
Proposed Thesis Research

Xiaoning Bian

Dalhousie University

Contents

Some background
Quantum computing
Lambda calculus
Curry-Howard Correspondence
Quantum lambda calculus
Proto-Quipper

Problems to address
Extension of PQ
Type inference
Imperative style
Parameter-state distinction

Background

Quantum state, gate and measurement

Definition. An n-qubit state ψ is a unit vectors in the 2n

dimensional complex Hilbert space Hn = (C2n , 〈 | 〉).

Definition. An n-qubit gate is a unitary operator U on Hn.

Definition. An n-qubit measurement M is given by a finite family
{Si}i of operators satisfying Σi∈IS

†
i Si = I . When performing the

measurement M on a quantum state ϕ ∈ Hn, one of the
measurement outcomes i ∈ I will be observed with probability

P(i) = ||Siϕ||2 , and the state will be changed to Siψ√
P(i)

.

Quantum circuit

Definition. Quantum circuits are string diagrams for symmetric
monoidal groupoid [Joyal and Street, 1991].

⊗nA L9999K
...

...

U : ⊗nA→ ⊗nA L9999K U
...

...

V ◦ U L9999K U V
...

...

U ⊗ V L9999K
U

V
...

...

...
...

QRAM model

A useful abstract model of a quantum computer is the so-called
QRAM model [Knill, 1996]. In this model, we assume to have
access to N numbered qubits, and be able to perform operations:

I prepare qubit i in state |0〉 or |1〉.
I apply n-qubit gates to n distinct qubits i1, i2, ..., in.

I measure qubit i .

Untyped lambda calculus

Definition. Lambda terms

M,N ::= x | MN | λx .M

where x ranges over an infinite set of symbols called variables.

Example. λx .x is a lambda term. It stands for the identity
function. (λx .xy)(λy .yz) is a lambda term. x is bound, z is free,
and the variable y has both a free and a bound occurrence.

I Alpha equivalence — terms differ only in the choice of bound
variables are considered the same.

I Beta reduction — (λx .M)N → M[N/x].

Simply Typed lambda calculus

Definition. Types S ,T ::= B | S → T , where B ranges
over a set of symbols called basic types.

Example. B and B → B are types. B → B is a function type.

Definition. A type assignment Γ is a function from some finite set
of variables to types. Γ is written as {x : A, y : B, ...}.

Definition. A typing judgement is a triple (Γ,M,T) of a type
assignment, a term, and a type, written in the form Γ ` M : T .

Typing rules

Definition. A typing judgement is valid if it follows from
typing rules:

x : A ∈ Γ

Γ ` x : A

Γ ` M : A→ B Γ ` N : A

Γ ` MN : B

Γ, x : A ` M : B

Γ ` λx .M : A→ B

Propositional logic

Definition. Formulas (only the implication fragment)

S ,T ::= B | S → T ,

where B ranges over a set of atomic propositions.

Definition. A sequent is a pair (Γ,A), written as Γ ` A, where Γ is
a finite multiset of formulas, called a context, and A is a formula.
We have three natural ways (derivations) to prove a formula.

A ∈ Γ

Γ ` A

Γ ` A→ B Γ ` A

Γ ` B

Γ,A ` B

Γ ` A→ B
.

Curry-Howard correspondence

Curry-Howard correspondence [Curry, 1934, Howard, 1995].

I formulas ↔ types (if atomic propositions ↔ basic types).

I well-typed lambda terms ↔ derivations.

Recall definitions: Types S ,T ::= B | S → T , where B
ranges over basic types. Formulas S ,T ::= B | S → T ,
where B ranges over atomic propositions.

Proofs-as-terms

Example. Let Γ = {A,B}, we have two derivations of B:

B ∈ Γ

Γ ` B

A ∈ Γ

Γ ` A

B ∈ Γ

Γ,A ` B

Γ ` A→ B
Γ ` B

Label assumptions Γ = {x : A, y : B}, and put lambda terms in:

y : B ∈ Γ

Γ ` y : B

x : A ∈ Γ

Γ ` x : A

y : B ∈ Γ

Γ, x : A ` y : B

Γ ` λx .y : A→ B

Γ ` (λx .y)x : B

Quantum lambda calculus

Definition. The types of Quantum Lambda Calculus (QLC)
[Valiron, 2004] are defined by

A,B ::= > | bit | qubit | A (B | A⊗B | !A.

Definition. The terms of QLC are defined by

M,N,P ::= x | λx .M | MN

| ∗ | 〈M,N〉 | let 〈x , y〉 = M in N | let ∗ = M in N

| 0 | 1 | if P then M else N

| new |meas | U | q

U ranges over a given set of symbols called circuit constants, and q
ranges over a given infinite set of symbols called quantum names.

Type system

Definition. We define a relations <: on types, called
subtyping relations satisfying ...

! A <: A

! A <: B

!A <: ! B

A1 <: B1 A2 <: B2

(A1 ⊗ A2) <: (B1 ⊗ B2)
⊗

Definition. A typing judgement is a quadruple Γ;Q ` M : T ,
where Γ is a type assignment, Q is a finite set of quantum names,
called quantum context, M is a term, and T is a type. A typing
judgement is valid if it follows from ...

Γ, x : A;Q ` M : B

Γ;Q ` λx .M : A (B
λ1

!∆, x : A; ∅ ` M : B

!∆; ∅ ` λx .M : !(A (B)
λ2

Operational semantics

Definition. A quantum closure is a triple [Q, L,M] where

I Q is an n-qubit state.

I L is a list of n distinct quantum names, written as |q1q2...qn〉.
I M is a QLC term.

Definition. [Q, L,M]→p [Q ′, L′,M ′] is a single-step reduction of
quantum closures that takes place with probability p. Some
reduction rules:

[Q, |q1, ...qn〉 ,U 〈qj1 , ..., qjn〉]→1 [Q ′, |q1, ...qn〉 , 〈qj1 , ..., qjn〉]

[α |Q0〉+ β |Q1〉 , |q1, ...qn〉 , meas qi]→|α|2 [Q0, |q1, ...qn〉 , 0]

[Q, |q1, ...qn〉 , new 0]→1 [Q ⊗ |0〉 , |q1, ...qn, qn+1〉 , qn+1]

Proto-Quipper

Definition. The types of Proto-Quipper (PQ) [Ross, 2015] are
defined by

A,B ::= ... | Circ(T ,U)

where T ,U ::= > | qubit | T ⊗ U.

Definition. The terms of PQ are defined by M,N,P ::= ...

| (t,C ,M) | rev | unbox | boxT | q

where t, u ::= ∗ | q | 〈t, u〉. Here, C ranges over a set
C of circuit constants.

Type system

Type system of PQ is similar to the one of QLC.

I Almost the same subtyping rules as in QLC.

I One more typing rule

!∆;Q1 ` t : T !∆;Q2 ` M : U In(C) = Q1 Out(C) = Q2

!∆, ∅ ` (t,C ,M) : Circ(T ,U)
circ

Labelled quantum circuit

Definition. Consider the category LC with objects finite
sequences of distinct quantum names, and morphisms between
〈q1, q2, ..., qn〉 and 〈p1, p2, ..., pn〉 are quantum circuits. We call
the morphisms labelled quantum circuits.

I Partial tensor. If two objects s1 and s2 are disjoint (seen as
sets), define s1⊗ s2 = s1, s2. The tensor product of morphisms
is just the tensor product of labelled quantum circuits.

I Partial composition. The purpose of partial composition
D ◦′ C is to append circuit D to C , when dom(D) 6= cod(C).

Partial compostition

Example.

C

D

q1
q2
q3
q4
q5

q1
q2
p3
p4
p5

r3
r4
r5

p3
p4
p5

Operational semantics

Definition. A circuit closure is a pair [C ,M] where

I C is a labelled quantum circuit.

I M is a lambda term.

Definition. The one-step reduction relation, written as →, is
defined on circuit closures by rules such as

[C , rev (i ,D, o)]→ [C , (o,D−1, i)]

s ∈ Obj(LC) len(s) = len(T) t = Term(s,T)

[C , boxT (M)]→ [C , (t, Ids ,Mt)]
box

b = bind(V , u) b′ = bind(dom(D), cod(D))

[C , (unbox(u,D, u′))V]→ [D ◦′ (b ◦′ C), b′(u′)]
unbox

Problems

Extension of PQ

I PQ extends a minimal version of QLC. How to incorporate
additional features of the QLC in PQ, such as coproducts,
recursion, and measurement.

I We will extend the notion of quantum circuit to also include
classical wires, which hold a classical bit at circuit execution
time.

I It is no longer the case that all circuits are reversible. It will be
necessary to extend the type system to be aware of this fact.

Type inference

I Valiron described [Valiron, 2004] a type inference algorithm
for QLC.

I Type inference is useful because it is tedious for programmers
to write type annotations.

I But it is not known whether it can be done efficiently.

I An interesting open problem is to find efficient type inference
algorithm for QLC and/or PQ.

Imperative style

A typical quantum program reads

let (x , y) = Cnot(x , y) in

let y = Hy in

let (y , x) = subroutine(y , x) in

(x , y)

In Quipper, we can use a simpler ‘imperative style’

Cnot(x , y);

Hy ;

subroutine(y , x);

No theoretical foundation for such a syntax yet.

Imperative style

It gets complicated when

I Functions produce ‘garbage’ (ancilla qubits to hold
intermediate results of the computation).

I Function have some imperative and some non-imperative
arguments. For example,

let x ′ = Cnot(x , y).

I Functions are in the body of loops.

loop 10 (λ 〈x , y〉 .let x = H x in 〈x , y〉).

Parameter-state distinction

Consider a circuit defined on n qubits, such as the QFTn

QFTn...
...n

2

1

It would be natural to define a circuit family as a lambda term

QFT : (n : Nat) (⊗nqubit (⊗nqubit.

But this requires dependent types.

I In QFTn, n is a parameter that is known when generating
circuit.

I In Hq, q refers to a quantum state that is known when
executing the circuit H.

References

Curry, H. B. (1934).
Functionality in combinatory logic.
Proceedings of the National Academy of Sciences,
20(11):584–590.

Howard, W. A. (1995).
The formulae-as-types notion of construction.

Joyal, A. and Street, R. (1991).
The geometry of tensor calculus, i.
Advances in Mathematics, 88(1):55–112.

Knill, E. (1996).
Conventions for quantum pseudocode.
Technical report, Citeseer.

Ross, N. J. (2015).
Algebraic and logical methods in quantum computation.
arXiv preprint arXiv:1510.02198.

Valiron, B. (2004).
A functional programming language for quantum computation
with classical control.
PhD thesis, University of Ottawa (Canada).

Questions?

	Some background
	Quantum computing
	Lambda calculus
	Curry-Howard Correspondence
	Quantum lambda calculus
	Proto-Quipper

	Problems to address
	Extension of PQ
	Type inference
	Imperative style
	Parameter-state distinction

