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Course plan: Ranking (2 hours)

I Feature vectors
I Basics of discriminative and max-margin ranking

I Nodes in a graph
I HITS and Pagerank
I Personalized Pagerank and variations
I Maximum entropy flows
I Learning edge conductance
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Course plan: Labeling (1.5 hours)

I Feature vectors
I Discriminative loss minimization
I Probabilistic and conditional models
I Structured prediction problems

I Nodes in a graph
I Directed Bayesian models, relaxation labeling
I Undirected models, some easy graphs
I Inference using LP and QP relaxations
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Ranking feature vectors

I Suppose x ∈ X are instances and φ : X → Rd a feature
vector generator

I E.g., x may be a document and φ maps x to the “vector
space model” with one axis for each word

I The score of instance x is β′φ(x) where β ∈ Rd is a
weight vector

I For simplicity of notation assume x is already a feature
vector and drop φ

I We wish to learn β from training data ≺: “i ≺ j” means
the score of xi should be less than the score of xj , i.e.,

β′xi ≤ β′xj
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Soft constraints

I In practice, there may be no feasible β satisfying all
preferences ≺

I For constraint i ≺ j , introduce slack variable sij ≥ 0

β′xi ≤ β′xj+sij

I Charge a penalty for using sij > 0

min
sij≥0;β

∑
i≺j

sij subject to

β′xi ≤ β′xj+sij for all i ≺ j
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A max-margin formulation

I Achieve “confident” separation of loser and winner:

β′xi+1 ≤ β′xj + sij

I Problem: Can achieve this by scaling β arbitrarily; must
be prevented by penalizing ‖β‖

min
sij≥0;β

1

2
β′β+B

∑
i≺j

sij subject to

β′xi+1 ≤ β′xj + sij for all i ≺ j

I B is a magic parameter that balances violations against
model strength
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Solving the optimization

I β′xi + 1 ≤ β′xj + sij and sij ≥ 0 together mean
sij = max{0, β′xi − β′xj + 1} (“hinge loss”)

I The optimization can be rewritten without using sij

min
β

1

2
β′β + B

∑
i≺j

max{0, β′xi − β′xj + 1}

I max{0, t} can be approximated by a number of smooth
functions

I et – growth at t > 0 too severe
I log(1 + et) – much better, asymptotes to y = 0 as

t → −∞ and to y = t as t →∞
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Approximating with smooth objective

I Simple unconstrained optimization, can be solved by
Newton method

min
β∈Rd

1

2
β′β + B

∑
i≺j

log(1 + exp(β′xi − β′xj + 1))

I If β′xi − β′xj + 1� 0, i.e., β′xi � β′xj , then pay little
penalty

I If β′xi − β′xj + 1� 0, i.e., β′xi � β′xj , then pay large
penalty
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Ranking nodes in graphs

I Instances no longer feature vectors sampled from some
distribution

I Instances are (also) nodes in a graph

I Instance should score highly if high-scoring instances link
to it

I Two instantiations of this intuition

Hyperlink-induced topic search (HITS): Nodes have two
roles: hubs (fans) and authorities
(celebrities)

Pagerank: Nodes have only one role: endorse other
nodes
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Quick HITS overview

Keyword query
u1

u2 v

a(v) = h(u1) + h(u2) + h(u3)

u3Search

engine

Root set

Expanded set

v1

v2u

h(u) = a(v1) + a(v2) + a(v3)

v3

→
a ← (1, . . . ,1)T, 

→
h ← (1, . . . ,1)T

while 
→
h and 

→
a change "significantly" do

	
→
h ← E

→
a

	  h ← 
→
h1 = Σwh[w]

	 h ← h/ h
	 →

a ← ETh0 = ETE
→
a0

	  a ← 
→
a1 = Σwa[w]

	

→
a ← 

→
a/ a

end while

I Authority flows along cocitation links, e.g., v1 → u → v2

I Note, hub (authority) scores are copied, not divided
among authority (hub) nodes—important distinction from
Pagerank and related approaches
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Detour: Translation models
I Long-standing goal of Information Retrieval: return

documents with words related to query words, without
damaging precision

I Retrieval using language models: score document d wrt a
query q (each interpreted as a set or multiset of words)
by estimating Pr(q|d),

I If qi ranges over query words and w ranges over all words
in the corpus vocabulary, we can write

Pr(q|d) =
∏

i

∑
w

t(qi |w) Pr(w |d)

assuming conditional independence between query words
I t(qi |w) is the probability that a corpus w gets

“translated” into query word qi (e.g., qi = random and
w = probability)
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Word-document random walks I

I Corpus as bipartite graph: word layer, document layer

I Document node d connects to word node w if w appears
in d

I Random walk with absorption:

1. Start the walk at node v initialized to w
2. Repeat the following sub-steps: With probability 1− α

terminate the walk at v , and with the remaining
probability α execute these half-steps:

2.1 From word node v , walk to a random document node d
containing word v

2.2 From document node d walk to a random word node
v ′ ∈ d

Now set v ← v ′ and loop.

I Let there be m words and n documents
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Word-document random walks II

I Starting with the m-node word layer, walking over to the
n-node document layer can be expressed with a m × n
matrix A, where Awd = Pr(d |w)

I Each row of A adds up to 1 by design

I Once we are at the document layer, the transition back to
the word layer can be represented with a n ×m matrix B ,
where Bdw = Pr(w |d)

I Each row of B adds up to 1 by design

I In general B 6= A′

I The overall transition from words back to words is then
represented by the matrix product C = AB , where C is
m ×m

I Rows of C add up to one as well
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Word-document random walks III

I Starting from word w , the probability that the process
stops at word q after k steps is given by

(1− α)αk(C k)wq

where (C k)wq is the (w , q)-entry of the matrix C k

I Summing over all possible non-negative k , we get

t(q|w) = (1− α)(I + αC + · · ·+ αkC k + · · · )wq

= (1− α)(I− αC )−1
wq

HW

I For 0 < α < 1, because rows of C add up to 1,
(I− αC )−1 will always exist

I Parameter α ∈ (0, 1) controls the amount of diffusion
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Word-document random walks IV

w = ebolavirus, Web corpus: virus, ebola, hoax, viruses,
outbreak, fever, disease, haemorrhagic, gabon,
infected, aids, security, monkeys, hiv, zaire

w = starwars, Web corpus: star, wars, rpg, trek, starwars,
movie, episode, movies, war, character, tv, film,
fan, reviews, jedi

w = starwars, TREC corpus: star, wars, soviet, weapons,
photo, army, armed, film, show, nations,
strategic, tv, sunday, bush, series

I Starting at given w , top-scoring qs make eminent sense

I Depends on corpus, naturally
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HITS-SVD connection I

I Let A ∈ {0, 1}m×n be a boolean matrix where Aij is 1 if
and only if word i (1 ≤ i ≤ m) occurs in document j
(1 ≤ j ≤ n)

I This time let B = A′

I Do not bother with walk absorption and the parameter α

I Start from a mix of all words instead of one word, i.e.,
initialize x = 1/m

I After transition to documents the weight vector over
documents is xA

I After transition back to words the weight vector over
words is xAA′

I x , xAA′, x(AA′)A, x(AA′)(AA′), x(AA′)2A, . . .
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HITS-SVD connection II
I Power iterations, converging to dominant eigenvector of

C = AA′; C is a symmetric m ×m matrix

I C has m eigenvectors; stack them vertically to get
U = u·1, u·2, . . . , u·m

I C satisfies U ′C = ΛU ′, where Λ is a diagonal matrix with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0

I Meanwhile suppose the SVD of A is
Am×n = Um×mΣm×nV

′
n×n where U ′U = Im×m and

V ′V = In×n

I Σ = diag(σ1, . . . , σm) of singular values, with
σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · ·σm = 0, for some
0 < r ≤ m

I C = AA′ = UΣV ′VΣU ′ = UΣIΣU ′ = UΣ2U ′,
∴ CU = UΣ2, or U ′C = Σ2U ′
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Topology sensitivity and winner takes all
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I In (a, upper graph), a2 ← 2a2 + a4 and a4 ← a2 + a4 HW

I In (a, lower graph), a2 ← 2a2 + a4, a4 ← a4, and
a5 ← a2 + a5 HW

I In (b), after k steps, asmall = 22i−1 and alarge = 32i−1 —
ratio is alarge/asmall = (3/2)2i−1 HW
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HITS score stability I

I E is the node adjacency matrix

I Authority vector a is dominant eigenvector of S = E ′E

I Perturb S to S̃ , get ã in place of a

I Can S and S̃ be close yet a and ã far apart?

I Let λ1 > λ2 be the two largest eigenvalues of S

I Let δ = λ1 − λ2 > 0

I S has a factorization

S = U

λ1 0 0
0 λ2 0
0 0 Λ

 U ′,

Each column of U an eigenvector of S having unit L2

norm; Λ is a diagonal matrix of remaining eigenvalues
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HITS score stability II
I Now we define

S̃ = S + 2δU·2U
′
·2 = U

λ1 0 0
0 λ2 + 2δ 0
0 0 Λ

 U ′.

Because ‖U·2‖2 = 1, the L2 norm of the perturbation,
‖S̃ − S‖2, is 2δ.

I Given S̃ instead of S , how will λ1 and λ2 change to λ̃1

and λ̃2?
I By construction λ̃1 = λ1 while

λ̃2 = λ2 + 2δ > λ2 + δ = λ1 = λ̃1

I Therefore, λ̃1 and λ̃2 have switched roles and λ̃2 is now
the largest eigenvalue

I Old a = U·1; new ã = U·2
I ‖a − ã‖2 = ‖U·1 − U·2‖ =

√
2
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HITS rank stability, adversarial
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I Number of edges changed is O(1)

I Ω(n2) node pairs swapped in authority order HW
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HITS rank stability in practice
1 Genetic algorithms in search optimization Goldberg 1 3 1 1 1
2 Adaptation in natural and artificial systems Holland 2 5 3 3 2
3 Genetic programming: On the programming of. . . Koza 3 12 6 6 3
4 Analysis of the behavior of a class of genetic. . . De Jong 4 52 20 23 4
5 Uniform crossover in genetic algorithms Syswerda 5 171 119 99 5
6 Artificial intelligence through simulated. . . Fogel 6 135 56 40 8
7 A survey of evolution strategies Back+ 10 179 159 100 7
8 Optimization of control parameters for genetic. . . Grefenstette 8 316 141 170 6
9 The GENITOR algorithm and selection pressure Whitley 9 257 107 72 9

10 Genetic algorithms + Data Structures = . . . Michalewicz 13 170 80 69 18
11 Genetic programming II: Automatic discovey. . . Koza 7 - - - 10

2060 Learning internal representations by error. . . Rumelhart+ - 1 2 2 -
2061 Learning to predict by the method of temporal. . . Sutton - 9 4 5 -
2063 Some studies in machine learning using checkers Samuel - - 10 10 -
2065 Neuronlike elements that can solve difficult. . . Barto+Sutton - - 8 - -
2066 Practical issues in TD learning Tesauro - - 9 9 -
2071 Pattern classification and scene analysis Duda+Hart - 4 7 7 -
2075 Classification and regression trees Breiman+ - 2 5 4 -
2117 UCI repository of machine learning databases Murphy+Aha - 7 - 8 -
2174 Irrelevant features and the subset selection. . . John+ - 8 - - -
2184 The CN2 induction algorithm Clark+Niblett - 6 - - -
2222 Probabilistic reasoning in intelligent systems Pearl - 10 - - -

I Random erasure of 30% of the nodes

I Fairly serious instability

I Is random erasure the right model?
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Pagerank

. . . we are involved in an “infinite regress”: [an
actor’s status] is a function of the status of those
who choose him; and their [status] is a function of
those who choose them, and so ad infinitum.

Seeley, 1949

I Random surfer roams around graph G = (V ,E )

I Probability of walking from node i to j is Pr(j |i) = C (j , i)

I C is a |V | × |V | nonnegative matrix; each column sums
to 1 (what about dead-end nodes?)

I Steady-state probability of visiting node i is its prestige
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Ways to handle dead-end nodes

Amputation: Remove dead-ends, may cause other nodes to
become dead-ends, keep removing

I How to assign scores to the removed nodes?

Self-loop: Each dead-end node i links to itself

I Still trapped at i ; need to escape/restart

Sink node: Dead-end nodes link to a sink node, which links
to itself

I Reasonable, but probability of visiting sink
node means nothing

Makes significant difference to node ranks (scilab demo)
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Steady state probabilities

Long after the walk gets under way, at any time step, the
probability that the random surfer is at a given node

Need two conditions for well-defined steady-state probabilities
of being in each state/node

I E must be irreducible: should be able to reach any v
starting from any u

I E must be aperiodic: There must exist some `0 such that
for every ` ≥ `0, G contains a cycle of length `
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Teleport

I Simple way to satisfy these conditions: all-to-all
transitions

C̃ = αC + (1− α)
1

|V |
1|V |×|V |

1|V |×|V | is a matrix filled with 1s; C̃ also has columns
summing to 1

I Random surfer walks with probability α, jumps with
probability 1− α

I What is the “right” value of α?

I Is α a device to make E irreducible and aperiodic, or does
it serve other purposes?
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Solving the recurrence

I Solve p = αCp + (1− α)1|V |×1 for steady-state visit
probability p ∈ R|V |×1, with pi ≥ 0, ‖p‖1 =

∑
i pi = 1

I Consider

Ĉ =

[
αC|V |×|V |

1|V |×1

|V |
(1− α)11×|V | 0

]
I Dummy node d outside V

I Transition from every node v ∈ V to d

I And a transition from d back to every node v ∈ V

I Recurrence can now be written as p̂ = Ĉ p̂

I What is the relation between p and p̂? HW
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Pagerank score stability

I V kept fixed

I Nodes in P ⊂ V get incident links changed in any way
(additions and deletions)

I Thus G perturbed to G̃

I Let the random surfer visit (random) node sequence
X0,X1, . . . in G , and Y0,Y1, . . . in G̃

I Coupling argument: instead of two random walks, we will
design one joint walk on (Xi ,Yi) such that the marginals
apply to G and G̃
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Coupled random walks on G and G̃

I Pick X0 = Y0 ∼ Multi(r)

I At any step t, with probability 1− α, reset both chains to
a common node using teleport r : Xt = Yt ∈r V

I With the remaining probability of α

I If xt−1 = yt−1 = u, say, and u remained unperturbed
from G to G̃ , then pick one out-neighbor v of u
uniformly at random from all out-neighbors of u, and set
Xt = Yt = v .

I Otherwise, i.e., if xt−1 6= yt−1 or xt−1 was perturbed
from G to G̃ , pick out-neighbors Xt and Yt

independently for the two walks.
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Analysis of coupled walks I

Let δt = Pr(Xt 6= Yt); by design, δ0 = 0.

δt+1 = Pr(reset at t + 1) Pr(Xt+1 6= Yt+1|reset at t + 1)+

Pr(no reset at t + 1) Pr(Xt+1 6= Yt+1|no reset at t + 1)

= Pr(reset at t + 1) 0 + α Pr(Xt 6= Yt |no reset at t + 1)

= α
(
Pr(Xt+1 6= Yt+1,Xt 6= Yt |no reset at t + 1)+

Pr(Xt+1 6= Yt+1,Xt = Yt |no reset at t + 1)
)

The event Xt+1 6= Yt+1,Xt = Yt can happen only if Xt ∈ P .
Therefore we can continue the above derivation as follows:
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Analysis of coupled walks II

δt+1 = . . .

≤ α
(
Pr(Xt 6= Yt |no reset at t + 1)+

Pr(Xt+1 6= Yt+1,Xt = Yt ,Xt ∈ P|no reset at t + 1)
)

= α
(
Pr(Xt 6= Yt)+

Pr(Xt+1 6= Yt+1,Xt = Yt ,Xt ∈ P|no reset at t + 1)
)

≤ α
(
Pr(Xt 6= Yt) + Pr(Xt ∈ P)

)
= α

(
δt +

∑
u∈P pu

)
,

(using Pr(H , J |K ) ≤ Pr(H |K ), and that events at time t are
independent of a potential reset at time t + 1)
Unrolling the recursion,
δ∞ = limt→∞ δt ≤

(∑
u∈P pu

)
/(1− α) HW
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Analysis of coupled walks III

I Standard result: If the probability of a state disagreement
between the two walks is bounded, then their Pagerank
vectors must also have small L1 distance to each other. In
particular,

‖p − p̃‖1 ≤
2
∑

u∈P pu

1− α

I Lower the value of α, the more the random surfer
teleports and more stable is the system

I Gives no direct guidance why α should not be set to
exactly zero! (WAW talk)
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Pagerank rank stability: adversarial

xa y xb

ha hb

a1 ana2 b1 bnb2

d

… …

I G formed by connecting y to xa, G̃ by connecting y to xb

I Ω(n2) node pairs flip Pagerank order HW

I I.e., L1 score stability does not guarantee rank stability

I Can “natural” social networks lead often to such
tie-breaking?
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Pagerank rank stability: In practice

1 Genetic Algorithms in Search, Optimization and. . . Goldberg 1 1 1 1 1
2 Learning internal representations by error. . . Rumelhart+ 2 2 2 2 2
3 Adaptation in Natural and Artificial Systems Holland 3 5 6 4 5
4 Classification and Regression Trees Breiman+ 4 3 5 5 4
5 Probabilistic Reasoning in Intelligent Systems Pearl 5 6 3 6 3
6 Genetic Programming: On the Programming of. . . Koza 6 4 4 3 6
7 Learning to Predict by the Methods of Temporal. . . Sutton 7 7 7 7 7
8 Pattern classification and scene analysis Duda+Hart 8 8 8 8 9
9 Maximum likelihood from incomplete data via. . . Dempster+ 10 9 9 11 8

10 UCI repository of machine learning databases Murphy+Aha 9 11 10 9 10
11 Parallel Distributed Processing Rumelhart+ - - - 10 -
12 Introduction to the Theory of Neural Computation Hertz+ - 10 - - -

I Quite stable, nowhere near adversarial

I Random 30% erasure hits many unpopular nodes,∑
u∈P pu small

I Is random erasure a good assumption?
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Other nonstandard path decay functions
I Standard Pagerank can be written as

p(α) = (1− α)
∑
t≥0

αtrP t = (1− α)(I− αP)−1 1

|V |

where P is the row-normalized node adjacency matrix
I For path π = (x1, . . . , xk), let

branching(π) =
1

d1 d2 · · · dk−1

I Equivalent Pagerank expression is

pi(α) =
∑

π∈path(·,i)

(1− α)α|π| branching(π)/|V |

I Can generalize to

pi =
∑

π∈path(·,i)

damping(|π|) branching(π)/|V |

I Important application: fighting link spam 35 / 77



Probabilistic HITS variants

In the analysis thus far, Pagerank’s stability over HITS seems
to come from two features:

I Pagerank divides among out-neighbors; hub score copies
(which is why in HITS continual rescaling is needed)

I Pagerank uses teleport; HITS does not

Consider this authority-to-authority transition, starting at u

I Walk back to an in-neighbor of u, say w , chosen
uniformly at random from all in-neighbors of v

I From w walk forward to an out-neighbor of w , chosen
uniformly at random from all out-neighbors of w

No teleport yet, but dividing rather than copying
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SALSA

I Combining the two half-steps, transition probability from
authority v to authority w is

Pr(w |v) =
1

InDegree(v)

∑
(u,v),(u,w)∈E

1

OutDegree(u)

I Suppose all pairs of authority nodes are connected to
each other through alternating hub-authority paths

I Then πv ∝ InDegree(v) is a fixpoint of the
authority-to-authority transition process HW

I Overkill? Prevents any cocitation-based reinforcement!
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HITS with teleport I

I Let the given graph be G = (V ,E ). Remove any isolated
nodes from G where no edge is incident.

I From G construct a bipartite graph G2 = (L,R ,E2), with
L = R = V and for each (u, v) ∈ E connect the node
corresponding to u in L to the node corresponding to v in
R . By construction every node in L has some outlink and
every node in R has some inlink.

I Write down the (2|V |)× (2|V |) node adjacency matrix
for G2.

I Write down the row-normalized node-adjacency matrix,
which we will call E row

2 . Each row corresponding node
u ∈ L will add up to 1, and the rows for v ∈ R will be all
zeros.
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HITS with teleport II

I Write down the column-normalized node-adjacency
matrix, which we will call E

′col
2 . Each row corresponding

to node v ∈ R will add up to 1, and the rows for u ∈ L
will be all zeros.

I Initialize an authority vector a(0) to be nonzero only for
v ∈ R , with value 1/|R |, and zero for all u ∈ L. Let 1h

represent the uniform teleport vector distributed only over
nodes in L, and 1a represent the uniform teleport vector
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HITS with teleport III

distributed only over nodes in R . Compute the following
iteratively:

h(1) = αa(0)E
′col
2 + (1− α)1h

a(1) = αh(1)E row
2 + (1− α)1a

. . . . . .

h(k) = αa(k−1)E
′col
2 + (1− α)1h

a(k) = αh(k)E row
2 + (1− α)1a

etc. until convergence
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HITS with teleport: Experience

1 Learning internal representations by error. . . Rumelhart+ 1 3 3 2 1
2 Probabilistic Reasoning in Intelligent Systems Pearl 4 1 1 1 2
3 Classification and Regression Trees Breiman+ 2 2 2 3 4
4 Pattern classification and scene analysis Duda+Hart 3 4 4 4 3
5 Maximum likelihood from incomplete data via. . . Dempster+ 5 6 6 6 5
6 A robust layered control system for a mobile robot Brook+ 6 5 5 5 6
7 Numerical Recipes in C Press+al 7 7 7 7 7
8 Learning to Predict by the Method of Temporal. . . Sutton 8 8 8 8 8
9 STRIPS: A New Approach to . . . Theorem Proving Fikes+ 9 10 10 10 15

10 Introduction To The Theory Of Neural Computation Hertz+ 11 11 9 9 9
11 Stochastic relaxation, gibbs distributions, . . . Geman+ 10 9 - - -
12 Introduction to Algorithms Cormen+ - - - - 10

I Clearly much more rank-stable than HITS

I Is α all there is to stability?

I How to set α taking both content and links into account?
(WAW talk)
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Personalized Pagerank

I Recall we were solving p = αCp + (1− α)
1|V |×1

|V |

I Can replace
1|V |×1

|V | with arbitrary teleport vector r , ri ≥ 0,∑
i ri = 1, examples:
I ri > 0 for pages i that you have bookmarked, 0 for other

pages
I ri > 0 for pages about topic “Java programming”, 0 for

other pages

I Extreme case of r : ri = 1 for some specific node, 0 for all
others — r called xi in that case (“basis vector”)

I p is a function of r (and C ) — write as pr
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Topic-sensitive Pagerank

I Details of how query is “projected” to topic space

I Clear improvement in precision
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Page staleness
“A page is stale if it is inaccessible, or if it links to many stale
pages”—to find how stale a page u is,

1: v ← u
2: for ever do
3: if page v is inaccessible then
4: return s(u) = 1
5: toss a coin with head probability σ
6: if head then
7: return s(u) = 0 {with probability σ}
8: else
9: choose w : (v ,w) ∈ E with probability ∝ C (w , v)

10: v ← w

s(u) =

{
1, u ∈ D

(1− σ)
∑

v C (v , u) s(v), otherwise
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Page staleness: Experience

Staleness of a page is generally larger than the fraction of
dead links on the page would have you believe
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Biased walk for keyword search in graphs

I Teleport to query word
nodes (3)

I Also teleport to entity
nodes (4)

I Competition between
relevance to query and
query-independent
prestige

I Each edge e has type t(e)
and weight β(t(e))
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Effect of tuning edge weights

transaction serializability, β(d → word)/β(d → entity) = 1 #cites
Graph based algorithms for boolean function manipulation 506
Scheduling algorithms for multiprogramming in a hard real time environment 413
A method for obtaining digital signatures and public key cryptosystems 312
Rewrite systems 265
Tcl and the Tk toolkit 242
transaction serializability, β(d → word)/β(d → entity) = 106 #cites
On serializability of multidatabase transactions through forced local conflicts 38
Autonomous transaction execution with epsilon serializability 6
The serializability of concurrent database updates 104
Serializability a correctness criterion for global concurrency control in interbase 41
Using tickets to enforce the serializability of multidatabase transactions 12

I For small β(d → word), query is essentially ignored

I Larger β(d → word) gives better balance between
query-independent prestige and query-dependent match

I Can learn β(t)s up to a scale factor from ≺ (WAW talk)
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Personalization: Two key properties

I Cannot pre-compute pr for all possible r

I Can we assemble Pageranks for an arbitrary r from
Pageranks computed using “basis vectors”?

Linearity: If pr1 is a solution to p = αCp + (1− α)r1 and pr2

is a solution to p = αCp + (1− α)r2, then
p = λp1 + (1− λ)p2 is a solution to
p = αCp + (1− α)(λr1 + (1− λ)r2), where
0 ≤ λ ≤ 1

Decomposition: If pxu is the Pagerank vector for r = xu and u
has outlinks to neighbors v , then

pxu =
∑

(u,v)∈E

αC (v , u)pxv + (1− α)xu HW
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Learning r from ≺
I Recall p = αCp + (1− α)r , i.e., (I− αC )p = (1− α)r ,

or p = (1− α)(I− αC )−1r = Mr , say

I ≺ can be encoded as matrix Π ∈ {−1, 0, 1}|≺|×|V | and
written as Πp ≥ 0|≺|×1 (each row expresses one pair
preference)

I “Parsimonious teleport” is uniform r0 = 1|V |×1/|V |; that
gives us standard Pagerank vector p0 = Mr0

I Want to deviate from p0 as little as possible while
satisfying ≺

min
r∈R|V |

(Mr − p0)
′(Mr − p0) subject to

ΠMr ≥ 0, r ≥ 0, 1
′r = 1

(quadratic objective with linear inequalities)
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Pagerank as network flow
I Extend from learning r to learning “flow” of Pagerank on

each edge puv = puC (v , u) = pu Pr(v |u)

I A valid flow satisfies∑
(u,v)∈E ′

puv = 1 (Total)

∀v ∈ V ′
∑

(u,v)∈E ′

puv =
∑

(v ,w)∈E ′

pvw (Balance)

For all v ∈ Vo ⊆ V having at least one outlink

(1− α)
∑

(v ,w)∈E

pvw = αpvs (Teleport)

I Pagerank satisfies these constraints, but so do many
other flows
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Maximum entropy flow
I Any principle to prefer one flow over another? Maximize

entropy
∑

(u,v)∈E ′ −puv log puv

I Or, stay close to a reference flow q by minp KL(p‖q)
I The flows puv look like (β and τ unconstrained) HW

∀v ∈ V pdv = (1/Z ) qdv exp(βv − βd)

∀v ∈ Vo pvd = (1/Z ) qvd exp(βd − βv + ατv)

∀v ∈ V \ Vo pvd = (1/Z ) qvd exp(βd − βv)

∀(u, v) ∈ E puv = (1/Z ) quv exp(βv − βu − (1− α)τu)

I Dual objective is maxβ,τ − log Z , with Z =
∑

(u,v)∈E ′ puv

I Can now add constraints like (WAW talk)

∀u ≺ v :
∑

(w ,u)∈E ′

pwu −
∑

(w ,v)∈E ′

pwv ≤ 0 (Preference)
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Labeling feature vectors and graph nodes
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Labeling feature vectors

Training data: (xi , yi), i = 1, . . . , n, xi ∈ X (often Rd)
yi ∈ Y = {−1,+1}

Single test instance: Given x not seen before, want to
predict Y

Batch of test instances: Given many xs in a batch, predict Y
for each x

Transductive learning: Given training and test batch together

Predictor: A parameterized function f : X → Y ; parameters
learnt from training data

Loss: For instance (x , y), 1 if f (x) 6= y , 0 otherwise

Training loss:
∑n

i=1[[yi 6= f (xi)]]
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Supervised learning approaches

Discriminative learning: Directly minimize (regularized)
training loss

Joint probabilistic learning: Build a model for Pr(x , y), use
Bayes rule to get Pr(Y = y |x)

Conditional probabilistic learning: Directly build a model for
Pr(Y = y |x)
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Linear parameterization of f

I Let f (x) = xβ, where x ∈ R1×d and β ∈ Rd×1

I Training loss
∑n

i=1[[yi 6= f (xi)]] =
∑n

i=1[[yixiβ < 0]]

I As in ranking, we may insist on more than yixiβ ≥ 0; say
we want yixiβ ≥ 1

I Training loss is
∑n

i=1[[yixiβ < 1]] =
∑

i step(1− yixiβ)

step(z) =

{
0, z ≤ 0

1, z > 0

I Step function has two problems wrt optimization of β
I It is not differentiable everywhere
I It is not convex

I Design surrogates for training loss so that we can search
for β
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Hinge loss

I max{0, 1− yixiβ} is an upper bound on training loss

min
β,s

1

2
β′β +

B

n

∑
i

si subject to

∀i si ≥ 1− yixiβ, si ≥ 0

I Standard soft-margin primal SVM; dual is HW

min
α∈Rn

1

2
α′X ′Y ′YXα− 1

′α

subject to ∀i : 0 ≤ αi ≤ B and y ′α = 0

Here y = (y1, . . . , yn)
′ and Y = diag(y).
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Soft hinge loss
I “Soft hinge loss” ln(1 + exp(1− yixiβ)) is a reasonable

approximation for max{0, 1− yixiβ}
I (Primal) optimization becomes

min
β

1

2
β′β +

B

n

∑
i

ln(1 + exp(1− yixiβ))

I Compare with logistic regression with a Gaussian prior:

max
β

∑
i

log Pr(yi |xi)−
λ

2
β′β

= min
β

∑
i

− log Pr(yi |xi) +
λ

2
β′β

= min
β

∑
i

ln(1 + exp(−yxiβ)) +
λ

2
β′β
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Classification for large Y
Collective labeling of a large number of instances, whose labels
cannot be assumed to be independent, e.g.,

I Assigning multiple topics from a topic tree/dag to a
document

I Assigning parts of speech (pos) to a sequence of tokens in
a sentence

I Matching tokens across an English and a Hindi sentence
that say the same thing

A generic device: include x and y into a feature generator
ψ : X × Y → Rd

I Given x , prediction is arg maxy∈Y β
′ψ(x , y)

I In training set, want β′ψ(xi , yi) to beat β′ψ(xi , y) for all
y 6= yi
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Large Y example: Markov chain
I For simplicity assume all sequences of length exactly T ;

x , y now sequences of length T

I Labels Σ (noun, verb, preposition, etc.); Y = ΣT , huge

I x t
i (y t

i ) is the tth token (label) of the ith instance

I Suppose there are W word-based features, e.g., hasCap,
hasDigit etc.

I ψ(x , y) =∈ Rd where d = W |Σ|+ |Σ| |Σ|

ψ(x , y) =
T∑

t=1

ψ(y t−1, y t , x , t),

where ψ(y , y ′, x , t) = ( ψ̂(x , y ′)︸ ︷︷ ︸
W |Σ|,emission

, ~ψ(y , y ′)︸ ︷︷ ︸
|Σ| |Σ|,transition

)

I Corresponding model weights β = (β̂, ~β) ∈ Rd
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Max-margin training for large Y
I Given (xi , yi), i = 1, . . . , n, want to find β such that for

each instance i ,

β′ψ(xi , yi) ≥ β′ψ(xi , y) + margin ∀y ∈ Y \ {yi}

I Leads to the following optimization problem:

min
β,s≥0

1

2
β′β +

B

n

∑
i

si subject to

∀i ,∀y 6= yi β′δψi(y) ≥ 1− si
∆(yi , y)

I ∆(yi , y) is severity of mismatch

I δψi(y) is shorthand for ψ(xi , yi)− ψ(xi , y)

I Exponential number of constraints in primal and variables
αiy in dual
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Cutting plane algorithm to optimize dual

I Primal: minx f (x) subject to g(x) ≤ 0

I Dual: maxx ,z z subject to u ≥ 0, z ≤ f (x) + u′g(x) ∀x
I Approximate finite dual: max z s.t. z ≤ f (xj) + u′g(xj)

for j = 1, . . . , k − 1, u ≥ 0
I “Master program”: for k = 1, 2, . . .

I Let (zk , uk) be current solution
I Solve minx f (x) + u′kg(x) to get xk

I If zk ≤ f (xk) + u′kg(xk) + ε terminate
I Add constraint z ≤ f (xk) + u′g(xk) to approximate dual

I Dual max objective is non-decreasing with k

I Strictly increasing if ε > 0
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SVM training for structured prediction

1: Si = ∅ for i = 1, . . . , n
2: repeat
3: for i = 1, . . . , n do
4: current β =

∑
j

∑
y ′∈Sj

αjy ′δψj(y
′) (Representer

Theorem)
5: we want β′δψi(y) ≥ 1− si/∆(yi , y) or

si ≥ ∆(yi , y)(1− β′δψi(y)) = H(y), say
6: ŷi = arg maxy∈Y H(y) {to look for violations}
7: ŝi = max{0,maxy∈Si

H(y)}
8: if H(ŷi) > ŝi + ε then
9: add ŷ to Si {admit αi ŷ into dual}

10: αS ← dual optimum for S = ∪Si

11: until no Si changes
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Structured SVM: Analysis sketch

I Let ∆̄ = maxi ,y ∆(yi , y), R̄ = maxi ,y ‖δψi(y)‖2
I After every inclusion, dual objective increases by

min

{
Bε

2n
,

ε2

8∆̄2R̄2

}
I Dual objective upper bounded by min of primal which is

at most B∆̄

I Number of inclusion rounds is at most

max

{
2n∆̄

ε
,
8B∆̄3R̄2

ε2

}
I Need inference subroutine: maxy ∆(yi , y)(1− β′δψi(y))

I Can do this for Markov chains in poly time HW
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Directed probabilistic view of Markov network

Concrete setting:

I Hypertext graph G (V ,E )

I Each node u is associated with observable text x(u); text
of node set A denoted x(A)

I Each node has unknown (topic) label yu; labels of node
set A denoted y(A)

Our goal is

arg max
y(V )

Pr(y(V )|E , x(V )) = arg max
y(V )

Pr(y(V )) Pr(E , x(V )|y(V ))

Pr(E , x(V )

where Pr(E , x(V )) =
∑
y(V )

Pr(y(V )) Pr(E , x(V )|y(V ))

is a scaling factor (which we do not need to know for labeling).
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Using the Markov assumption
I V K ⊂ V has known labels y(V K )

I Fix node v with neighbors N(v)

I Known labels for NK (v), unknown labels for NU(v)

Pr(Y (v) = y |E , x(V ), y(V K ))

=
∑

y(NU(v))∈Ωv

Pr(y , y(NU(v))|E , x(V ), y(V K ))

=
∑

y(NU(v))∈Ωv

Pr(y(NU(v))|E , x(V ), y(V K ))

Pr(y |y(NU(v)),E , x(V ), y(V K ))

I Ωv = label configurations of NU(v) (can be large)

I “Solve for” all Pr(Y (v) = y | . . .) simultaneously
65 / 77



Relaxation labeling

I To ease computation, approximate as in naive Bayes

Pr(y(NU(v)) | E , x(V ), y(V K ))

≈
∏

w∈NU(v)

Pr
(
y(w)

∣∣∣ E , x(V ), y(V K )
)

I Estimated class probabilities in the r th round is
Pr(r)(y(v) | E , x(V ), y(V K )).

I May use a text classifier for r = 0
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Relaxation steps
I Update as follows

Pr(r+1)(y(v) | E , x(V ), y(V K ))

≈
∑

y(NU(v))∈Ωv

 ∏
w∈NU(v)

Pr(r)

(
y(w)

∣∣∣ E , x(V ), y(V K )
)

Pr
(
y(v)

∣∣∣ y(NU(v)),E , x(V ), y(V K )
)

I More approximations

Pr
(
y(v)

∣∣∣ y(NU(v)),E , x(V ), y(V K )
)

≈ Pr
(
y(v)

∣∣∣ y(NU(v)),E , x(V ), y(NK (v))
)

≈ Pr
(
y(v)

∣∣∣ y(N(v)), x(v)
)

I Add terms for deterministic annealing? HW
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Relaxation labeling: Sample results

0
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Fraction of neighborhood with known labels (%)
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Text+Link

I Randomly sample node, grow neighborhood, randomly
erase fraction of known labels, reconstruct, evaluate

I Text+link better than link better than text-only

I Link better than text even when all labels wiped out!
(associative prior: pages link to similar pages)
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Undirected view of Markov network
I Each node u represents random variable Xu

I Undirected edges express potential dependencies
I Each clique c ⊂ V has associated potential function φc

I Input to φ is an assignment of values to Xc , say xc

I φ outputs a real number

I Pr(x) ∝
∏

c∈C φc(xc) (C is set of all cliques) —
Hammersley-Clifford theorem

I Pr(x) = (1/Z )
∏

c∈C φc(xc) where Z =
∑

x

∏
c∈C φc(xc)

is the partition function

Conditional Markov networks

I Each node v has observable xv and unobserved label yv

Pr(y |x) =
1

Z (x)

∏
c∈C

φ(x , yc)
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Potential functions and feature generators I

I Pr(y |x) = 1
Z(x)

∏
c∈C φc(x , yc) =

1
Z(x)

exp
(∑

c∈C ψc(x , yc)
)

I Write (log) potential function ψ as

ψc(x , yc) =
∑

k

βk fk(x , yc ; c) = β′F (x , yc ; c)

I F is a feature (vector) generator

I c is a clique identifier; e.g., in case of a linear chain,
c = (t − 1, t)

yt–1

xt–1 xt

yt yt–1

xt–1 xt

yt
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Potential functions and feature generators II
I k is a feature identifier

I One feature may consider only t, yt and xt , and emit a
number reflecting the compatibility between state yt and
observed word output xt , or topic yt and observed
document xt

I Another feature may consider only t, yt−1 and yt , and
emit a number reflecting the belief that a yt−1 → yt can
occur

I Have a weight βk for each k

I Given fixed β, inference finds the most likely y ∈ Y (will
see LP and QP relaxations soon)

I During training we fit β

I Training often uses inference as a subroutine
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Training log-linear models
I Our goal is to find maxβ L(β) where

L(β) =
n∑

i=1

log Pr(yi |xi)

=
n∑

i=1

[∑
c

β′F (xi , yi .c ; c)− log Z (xi)

]
∂L

∂β
=

n∑
i=1

[∑
c

F (xi , yi ,c ; c)− ∂

∂β
log Z (xi)

]

=
n∑

i=1

[∑
c

(
F (xi , yi ,c ; c)− EY |xi

F (xi ,Yc ; c)
)]

I At optimum F (xi , yi ,c ; c) = EY |xi
F (xi ,Yc ; c)

I Once we have a procedure for the difficult part, we can
easily use gradient-based methods to optimize for β

I For Markov chains, can use Viterbi decoding HW
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Inference for Markov networks: LP relaxation I

I Labeling to minimize energy

min
y(V )

∑
u∈V

c(u, y(u)) +
∑

(u,v)∈E

w(u, v)Γ(y(u), y(v))


I c models local information at u

I Γ models compatibility of neighboring labels

I For two labels, sometimes easy via mincut
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Inference for Markov networks: LP relaxation II
I Integer program formulation for Γ(y , y ′) = [[y 6= y ′]]

min
∑
e∈E

weze +
∑

u∈V ,y∈Y

c(u, y)xuy

subject to
∑
y∈Y

xuy = 1 ∀u ∈ V

ze =
1

2

∑
y

zey ∀e ∈ E HW

zey ≥ xuy − xvy ∀e = (u, v),∀y
zey ≥ xvy − xuy ∀e = (u, v),∀y
xuy ∈ {0, 1} ∀u ∈ V , y ∈ Y

I Can round to a factor of 2
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Inference for Markov networks: QP relaxation I

I θs;j compatibility of node s with label j

I θs,j ;t,k compatibility of edge (s, t) with labels (j , k)

max
∑
s,j

θs;j [[y(s) = j ]] +
∑
s,j ;t,k

θs,j ;t,k [[y(s) = j ]][[y(t) = k]]

subject to
∑

j

[[y(s) = j ]] = 1 ∀s
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Inference for Markov networks: QP relaxation II
I Relaxation of [[y(s) = j ]] to µ(s, j):

max
∑
s,j

θs;jµ(s, j) +
∑
s,j ;t,k

θs,j ;t,kµ(s, j)µ(t, k)

subject to
∑

j

µ(s, j) = 1 ∀s

0 ≤ µ(s, j) ≤ 1 ∀s, j

I No integrality gap (proof via probabilistic method)

I Limitation: efficient QP solvers work only if Θ = {θs,j ;t,k}
is negative definite

I If we try to make Θ negative definite, gap develops
between QP optimum and label assignment
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Concluding remarks

I Graphs and probability: at the intersection of statistics
and classic AI knowledge representation

I Two computation paradigms: pushing weights along
edges (Pagerank etc.) and computing local distributions
or belief measures (graphical models)

I Lots of difficult problems!
I Modeling
I Optimization
I Performance on real computers on large data

I Real applications both a challenge and an opportunity
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