f' < 0 on $(-\infty, 0)$ and $(2, \infty)$, so f is decreasing on $(-\infty, 0)$ and $(2, \infty)$. f' > 0 on (0, 2), so f is increasing on (0, 2).

(f) What are the local maximum value and the local minimum value?

Since f changes from increasing to decreasing at x=2, f has a maximum value of $f(2)=\frac{1}{4}$. f does not have any maxima or minima at x=0 since f has a vertical asymptote at x=0.

(g) Find the intervals of concavity.

First, we find the second derivative:

$$f'' = \frac{(-1)(x^3) - (2-x)(3x^2)}{(x^3)^2}$$

$$= \frac{-x^3 - (6x^2 - 3x^3)}{x^6}$$

$$= \frac{2x^3 - 6x^2}{x^6} = \frac{2x^2(x-3)}{x^6}$$

$$= \frac{2(x-3)}{x^4}$$

Setting f'' to zero and solving for x, we get x = 3.

	x < 0	0 < x < 3	x > 3
2(x-3)	_	_	+
x^4	+	+	+
f'	_	_	+

Since f'' < 0 on $(-\infty, 0)$ and (0, 3), f is concave down on $(-\infty, 0)$ and (0, 3). Since f'' > 0 on $(3, \infty)$, f is concave up on $(3, \infty)$.

(h) Find the inflection points.

Since f changes concavity at x=3, $(3, f(3))=(3, \frac{2}{9})$ is an inflection point.

(i) Using parts (a)-(g), graph the function.

