Math/Stat 2300 Modeling with Differential Equations

Some Terminology

The problem of finding a solution to a differential equation

$$\frac{dy}{dx} = f(y, x)$$

that satisfies

$$y(x_0) = y_0$$

is called an **initial value problem**.

A differential equation where $\frac{dy}{dx}$ is a function of y only:

$$\frac{dy}{dx} = f(y)$$

is called **autonomous**.

If $\frac{dy}{dx} = f(y)$ is an autonomous differential equation, then the values of y for which

$$\frac{dy}{dx} = 0$$

are called **equilibrium values**.

Consider

$$\frac{dy}{dx} = f(x, y).$$

Each time we specify an initial condition $y(x_0) = y_0$ for the differential equation, the **solution curve** (the graph of the solution) is required to pass through the point (x_0, y_0) and to have slope $f(x_0, y_0)$ there.

We can picture these slopes by drawing a short line segment at various points (x, y) with slope f(x, y). Such graphs are called **vector fields** or **direction field**.

Each segment has the same slope as the solution curve through (x, y) and thus is tangent to the curve there.

Autonomous Differential Equations: Phase line diagrams

A **phase line diagram** is a number line with the equilibrium values, with arrows indicating the sign of y'.

Example Consider

$$\frac{dy}{dx} = (y+1)(y-2)$$

Equilibrium values:

$$\frac{dy}{dx} = 0 \Longrightarrow y = -1, \ y = 2$$

Phase line diagram

On the interval y < -1, we try y = -2:

$$\frac{dy}{dx} = (-2+1)(-2-2) = 4 > 0$$

On the interval -1 < y < 2, we try y = 0:

$$\frac{dy}{dx} = (0+1)(0-2) = -2 < 0$$

On the interval y > 2, we try y = 3:

$$\frac{dy}{dx} = (3+1)(3-2) = 4 > 0$$

What might the phase line diagram indicate about the stability of these equilibrium? arrows toward equilibrium \implies stable arrows away from equilibrium \implies unstable

Constructing Graphical Solutions of Autonomous Differential Equations

- draw a phase line diagram
- identify and label where y' > 0 and y' < 0
- identify and label where y' > 0 and y' < 0
- sketch solution curves

Example. Consider

$$\frac{dy}{dx} = (y+1)(y-2)$$

We already did the phase line diagram (see above). Now, we look at the second derivative:

$$y'' = 2yy' - y' = (2y - 1)y' = (2y - 1)(y + 1)(y - 2)$$

Where is y'' = 0? y = -1, y = 2, $y = \frac{1}{2}$

Newton's Law of Cooling

Newton had modeled the rate of change in temperature of a cooled or heated object as proportional to the difference between the object and the surrounding medium.

Example. What happens to the temperature of a cup of soup when it is placed on a table in a room? What does a typical solution curve look like?

Let H(t) be the soup's temperature (in degrees) with respect to time (and we assume that H(t) is a differentiable function).

Let H_s be the constant surrounding temperature. According to Newton'd law of cooling:

$$\frac{dH}{dt} = -k(H - H_s), \quad k > 0$$

Why -k? Because the temperature of the soup is decreasing, the rate of change has to be negative.

What is the equilibrium value? $H = H_s$

$$H'' = -kH' = k^{2}(H - H_{s})$$

$$H' > 0 \qquad H' < 0$$

$$H'' < 0 \qquad H'' > 0$$

$$\longrightarrow \qquad \longleftarrow$$

$$H = H_{s}$$