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The Problem

Consider the problem

ut = ε2uxx + f (u,w)

wt = Dwxx + g(u,w)

with Neumann boundary conditions and x ∈ [−L,L] where

f (u,w) = −u + u2(w − u)

g(u,w) = 1 − β0u.

Here D is exponentially large, and ε is small.
We want to consider the stability of patterns in the profile of u.
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Equations of motion of the interfaces

We consider the motion of the interfaces, to determine the stability
of the mesa pattern.
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Equations of motion of the interfaces

We consider the motion of the interfaces, to determine the stability
of the mesa pattern.

We let l− and l+ be the interfaces, −L < l− < l+ < L.
Let u = u−(x − l−) on (−L, x0) and u = u+(x − l+) on (x0,L).

Expand u = u0 + 1
D

u1 and w = w0 + 1
D

w1. Note w0 is a constant.

On (−L, x0), we define u0(x) = u−(x − l−) = U−
(

x−l
−

ε

)

.

Similarly, on (x0,L), u0(x) = u+(x − l+) = U+

(

x−l+

ε

)
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Equations of motion of the interfaces

Then
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.
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The boundary terms are determined to be

u′
1u

′
− − u1u

′′
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∣

∣
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e
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µ0
ε

(2x0+d−2L)
)

where d is the width of the mesa and is given by d =
√

2
β0

L, where
l = d/2, fw = fw (u,w0), and µ0, C0 are constants.

As well, it is determined that

w1(l+) − w1(l−) = −2x0lg(0,w0).
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Then, the equation of motion for x0 is

dx0

dt
=

ε
∫ ∞
−∞(U ′(s))2 ds

{

µ2
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2
0 e
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ε
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]
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D
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∫

√
2
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}

where d is the width of the mesa and is given by d =
√

2
β0

L,where
l = d/2, fw = fw (u,w0), and µ0,C0 are constants.
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Critical Value of D

A change in stability of the differential equation occurs when

Dc =
lg(0,w0)

∫

√
2

0 fw dU

4
µ3

0
ε

C 2
0+e

µ0
ε

(d−2L)
.

Substituting in all of the constants, we obtain the equation for Dc

as a function of ε and L.

Dc =
1

12β0
Lε exp(

1

ε
(2 −

√
2

β0
)L).

This gives us a threshold for the diffusion coefficient D.
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Critical Value of D

A change in stability of the differential equation occurs when

Dc =
lg(0,w0)

∫

√
2

0 fw dU

4
µ3

0
ε

C 2
0+e

µ0
ε

(d−2L)
.

Substituting in all of the constants, we obtain the equation for Dc

as a function of ε and L.

Dc =
1

12β0
Lε exp(

1

ε
(2 −

√
2

β0
)L).

This gives us a threshold for the diffusion coefficient D.
Once D has been increased beyond this value, the pattern becomes
unstable.
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Numerical Simulation of Full System

ε = 0.1, β0 = 1.5, L = 1, D = 2000
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Comparison of x
′
0 and Solution from Full System

ε = 0.1, β0 = 1.5, L = 1, D = 2000
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Comparison of x
′
0 and Solution from Full System

ε = 0.1, β0 = 1.5, L = 1, D = 2000
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Profiles of Two Mesas

D = 2000, L = 1, ε = 0.1, β0 = 1.4
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Multiple Mesas

D = 30, L = 0.8, ε = 0.1, β0 = 1.5
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Profiles of Two Mesas

D = 28.28, L = 1, ε = 0.0177, β0 = 2.828
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Multiple Mesas

Multiple mesas can exhibit different types of behaviour, depending
on which interface becomes unstable first.

Considering the solution of multiple mesas, similar analysis can be
completed but becomes much more complicated.

We will use a different method for determining the stability of
patterns.
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Multiple Mesas

Multiple mesas can exhibit different types of behaviour, depending
on which interface becomes unstable first.

Considering the solution of multiple mesas, similar analysis can be
completed but becomes much more complicated.

We will use a different method for determining the stability of
patterns.

We look at the eigenvalues of the system.
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Eigenvalues

Let (ue ,we) be the equilibrium solution. Let

u(x , t) = ue(x) + eλtφ(x)

w(x , t) = we(x) + eλtψ(x)

and then substitute into the system. This gives the following:

λφ = ε2φxx + φfu(ue ,we) + ψfw (ue ,we).

Similarly, we obtain

λψ = Dψxx + φgu(ue ,we) + ψgw (ue ,we).
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Eigenvalues

The eigenvalues are given by the following expression:

1

3ε
λ

[

Cl

−Cr

]

= B

[

Cl

−Cr

]

+
(
√

2)3

3
M

[

Cl

−Cr

]

+
(
√

2)3

3

1

D

1

2
(1−

1
√

2β0

)L

[

Cl

−Cr

]

where B is the matrix determined by the boundary conditions and
M−1 is the matrix determined from the ψ terms.
This gives the eigenvalues as

λ± = 3ε

[

η± +
(
√

(2))3

3

1
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+

(
√

2)3

3

1
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(
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1
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)

L

]

where σ± are the eigenvalues of the matrix M−1 and where η± are
the eigenvalues of the matrix B .
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Eigenvalues

Note that these eigenvalues are for one mesa.
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Eigenvalues

Note that these eigenvalues are for one mesa.

To obtain the eigenvalues for multiple mesas, we extend the one
mesa case by carefully choosing the boundary conditions for the
eigenfunctions.
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Eigenvalues

Note that these eigenvalues are for one mesa.

To obtain the eigenvalues for multiple mesas, we extend the one
mesa case by carefully choosing the boundary conditions for the
eigenfunctions.

This simply changes the η± and σ± terms of the previous
expression.
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How do we verify these eigenvalues?

We can compare these asymptotic eigenvalues by determining the
eigenvalues numerically.
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How do we verify these eigenvalues?

We can compare these asymptotic eigenvalues by determining the
eigenvalues numerically.

Rewriting our system, with the equations for the eigenfunction as a
BVP, we can compute the eigenvalues numerically in Maple.
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Work in progress

For multiple mesa patterns, the ways the patterns become unstable
are believed to be caused by which eigenvalue changes from
negative to positive first.

Once we have verified that these eigenvalues agree with the
numerically determined eigenvalues, a more careful analysis will
hopefully lead to a general theory of which eigenvalues lead to the
different ways that the patterns can become unstable.
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