Math/Stat 2300 Choosing Models (3.4)

from text A First Course in Mathematical Modeling, Giordano, Fox, Horton, Weir, 2009.

Qualitative description of the criteria

Minimizing the sum of the absolute deviations tends to treat each data point with equal weight and to average the deviations.

The Chebyshev criterion gives more weight to a single point potentially having a large deviation.

The Least-squares criterion is somewhere in between as far as weighing individual points with significant deviations

How do we relate the curve fitting criteria?

For Chebyshev criterion:

Suppose Chebyshev criterion is applied to some problem and the resulting optimization problem is solved to give the function F(x). The absolute deviations resulting from this fit are defined as

$$|y_i - F(x_i)| = c_i, \ i = 1, 2, \dots, m$$

Let

 c_{max} be defined as the largest of the absolute deviations c_i

This means

 $c_i \leq c_{max}, i = 1, 2, \ldots, m$

What is c_{max} ?

Since the parameters of F(x) are determined so as to minimize the value of the largest deviation, c_{max} is the minimal largest absolute deviation

For Least-Squares criterion:

Suppose the Least-squares criterion is applied and the resulting optimization problem is solved to give the function G(x). The absolute deviations resulting from this fit are defined as

$$|y_i - G(x_i)| = d_i, i = 1, 2, \dots, m$$

Let

 d_{max} be defined as the largest of the absolute deviations d_i

Note that the sum of the d_i squares is the smallest such sum.

 $d_1^2 + d_2^2 + \ldots + d_m^2 \le c_1^2 + c_2^2 + \ldots + c_m^2$

 $c_{max} \le d_{max}$

Because $c_i \leq c_{max}$ for every i,

$$d_{1}^{2} + d_{2}^{2} + \ldots + d_{m}^{2} \leq c_{max}^{2} + \ldots + c_{max}^{2} + \ldots + c_{max}^{2}$$
$$d_{1}^{2} + d_{2}^{2} + \ldots + d_{m}^{2} \leq mc_{max}^{2}$$
$$\sqrt{\frac{d_{1}^{2} + d_{2}^{2} + \ldots + d_{m}^{2}}{m}} \leq c_{max} \leq d_{max}$$

Choosing a Best Model

How can we evaluate how well the model fits the data?

Example. Let's compare the different ways of fitting data: Previously, we fit the data

x	0.5	1.0	1.5	2.0	2.5
y	0.7	3.4	7.2	12.4	20.1

to the curve $y = Ax^2$.

Using Least-squares, we determined

$$y = 3.1869x^2 \approx 3.19x^2$$

Using transformed Least-squares, we determined

 $\ln a = 1.14322$

giving

$$y = 3.1368x^2 \approx 3.14x^2$$

For the sake of comparing fitting methods, if the optimization problem resulting from applying the Chebyshev criterion was solved, we would obtain

$$y = 3.17073x^2 \approx 3.17x^2$$

To compare the methods, we consider the deviations

x_i	y_i	$y_i - 3.19x_i^2$	$y_i - 3.14x_i^2$	$y_i - 3.17x_i^2$
0.5	0.7	-0.0975	-0.085	-0.0925
1.0	3.4	0.21	0.26	0.23
1.5	7.2	0.0225	0.135	0.0675
2.0	12.4	-0.36	-0.16	-0.28
2.5	20.1	0.1625	0.475	0.2875

Criterion	Model	$\sum [y_i - y(x_i)]^2$	$Max y_i - y(x_i) $
Least-Squares	$y = 3.19x^2$	0.21	0.36
Transformed Least-Squares	$y = 3.14x^2$	0.34	0.475
Chebyshev	$y = 3.17x^2$	0.23	0.2875

Is one of the models better than the others? Why?

maybe or maybe not

We could choose the model with the smallest absolute deviation (Chebyshev) or choose model with smallest sum of squares (Least Squares)

the model with the smallest absolute deviation or smallest sum of squares may fit very poorly over the range you intend to use it most

Some considerations:

interpolation - construct models that pass through each data point \implies will give zero sum of squares and zero maximum deviation Which model is best must be decided on a case-by-case basis.

Math/Stat 2300 Interpolation

Higher Order Polynomials Models (4.2)

Recall *polynomials* are functions of the form

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where n is the *degree* of the polynomial and a_0, \ldots, a_n are real constants.

A unique polynomial of degree of at most degree 2 can be passed through three data points BUT an infinite number of polynomials of any degree greater than 2 can be passed through three data points.

We call a polynomial that interpolates a set of data points an *interpolant*.

Consider the following data

x	1	2	3	4	5	6
y	205	430	677	945	1233	1542

Because we have 6 data points, a unique polynomial of at most degree 5 is expected to interpolate the data

$$P_5(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$$

We can use the 6 data points to determine the constants a_0, a_1, \ldots, a_5 :

$$205 = a_0 + a_1(1) + a_2(1)^2 + a_3(1)^3 + a_4(1)^4 + a_5(1)^5$$

$$430 = a_0 + a_1(2) + a_2(2)^2 + a_3(2)^3 + a_4(2)^4 + a_5(2)^5$$

$$\vdots$$

$$1542 = a_0 + a_1(6) + a_2(6)^2 + a_3(6)^3 + a_4(6)^4 + a_5(6)^5$$

We would solve this system of linear equations to determine the constants a_0, a_1, \ldots, a_5 .

For more data points, we would have larger systems of equations to solve. Large systems of linear equations can be difficult to solve with great numerical precision.

Lagrange Polynomials

There is an alternative form of the interpolant: Lagrangian form of the polynomial Suppose the following data has been collected

Consider the following cubic polynomial

$$P_{3}(x) = \frac{(x-x_{2})(x-x_{3})(x-x_{4})}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{1}-x_{4})}y_{1} + \frac{(x-x_{1})(x-x_{3})(x-x_{4})}{(x_{2}-x_{1})(x_{2}-x_{3})(x_{2}-x_{4})}y_{2} + \frac{(x-x_{1})(x-x_{2})(x-x_{4})}{(x_{3}-x_{1})(x_{3}-x_{2})(x_{3}-x_{4})}y_{3} + \frac{(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{4}-x_{1})(x_{4}-x_{2})(x_{4}-x_{3})}y_{4}$$

Does this interpolate the data?

YES

$$P_{3}(x_{1}) = \frac{(x_{1} - x_{2})(x_{1} - x_{3})(x_{1} - x_{4})}{(x_{1} - x_{2})(x_{1} - x_{3})(x_{1} - x_{4})}y_{1} + \frac{(x_{1} - x_{1})(x_{1} - x_{3})(x_{1} - x_{4})}{(x_{2} - x_{1})(x_{2} - x_{3})(x_{2} - x_{4})}y_{2} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})(x_{1} - x_{4})}{(x_{3} - x_{1})(x_{3} - x_{2})(x_{3} - x_{4})}y_{3} + \frac{(x_{1} - x_{1})(x_{1} - x_{2})(x_{1} - x_{3})}{(x_{4} - x_{1})(x_{4} - x_{2})(x_{4} - x_{3})}y_{4} = y_{2}$$

Similarly,

$$P_3(x_2) = y_2, P_3(x_3) = y_3, P_3(x_4) = y_4$$

When does the polynomial not exist?

When any of the x_i are equal.

The x_i values must all be different (to prevent division by zero).

Theorem

If x_0, x_1, \ldots, x_n are (n + 1) distinct points and y_0, y_1, \ldots, y_n are corresponding observations at these points, then there exists a unique polynomial P(x), of at most degree n, with the property that

$$y_k = P(x_k)$$
 for each $k = 0, 1, \dots, n$

This polynomial is given by

$$P(x) = y_0 L_0(x) + \ldots + y_n L_n(x)$$

where

$$L_k(x) = \frac{(x - x_0)(x - x_1)\cdots(x - x_{k-1})(x - x_{k+1})\cdots(x - x_n)}{(x_k - x_0)(x_k - x_1)\cdots(x_k - x_{k-1})(x_k - x_{k+1})\cdots(x_k - x_n)}$$

What are some advantages of using higher order polynomials?

Because the polynomial passes through each of the data points, the resultant sum of absolute deviations is zero.

easy to integrate and differentiate

What are some disadvantages?

High order polynomials oscillate severely near the end points Coefficients of high order polynomials are sensitive to small changes in the data

Example. Using the following data, determine the second order interpolating polynomial

Let $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$.

$$L_0(x) = \frac{(x-2.5)(x-4)}{(2-2.5)(2-4)} = (x-2.5)(x-4)$$

$$L_1(x) = \frac{(x-2)(x-4)}{(2.5-2)(2.5-4)} = \frac{-4}{3}(x-2)(x-4)$$

$$L_2(x) = \frac{(x-2)(x-2.5)}{(4-2)(4-2.5)} = \frac{1}{3}(x-2)(x-2.5)$$

$$P(x) = L_0(x)y_0 + L_1(x)y_1 + L_2(x)y_2$$
$$P(x) = (x - 2.5)(x - 4)(0.5) + (-4/3)(x - 2)(x - 4)(0.4) + (1/3)(x - 2)(x - 2.5)(0.25)$$