milgram: Some Doubts

“6 degrees of separation between any 2 people!”

“the social network’s diameter is 6.”

Some reasons for skepticism: [Kleinfeld 2002]

only n = 96 chains ... and only 18 completed!

socially prominent target (and socially ‘active’ sources?)

subsequent experiments:

poor black target person significantly harder to reach.

little data on why failed chains failed

(maybe they got badly stuck and people gave up?)
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Email-based Small-World Experiment

A recent email-based retrial. [Dodds Muhamad Watts 2003]

18 targets, 24K message chains, 61K participants.

Success rate: 1.59% (384/24K chains).

Attrition rate ≈ 2/3 ⇒ (1/3)4 = 1.2% of chains survive 4 steps.
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Failure is not not an Option!

In small-world experiments,

most chains fail!

What do we conclude?

It’s a big world after all? (But it isn’t.)

It’s a bit messier than I’ve admitted so far. (It is.)

some friendships form because of geographic proximity.

some form because of occupational proximity.

but some form because you sit next to someone
interesting on a flight to YYC.

some ‘systematic’ friendships, some ‘random.’

how much of each?
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Distance versus link probability
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Geographic/Nongeographic Friendships

[DLN Novak Kumar Raghavan Tomkins 2005]
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good estimate of friendship probability:

or Pr[u → v] ≈ ε + f(d(u, v)) for ε ≈ 5.0 × 10−6.

‘ε friends’ (nongeographic) ‘f(d) friends’ (geographic).

LJ: E[number of u’s “ε” friends] = ε · 500,000 ≈ 2.5.

LJ: average degree ≈ 8.

∼5.5/8 ≈ 66% of LJ friendships are “geographic,” 33% are not.
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Evolution of Social Networks

Implicitly, this is a model of the evolution of social networks.

I decide to make a new friend u. How do I pick u?

I choose u according to (rank-based) geography.

With probability 1/3, I choose u uniformly at random.

With probability 2/3, I choose u according to (rank-based) geography.

OR: I choose u according to occupational proximity.

OR: I choose a u with whom I share a mutual friend.

OR: I choose u by preferential attachment (Pr[u] ∝ degree(u)).

What’s a principled way to evaluate these models?
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Evolution through Common Friends

If you and I both know Will Shortz,

then maybe he’ll introduce us to each other.

“closing a triangle”

A (direct) explanation for high clustering coefficients.
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Statistics on Triangle Closing

By what factor does Pr[friendship] increase if ∃ common friends?
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Collaboration network among physicists. [Newman 2001]
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Evolution of Social Networks
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Networks of Swedish Sexual Contacts

[Liljeros et al 2001]
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Preferential Attachment

Power-law degree distribution.

proportion of people with ≥ k friends proportional to k−α.

α ∈ [2,2.5] is a reasonably good model for social networks.

(Or is it? [Mitzenmacher 2001] esp. Mandelbrot vs. Simon)

A model generating power-law networks:

Pr[u befriends x] ∝ (number of friends that x already has)

“preferential attachment” [Barabasi Albert 1999]
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Statistics on Preferential Attachment

Do the rich really get richer?

Collaboration network in biology/medicine. [Newman 2001]
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Evolution of Social Networks

Implicitly, this is a model of the evolution of social networks.

I decide to make a new friend u. How do I pick u?
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The Link-Prediction Problem

[DLN Kleinberg 2003]

The link-prediction problem:

predict the next edges that will appear in the social network.

You are given a social network.

What’s the next friendship

that will occur?
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The Link-Prediction Problem Formalized

The Link-Prediction Problem:

Given: all social network edges during training interval.

Output: predictions of all new interacting pairs

during subsequent test interval.

How much information does the

network contain about its own future?
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Link Prediction and Network Growth

A principled way to evaluate network growth models.

Many models of the growth of networks.

(preferential attachment, ...)

Typical evaluation:

“does this model produce the correct

power-law degree distribution?”

(or diameter, or clustering coefficient, or ...)

Link prediction:

A network-growth model is good
if it accurately predicts network growth.
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Related Link-Prediction Formulations

Our approach: how does the social network evolve?

(As opposed to inferring hidden links in a static network.)

Our approach: predict new interactions only.

(What new information can we extract?)

Our approach: purely graph-based.

(Why? Interested in information content of network itself!)
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Common-Neighbors Predictor

The more common friends we have,

then the more likely we are to become friends ...

Common Neighbors predictor:

predict pairs with largest number of common neighbors.
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Preferential-Attachment Predictor

The more friends I have,

then the more likely I am to make new friends ...

Preferential Attachment predictor:

predict pairs x and y with largest degree(x) · degree(y).
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Adamic/Adar Predictor

The more (un?)popular common friends we have,

then the more likely we are to become friends ...

“rare features are more telling”

scorex,y :=
∑

z∈CN(x,y)
1

log degree(z)

CN(x, y) = common neighbors of x, y.

[Adamic Adar 2003]

for measuring “relatedness”
of personal home pages.

Adamic/Adar (frequency-weighted common neighbors):

predict pairs with largest score.
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Katz Predictor

If there are many short chains of friends connecting us,

then we are more likely to become friends.

scorex,y :=
∞
∑

ℓ=1
βℓ · (number of x ↔ y paths of length ℓ)

(for a parameter β > 0.)

Originally measured “social standing” in a network [Katz 1953]:

standing(x) =
∑

y
scorex,y.

Katz predictor:

predict new edges between nodes with largest score.
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Link-Prediction Experiments

For our experiments, we use collaboration networks:

moderately large-scale, time-resolved, ≈social network.

x, y linked ⇐⇒ x, y coauthor an academic paper

5 subfields of physics, from www.arxiv.org.

Measure each predictor using performance versus random:

“How much better is this predictor than randomly
guessing new edges?”

“How much information did we extract
from the network?”
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Results on cond-mat

Improvement over random
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Results on the arXiv

Versus random
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Small-World Problem

Social networks form a “small world.”

normally seen as crucial for scientific progress.

cross-disciplinary research.

quick dissemination of new ideas.

here: a major problem!

short (but tenuous) paths between

people who are “really” far apart.

graph-distance predictor beats random ...
... but it is not especially good!
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Small-World Problem: Erdős Numbers

Your Erdős number: graph distance from you to Paul Erdős.

Paul Erdős JMK Jean Piaget

Erdős Number 0 Erdős Number 3 Erdős Number 3

good predictors:

proximity measures robust to spurious connections.
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New Edges Forming at Distance 2

Proportion of distance-2 pairs that form an edge:

Proportion of new edges between distance-2 pairs:

Most new edges are at distance 3 or more!
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Results on the arXiv

Versus random
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Social Networks versus Social Networks?

Social networks are not all equal!

astro-ph is ‘unsystematic.’

all predictors do worse than on other datasets.

gr-qc is ‘simplistic.’

low-rank predictors are best at rank= 1.

hep-ph is a ‘popularity contest.’

preferential attachment is uncharacteristically good.

Terrorists versus Fortune 500 executives?

online votes: about 50%/50%.
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Low-Rank Approximations

Observation: the graph is noisy.

Want to remove “tenuous” edges.

Look at the adjacency matrix M for the training interval.

One approach: approximate M by a simpler matrix.

Compute a low-rank approximation Mk to M .
(using Singular Value Decomposition)

Run some predictor on Mk instead.

E.g.: Mi,j big if i, j collaborated ⇒ predict i, j if Mk
i,j is big.
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Implications of Link Prediction?

Low-rank approximation: Matrix Entry Predictor
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Results on the arXiv

Preferential attachment

is quite good on hep-ph!
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Conclusions from Link Prediction

... so what does all of this say?

There a lot of information in social networks!

We can predict new links 25–50× better than random!

Friendship probability decays smoothly as similarity drops.

There’s not a lot of information in social networks!

Best predictors get > 80% of predictions wrong.

Only ∼5–10% of even the most similar people are friends!

One of the most interesting challenges:

What do the differences between these networks really mean?
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Two Social Networks

One Fortune 500 executives; one terrorist network.

[Krebs 2002]
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Social Networks versus Social Networks?

Social networks are not all equal!

astro-ph is ‘unsystematic.’

all predictors do worse than on other datasets.

gr-qc is ‘simplistic.’

low-rank predictors are best at rank= 1.

hep-ph is a ‘popularity contest.’

preferential attachment is uncharacteristically good.

Terrorists versus Fortune 500 executives?

online votes: about 50%/50%.
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Thank you!

David Liben-Nowell

dlibenno@carleton.edu

http://cs.carleton.edu/faculty/dlibenno
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