
GENERATORS AND RELATIONS FOR SOME CLASSES OF
QUANTUM CIRCUITS

by

Xiaoning Bian

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

August 2023

© Copyright by Xiaoning Bian, 2023



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 n-qubit states . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 n-qubit unitary transformations and quantum circuits . . . . . 6
2.1.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 One- and two-level matrices . . . . . . . . . . . . . . . . . . . 10

2.2 Presentation of U4(Z[ 1√
2
, i]) . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Some algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Gaussian integers and Gaussian dyadics . . . . . . . . . . . . 11
2.3.2 Monoid presentation . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Amalgamation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Proof assistant Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Proof assistants . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Presentation for 2-qubit Clifford+T operators . . . . . 19

3.1 Statement of the main theorem . . . . . . . . . . . . . . . . . . . . . 19

3.2 Proof outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 The Reidemeister-Schreier theorem for monoids . . . . . . . . . . . . 21

3.4 Pauli rotation representation . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Soundness and completeness . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 The formal proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ii



3.7 Discussion of the axioms . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 4 Presentation for Un(Z[12 , i]) . . . . . . . . . . . . . . . . . . 34

4.1 Statement of the main theorem . . . . . . . . . . . . . . . . . . . . . 34

4.2 The exact synthesis algorithm . . . . . . . . . . . . . . . . . . . . . . 36

4.3 The Cayley graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Basic generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Reduction of completeness to the Main Lemma . . . . . . . . . . . . 43

4.6 Proof of the Main Lemma . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 5 Presentation for 3-qubit Clifford+CS operators . . . . 55

5.1 Statement of the main theorem . . . . . . . . . . . . . . . . . . . . . 55

5.2 Proof outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Normal forms and an almost-normal form . . . . . . . . . . . . . . . 57
5.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Normal forms for finite subgroups of Clifford+CS operators . 57
5.3.3 An almost-normal form for CCS(3) . . . . . . . . . . . . . . . 61
5.3.4 Comparison with Pauli rotation decomposition . . . . . . . . . 62

5.4 Formal proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 CCS(3) is an amalgamated product of three finite groups . . . . . . . 64

Chapter 6 Conclusion and future work . . . . . . . . . . . . . . . . . 66

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iii



List of Figures

2.1 Greylyn’s relations for U4(Z[ 1√
2
, i]). . . . . . . . . . . . . . . . 12

3.1 Relations for 2-qubit Clifford+T operators. . . . . . . . . . . . 20

3.2 Abbreviations used in circuit notations. . . . . . . . . . . . . . 21

3.3 Translation from X to Y∗. . . . . . . . . . . . . . . . . . . . . 28

3.4 List of Agda files. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Relation (B20) is derivable using controlled T -gate. . . . . . . 33

4.1 A sound and complete set of relations for Un(Z[12 , i]). . . . . . 35

4.2 Some useful relations in ∼∆. . . . . . . . . . . . . . . . . . . . 47

4.3 Level condition verification. . . . . . . . . . . . . . . . . . . . 52

4.4 A diagram which reduces case 3.2.2.2.2 to a previous case. . . 53

5.1 Complete relations for CCS(3). . . . . . . . . . . . . . . . . . . 56

5.2 Notations for definable gates. . . . . . . . . . . . . . . . . . . 58

5.3 Finite subgroups of Clifford+CS operators. . . . . . . . . . . . 59

5.4 The inclusion graph of various finite subgroups of CCS(3). . . 59

5.5 Some relations used to rewrite words. . . . . . . . . . . . . . . 62

5.6 Derive a relation using relations in three finite submonoids. . . 65

iv



Abstract

We give three finite presentations in terms of generators and relations for three groups

of operators. The operators are frequently used in quantum computation. The result

can potentially be used to optimize quantum circuits. Two of the three proofs use

the Reidemeister-Schreier theorem. Both the Reidemeister-Schreier theorem and the

two proofs using it have been formally verified in the proof assistant Agda.

First, we give a finite presentation of the group of 2-qubit Clifford+T operators.

The proof applies the Reidemeister-Schreier theorem to a finite presentation of a

supergroup of the 2-qubit Clifford+T group that was given by Greylyn. The process

generates hundreds of relations. We then simplify them to 20 relations using a Pauli

rotation representation as an almost-normal form.

Second, we give a finite presentation of Un(Z[12 , i]), the group of unitary n × n-

matrices with entries in Z[1
2
, i]. Amy, Glaudell, and Ross showed that this group is

generated by a certain set of two-level matrices, and they also gave an exact synthesis

algorithm that converts any element of Un(Z[12 , i]) to a word in these generators. We

say that a word is in normal form if it is an output of the exact synthesis algorithm.

Using what we call semantically guided rewriting, we show that each word in the

two-level generators is equivalent to a normal form under the congruence generated

by finitely many relations.

Third, we give a finite presentation of the group of 3-qubit Clifford+CS opera-

tors. Amy, Glaudell, and Ross proved that up to a condition on the determinant,

the n-qubit Clifford+CS group is exactly U2n(Z[12 , i]). In particular, the 3-qubit

Clifford+CS group is a subgroup of U8(Z[12 , i]) of index 2. Using a similar technique

as in our first result, we repeatedly apply the Reidemeister-Schreier theorem to the

presentation of U8(Z[12 , i]) (from our second result), and then simplify thousands of

relations into 17 relations. To do the simplification, we devise an almost-normal form

for Clifford+CS operators. We also show that the 3-qubit Clifford+CS group, which

is of course infinite, is the amalgamated product of three finite subgroups.

v



Acknowledgements

First of all, I would like to thank my advisor Peter Selinger for teaching me both

research and other things. He guided me into the research world, helped me signif-

icantly in every research project of mine, and gave me tons of help in non-research

aspects.

This research was supported by a departmental scholarship, a Killam Scholarship

and several of Peter’s grants — a DARPA research contract, an AFOSR research

grant, an NSERC Discovery Grant, and an NSERC Accelerator Supplement.

Thanks to my supervisory committee Dorette Pronk and Neil J. Ross, and my ex-

ternal examiner Simon Perdrix for reading my work and providing feedback. Thanks

to Wang Quanlong, Niel de Beaudrap, Frank Fu, Matt Amy, and Alexis Bernadet for

stimulating discussions.

Thanks to the graduate coordinators Sara Faridi, David Iron, and Theo Johnson-

Freyd, and to the department staff, especially Maria, for helping me many times with

administrative tasks. Thanks to the department technical support person Balagopal

Pillai for helping me many times with the usage of the department cluster.

Part of this research was done while I was visiting the math department of Tech-

nische Universität Darmstadt in the Spring and Summer of 2016, and the Simons

Institute for the Theory of Computing at the University of California, Berkeley in the

Fall of 2016.

vi



Chapter 1

Introduction

For certain problems such as factoring, quantum algorithms give an exponential

speedup over the best know classical algorithms [35]. For this reason, quantum com-

puting has been a very active area of research. Many quantum algorithms use quan-

tum circuits as building blocks. This thesis contributes to the theory of quantum

circuits. Specifically, we find finite presentations for two classes of quantum circuits,

namely 2-qubit Clifford+T circuits and 3-qubit Clifford+CS circuits. We also find a

finite presentation of Un(Z[12 , i]), the group of unitary n× n-matrices with entries in

Z[1
2
, i]. Recall that a presentation is given by a set of generators and a complete set

of relations.

The class of Clifford operators is generated by tensor product and composition of

the following operators:

S =

[︄
1 0

0 i

]︄
, H =

1√
2

[︄
1 1

1 −1

]︄
, ω = e

π
4
i =

1 + i√
2
, CZ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦ .

Here S is called the phase gate, H is called the Hadamard gate, ω is a scalar that

is an 8-th root of unity, and CZ is the controlled Z-gate. The class of Clifford+T

operators is generated by the Clifford operators plus the following T -gate:

T =

[︄
1 0

0 ω

]︄
.

The class of Clifford+CS operators is generated by the Clifford operators plus the

controlled S-gate:

CS =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

⎤⎥⎥⎥⎥⎥⎦ .

1



2

Note that CZ = CS2. We also use the following gate:

K = ω†H =
1

1 + i

[︄
1 1

1 −1

]︄
.

Here i is the complex unit, and K is a scaled version of H.

The class of Clifford+T circuits, and especially the simplification of Clifford+T

circuits, is a topic of current interest in quantum computing [5, 13, 14, 24, 26, 29].

The Clifford+T gate set is both universal [30] and convenient for quantum error cor-

rection [12], and is therefore one of the preferred gate sets for fault-tolerant quantum

computing. Generally, in a fault-tolerant regime, applying a Clifford gate is some

orders of magnitude cheaper than applying a T -gate, and therefore, it is sensible to

try to simplify circuits so as to minimize the T -count (the number of T -gates) [4].

Many methods for doing so have been proposed in the recent literature, including

methods based on matroid partitioning [3], Reed-Muller codes [5], and ZX calculus

[13, 14, 26].

It is well-known that certain useful classes of quantum circuits correspond to

particular subrings of the complex numbers. Kliuchnikov et al. showed that a unitary

operator is representable by a 1-qubit Clifford+T circuit if and only if its entries

belong to the ring Z[1/
√
2, i] [27]. Giles and Selinger extended the result to the n-

qubit case [16]. Amy et al. studied the correspondences of several restricted classes

of Clifford+T circuits to the rings Z[1/2],Z[1/
√
2],Z[1/i

√
2], and Z[1/2, i]. There is

one crucial concept shared by these works, i.e., the exact synthesis algorithm, which

decomposes a given unitary with a certain requirement on its entries into a product

of one- and two-level matrices. Then they show the one- and two-level matrices are

representable by circuits. We say that a word in one- and two-level matrices is in

normal form if it is an output of the exact synthesis algorithm. Based on this normal

form, several presentations by generators and relations have been found. Greylyn

[21] gave a presentation for U4(Z[1/
√
2, i]), and Li et al. [28] gave a presentation for

Un(Z[12 ]).

The class of Clifford+CS circuits is also a topic of current interest. Just like

Clifford+T circuits, the class of Clifford+CS circuits is universal for quantum com-

puting. Amy, Glaudell, and Ross gave a characterization of the group of n-qubit



3

Clifford+CS operators, showing that, up to a trivial condition on the determinant,

a matrix is in this group if and only if it is unitary and its matrix entries belong

to the ring Z[1
2
, i] [2]. As a consequence of this, or alternatively since the CS gate

is representable as a Clifford+T circuit with T -count 3, the Clifford+CS group is a

subgroup of Clifford+T ; see also [6]. Like the T -gate, the CS-gate is a non-Clifford

gate that is relatively expensive to perform in a fault-tolerant regime. In [22], Haah

and Hastings showed how to construct a fault-tolerant CS-gate via magic state distil-

lation. It therefore makes sense to try to minimize the number of CS-gates. In [15],

Garion and Cross described a CS- and CX-optimal canonical form for the 2-qubit

group generated by the gates {X,T,CX,CS}. Glaudell, Ross, and Taylor gave a

CS-optimal normal form for 2-qubit Clifford+CS circuits [18].

Many strategies for minimizing T -count or CS-count are based on rewriting, which

means applying algebraic laws, such as T 2 = S, or such as

S† K S K S = S† K S K S ,

to replace subcircuits by equivalent ones. In designing such rewriting techniques, it

can be useful to have a complete set of such algebraic laws, i.e., a set of equations

by which any circuit can in principle be rewritten into any equivalent circuit. While

a complete set of such equations does not in itself guarantee the existence of good

rewriting strategies, it can be a useful tool for designing such strategies.

1.1 Outline

This thesis is organized as follows: Chapter 2 is a summary of standard concepts

of quantum computation, the presentation of U4(Z[ 1√
2
, i]), rings, monoid presenta-

tions, amalgamation, and proof assistants, which are needed throughout the thesis.

Chapter 3 gives a finite presentation for the group of 2-qubit Clifford+T circuits.

Chapter 4 gives a finite presentation for Un(Z[12 , i]), the group of unitary n × n-

matrices with entries in Z[1
2
, i]. Chapter 5 gives a finite presentation for the group

of 3-qubit Clifford+CS operators, and shows that it is an amalgamated product of

three of its finite subgroups. Chapter 6 contains some concluding remarks.



4

1.2 Contributions

Chapters 3, 4, and 5 contain my original contributions, which are based on three

published papers, all coauthored with my supervisor Peter Selinger. The results of

Chapter 3 were obtained jointly by my coauthor and me, and my contribution was

the simplification of the relations. We contributed equally to the results of Chapter 4.

The results of Chapter 5 were obtained by myself.

During my Ph.D. study, I published two other papers [14, 13] (both coauthored

with Harny Wang and Niel de Beaudrap) about Clifford+T circuit optimization using

ZX-calculus, which are not included in this thesis.



Chapter 2

Preliminaries

2.1 Quantum computation

We only introduce the basic ideas of quantum computation. For more information

about quantum computation, please refer to [30, 33]. The basic concepts of quantum

computation are states and operations that act on states. Let C be the field of

complex numbers. We write Cn for the space of n-dimensional column vectors.

2.1.1 n-qubit states

Definition 2.1.1. An n-qubit state is a unit vector in C2n .

In other words, the state space is the set of 2n-dimensional complex unit vectors.

For example, the space of 1-qubit states is the unit sphere in the 2-dimensional com-

plex vector space. Modulo scalars, it can be identified with the real 3-sphere, which

is called the Bloch sphere in quantum computation.

For C2n , we use the “ket-binary” notation to denote the standard basis. For

example, when n = 2:

|00⟩ =

⎡⎢⎢⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎥⎥⎦ , |01⟩ =

⎡⎢⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎥⎦ , |10⟩ =

⎡⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎥⎥⎦ , |11⟩ =

⎡⎢⎢⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎥⎥⎦ .

In general

|bnbn−1...b0⟩ = ek, where k =
n∑︂

j=0

bj2
j, and ek is the k-th standard basis vector.

Note that bnbn−1...b0 is the binary representation of k, and that the standard basis

starts from e0. In the following, we will identify each natural number index with its

binary representation. One convenience of this notation is

|amam−1...a0⟩ ⊗ |bnbn−1...b0⟩ = |amam−1...a0bnbn−1...b0⟩.

5



6

Another way to look at this is that every basis vector of C2m+n
is a tensor product of

basis vectors of C2m and C2n . We can also identify C2n with the n-fold tensor product

of C2. The ket-binary notation reflects this identification.

There are two and only two kinds of operations that can be applied to an n-qubit

state — unitary transformations and measurements. Quantum algorithms are often

of the form that first apply some number of unitary transformations to a an n-qubit

state and then do a measurement, and based on the measurement result, some output

or conclusion is drawn.

2.1.2 n-qubit unitary transformations and quantum circuits

A linear function U : Ck → Cm is called an isometry if for all v, w in Ck, we have

⟨Uv, Uw⟩ = ⟨v, w⟩. U is called unitary if it is an invertible isometry. Note that U is

unitary if and only if UU † = I and U †U = I, where U † denotes the adjoint of U . For

a matrix, the adjoint is the complex conjugate of the transpose.

Definition 2.1.2. An n-qubit unitary transformation is a unitary transformation on

C2n

We also refer to an n-qubit unitary transformation as an n-qubit operator, es-

pecially in combination with an adjective, such as 2-qubit Clifford+T operator and

3-qubit Clifford+CS operator. The unitary condition is needed to preserve the norm

of a state so that applying a unitary transformation to a state produces a state.

In classical computation, any boolean function can be constructed using basic

logic gates such as and, or, and fan-out. Here fan-out is a copy operation, i.e., a

gate that inputs a boolean x and outputs the pair (x, x). One often uses circuits

to describe these constructions. In quantum computation, we pick out some basic

unitaries, also called gates, and we can construct other unitaries from these gates.

Often, the construction is expressed by a quantum circuit. This construction only

uses two operations to combine gates — tensor product and composition. Quantum

circuits are a way to say when and where the tensor products and compositions

are. For example, given two 1-qubit gates A,B and a 2-qubit gate C, the following

quantum circuit represents the 2-qubit operator (A⊗B) ◦ C:

A

B
C .



7

Not every unitary is representable by a circuit using a finite gate set, since there

are uncountably many unitaries and countably many circuits over a finite gate set.

A set of gates is said to be universal if the set of operators representable by circuits

over it is dense in the set of all unitaries.

Consider the following gate sets (individual gate definitions are given in the intro-

duction):

• Clifford gate set: {S,H,CZ, ω}.

• Clifford+T gate set: {S,H,CZ, ω, T}.

• Clifford+CS gate set: {S,K,CS, i}.

In the introduction, we also included the scalar ω in the Clifford+CS gate set. But

in quantum computing, scalars are often disregarded, and to get a better connection

between Clifford+CS circuits and matrix rings, we use the gate set {S,K,CS, i}
instead.

We call the operators generated by the above gate sets Clifford operators, Clifford+T

operators, and Clifford+CS operators, respectively. We write C(n), CT (n), and

CCS(n) for the set of n-qubit Clifford, Clifford+T , and Clifford+CS operators re-

spectively. Note that for each n, C(n), CT (n), and CCS(n) all form a group. It

is well-known that C(n) is finite for any given n (see, e.g., [34]), and therefore not

universal for quantum computing. Both CT (n) and CCS(n) are universal (see, e.g.,

[2, 16]). Another thing to note is that CZ is contained in CCS(n) for n > 1, since

CZ = CS2.

Both CZ and CS are two-qubit gates. Another commonly used two-qubit gate is

the Swap gate:

Swap =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ .

It acts on a 2-qubit basis vector by swapping the “bits”, i.e.,

Swap|ab⟩ = |ba⟩.



8

In general, if a 2-qubit state is a tensor product of two 1-qubit states p and q,

Swap(p⊗ q) = q ⊗ p.

In this sense, Swap serves to swap two 1-qubit states. If a 2-qubit gate A is “insen-

sitive” to swapping, i.e., A = SwapA Swap, we say A is symmetric on its two input

qubits. Both CZ and CS are symmetric on their two input qubits.

We use the following circuit notations for S, H, T , K, CZ, and CS, respectively:

S = S , H = H , T = T , K = K ,

CZ = , CS = i .

The CZ gate is usually denoted

Z ,

but since it is symmetric with respect to its two qubits, we prefer the more symmetric

notation shown above. We also use a similar notation for the CS gate, except that

we label it with an “i ”. The circuit notation for the Swap gate is

Swap = .

The symmetric property for CZ (similarly for CS) then becomes

= .

We number the lines from top to bottom (counting from 0). This allows us to

also sometimes write gates in an indexed notation; for example Sj denotes an S-gate

applied to the j-th qubit,

S1 = S = I ⊗ S ⊗ I, and CZ12 = = I ⊗ CZ,

where I is the 1-qubit identity operator. In some contexts, such as to differentiate the

indexed gate with other indexed symbols, we use extra parentheses, e.g., S(1) = S1

and CS(12) = CS12. We also use the X-gate and the controlled X-gate, which are

definable as follows:

X = HSSH(or KSSKi), CX =
H H

(or
K

i i
K

· i).



9

The circuit notation for the controlled X-gate is

.

The CX (CZ and CS) gate is a controlled X gate (controlled Z-gate and con-

trolled S-gate) in the sense that applying a controlled operator to a standard basis

vector doesn’t change the qubit state labelled by a dot, called the control qubit, but

changes the qubit state labelled by the corresponding gate, say X, called the target

qubit, conditionally on the state of the control qubit. Specifically,

CX|0b⟩ = |0b⟩, CX|1b⟩ = |1b′⟩,where |b′⟩ = X|b⟩.

Since CX is not symmetric on its input qubits, we also have the “upside-down”

version

CX10 = =

Note that we have used the indexed gate notation CX10 (to differ from CX) with

the convention that the first index is the control and second is the target.

2.1.3 Measurement

The other operation is the measurement. A measurement is like a finite-valued ran-

dom variable with “side-effect” which modifies the qubit state being measured. First

we give the definition of a full measurement, which measures the whole space.

Definition 2.1.3. Given an n-qubit state
∑︁11..1

j=00...0 αjej, a n-qubit measurement act-

ing on it outputs j and alters it to ej with a probability |αj|2.

Note that we used the binary representation for the index j. We also say the

state collapses to ej after measurement. Now we give the definition of the 1-qubit

measurement acting on the last qubit.

Definition 2.1.4. Given an n-qubit state
∑︁11...1

j=00...0 αj|j⟩, a 1-qubit measurement

acting on the last qubit outputs b and alters the state to
∑︁11...1

j=00...0 α
′
jb|jb⟩ with a

probability p =
∑︁11...1

j=00...0 |αjb|2, where b = 0, 1, and α′
jb = αjb/

√
p.

Note that after the measurement, the state collapses into an (n − 1)-qubit state

tensoring |b⟩. Now we give the definition of the 1-qubit measurement acting on the

k-th qubit.



10

Definition 2.1.5. Given an n-qubit state
∑︁11...1

j=00...0 αj|j⟩, a 1-qubit measurement

acting on the k-th qubit outputs b and alters the state to
∑︁11...1

j=00...0

∑︁11...1
l=00...0 α

′
jbl|jbl⟩

with a probability p =
∑︁11...1

j=00...0

∑︁11...1
l=00...0 |αjbl|2, where b = 0, 1, α′

jbl = αjbl/
√
p, j is of

length k − 1, and l is of length n− k, and jbl is a concatenation of binary strings j,

b, and l.

We can repeatedly apply a k-th qubit measurement, which gives all partial (also

full) measurements. If in this way, we measure all qubits and collect all the outputs

b’s, the measurement result coincides with the full measurement definition.

2.1.4 One- and two-level matrices

One- and two-level matrices are another commonly used way in quantum computing

to define new operators. Consider complex matrices of dimension n× n. We number

the rows and columns of matrices starting from zero, i.e., the entries of an n × n-

matrix are a00, . . . , an−1,n−1. We define a special class of matrices called one- and

two-level matrices.

Definition 2.1.6. Given z ∈ C and j ∈ {0, . . . , n− 1}, the one-level matrix z[j] is

z[j] =

⎡⎢⎢⎣
··· j ···

... I 0 0

j 0 z 0

... 0 0 I

⎤⎥⎥⎦,
i.e., the matrix that is like the n×n-identity matrix, except that the entry at position

(j, j) is z. Similarly, given a 2× 2-matrix U =

[︄
a b

c d

]︄
and j, k ∈ {0, 1, ..., n− 1} with

j < k, the two-level matrix U[j,k] is

U[j,k] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

... j ... k ...

... I 0 0 0 0

j 0 a 0 b 0

... 0 0 I 0 0

k 0 c 0 d 0

... 0 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.



11

Note that if |z| = 1, then z[j] is unitary; similarly, if U is unitary, then so is U[j,k].

We say that U[j,k] is a two-level matrix of type U , and similarly, we say that z[j] is a

one-level matrix of type z.

2.2 Presentation of U4(Z[ 1√
2
, i])

As usual, Z is the ring of integers. Let R = Z[ 1√
2
, i] be the smallest subring of the

complex numbers containing 1√
2
and i. Let ω = eiπ/4, which is an 8th root of unity,

and note that ω = 1+i√
2
∈ R. As before, U4(R) is the group of unitary 4× 4-matrices

with entries in R.

Greylyn [21] gave a presentation of U4(R) by generators and relations. His gen-

erators are ω[j], X[j,k], and H[j,k], where j, k ∈ {0, ..., 3} and j < k. The relations are

shown in Figure 2.1. The intended interpretation of the generators is as 1- and 2-level

matrices. Note that we index rows and columns of matrices starting from 0, whereas

Greylyn indexed them starting from 1. Greylyn’s result is the following:

Theorem 2.2.1 (Greylyn [21]). A presentation of the group U4(R) is given by (Y ,∆),

where the set of generators is Y = {ω[j], X[j,k], H[j,k] | j, k ∈ {1, ..., 4} and j < k}, and
the set of relations ∆ is shown in Figure 2.1.

2.3 Some algebra

2.3.1 Gaussian integers and Gaussian dyadics

As usual, we write N = {0, 1, . . .} for the set of natural numbers. We also write

Z, R, and C to denote the rings of integers, real numbers, and complex numbers,

respectively. We write z† for the complex conjugate of a complex number. Recall

that in any ring, a unit is an invertible element.

Let Z[i] = {a + bi | a, b ∈ Z} be the ring of Gaussian integers. It is a Euclidean

domain, and therefore, division with remainder, greatest common divisors, divisibility,

and the concept of a prime (i.e., a non-unit that cannot be written as the product of

two non-units) all can be used in Z[i]. Let γ = 1 + i. It is well-known that γ is a

Gaussian prime [25]. Note that γ is a divisor of 2, and γ2 and 2 divide each other.



12

(a) Order of generators:

ω8
[j] = ϵ (A1)

H2
[j,k] = ϵ (A2)

X2
[j,k] = ϵ (A3)

(b) Disjoint generators commute:

ω[j]ω[k] = ω[k]ω[j], where j ̸= k (A4)

ω[ℓ]H[j,k] = H[j,k]ω[ℓ], where ℓ ̸= j, k (A5)

ω[ℓ]X[j,k] = X[j,k]ω[ℓ], where ℓ ̸= j, k (A6)

H[j,k]H[ℓ,t] = H[ℓ,t]H[j,k], where {ℓ, t} ∩ {j, k} = ∅ (A7)

H[j,k]X[ℓ,t] = X[ℓ,t]H[j,k], where {ℓ, t} ∩ {j, k} = ∅ (A8)

X[j,k]X[ℓ,t] = X[ℓ,t]X[j,k], where {ℓ, t} ∩ {j, k} = ∅ (A9)

(c) X permutes indices:

X[j,k]ω[k] = ω[j]X[j,k] (A10)

X[j,k]ω[j] = ω[k]X[j,k] (A11)

X[j,k]X[j,ℓ] = X[k,ℓ]X[j,k] (A12)

X[j,k]X[ℓ,j] = X[ℓ,k]X[j,k] (A13)

X[j,k]H[j,ℓ] = H[k,ℓ]X[j,k] (A14)

X[j,k]H[ℓ,j] = H[ℓ,k]X[j,k] (A15)

(d) ω[j]ω[k] is diagonal:

ω[j]ω[k]X[j,k] = X[j,k]ω[j]ω[k] (A16)

ω[j]ω[k]H[j,k] = H[j,k]ω[j]ω[k] (A17)

(e) Relations for H:

H[j,k]X[j,k] = ω4
[k]H[j,k] (A18)

H[j,k]ω
2
[j]H[j,k] = ω6

[j]H[j,k]ω
3
[j]ω

5
[k] (A19)

H[j,k]H[ℓ,t]H[j,ℓ]H[k,t] = H[j,ℓ]H[k,t]H[j,k]H[ℓ,t], where k < ℓ (A20)

Figure 2.1: Greylyn’s relations for U4(Z[ 1√
2
, i]). Whenever we use a generator X[j,k]

or H[j,k], we implicitly assume that j < k. Here ϵ is the empty word.



13

Using Euclidean division, it is further easy to check that

Z[i]/(γ) = {0, 1}, Z[i]/(2) = Z[i]/(γ2) = {0, 1, i, 1 + i}, and

Z[i]/(γ3) = {±1,±i, 0, 1 + i, 1− i, 2}.

Definition 2.3.1. For x ∈ Z[i], if x ≡ 0 (mod γ), we say x is even, otherwise odd.

For example, 2+3i and 5+2i are odd, and 2+4i and 1+3i are even. In particular,

in our context, by an even Gaussian integer we mean one that is divisible by γ, not

necessarily by 2. However if x ∈ Z, then x is even (odd) as an integer if and only if

x is even (odd) as a Gaussian integer. Therefore, our definition of parity extends the

usual one on the integers. The following lemmas are straightforward.

Lemma 2.3.2. Let α = a+ bi ∈ Z[i]. Then α is odd if and only if ∥α∥2 = a2 + b2 is

an odd integer if and only if a+ b is an odd integer.

Lemma 2.3.3. If α ∈ Z[i] is odd, then α ≡ ±1,±i (mod γ3). In other words,

α ≡ ie (mod γ3) for some e ∈ {0, 1, 2, 3}. Moreover, α ≡ ie (mod γ2) for some

e ∈ {0, 1}.

Let D = Z[1
2
] = { a

2k
| a ∈ Z, k ∈ N} be the ring of dyadic fractions, i.e., fractions

whose denominator is a power of 2. Consider D[i] = {r + si | r, s ∈ D} = Z[1
2
, i].

For every t ∈ D[i], there exists some natural number k such that γkt ∈ Z[i]. This

motivates the following definition (similar definitions are also used in [17, 21, 2, 28]).

Definition 2.3.4. Let t ∈ D[i]. A natural number k ∈ N is called a denominator

exponent for t if γkt ∈ Z[i]. The least such k is called the least denominator exponent

of t, denoted by ldeγ(t). Equivalently, the least denominator exponent of t is the

smallest k ∈ N such that t can be written in the form s
γk , where s ∈ Z[i].

More generally, we say that k is a denominator exponent for a vector or matrix if

it is a denominator exponent for all of its entries. The least denominator exponent

for a vector or matrix is therefore the least k that is a denominator exponent for all

of its entries.

Note that for t ∈ D[i], if k = ldeγ(t) > 0, then γkt is odd.



14

2.3.2 Monoid presentation

If X is a set, let us write X∗ for the set of finite sequences of elements of X, which we

also call words over the alphabet X. We write w ·v or simply wv for the concatenation

of words, making X∗ into a monoid. The unit of this monoid is the empty word ϵ.

As usual, we identify X with the set of one-letter words.

Let G be a monoid and let X ⊆ G be a subset of G. We write ⟨X⟩ for the smallest

submonoid of G containing X, and we say that X generates G if ⟨X⟩ = G. Given

any word w ∈ X∗, we write [w]G ∈ G for the canonical interpretation of w in G,

i.e., [−]G : X∗ → G is the unique monoid homomorphism such that [x]G = x for all

x ∈ X.

A relation over X is an element of X∗ × X∗, i.e., an ordered pair of words. We

say that a relation (w, v) is sound in G if [w]G = [v]G. If Γ is a set of relations over

X, we write ∼Γ for the smallest congruence relation on X∗ containing Γ. Here, as

usual, a congruence relation is an equivalence relation that is compatible with the

monoid operation, i.e., such that w ∼ v and w′ ∼ v′ implies ww′ ∼ vv′. If ∼ is

a congruence, then the quotient G/∼ is a well-defined monoid. If f : G → H is a

monoid homomorphism, then its kernel is the relation ∼f defined by u ∼f v if and

only if f(u) = f(v). The kernel of every monoid homomorphism is a congruence, and

conversely, every congruence ∼ is the kernel of some homomorphism, namely of the

canonical quotient map G → G/∼.

Remark 2.3.5. To check that a congruence ∼Γ is sound for G, it suffices to check

that [w]G = [v]G holds for all (w, v) ∈ Γ.

Given a set X of generators for a monoid G and a set Γ of sound relations, we

say that Γ is complete if for all w, v ∈ X∗, [w]G = [v]G implies w ∼Γ v. In that

case, we also say that (X,Γ) is a presentation by generators and relations (or simply

presentation) of G.

2.3.3 Amalgamation

Let us first recall the definition of an amalgamated product of two monoids. For

category theorists, this is simply a pushout: Given monoids M1, M2, and H with

morphisms H → M1 and H → M2, the amalgamated product M1 ∗H M2 is the



15

pushout

H M2

M1 M1 ∗H M2.
⌜

The amalgamated product of three monoids is defined similarly. Suppose M1, M2,

M3, H12, H23, H13 are monoids with morphisms Hjk → Mj and Hjk → Mk for all

relevant j and k. Then the amalgamated product P is the colimit of the following

diagram, which generalizes a pushout:

H23

H13 M3

H12 M2

M1 P.

One way in which an amalgamated product can arise is in the following situation.

Suppose we have three sets of generatorsX, Y , and Z, and three monoid presentations

M1 = ⟨X ∪ Y | Γ1⟩, M2 = ⟨X ∪ Z | Γ2⟩, and M3 = ⟨Y ∪ Z | Γ3⟩. We can

take H12 = ⟨X⟩, H13 = ⟨Y ⟩ and H23 = ⟨Z⟩, with the obvious maps. Then the

amalgamated product P has the presentation ⟨X ∪ Y ∪ Z | Γ1 ∪ Γ2 ∪ Γ3⟩.

In cases where P is an infinite monoid or group, it is remarkable when M1, M2,

and M3 can be chosen to be finite. In that case, the slogan “the only relations that

hold in P are relations that hold in a finite submonoid of P” applies.

2.4 Proof assistant Agda

2.4.1 Proof assistants

Two of our results involve a large amount of computation. We initially wrote a

computer program to generate and verify the relations. However, this raised an

issue: our program was large and complicated and used a variety of tactics, for

which we could not claim with mathematical certainty that our program was free of



16

bugs, nor that it didn’t use some hidden assumptions. Moreover, it would have been

unreasonable for any referee to verify our calculations.

For this reason, we decided to go one step further and formalize the soundness

and completeness proofs in a proof assistant. A proof assistant is a piece of software

in which one can write definitions, theorems, and proofs, and the software will check

the correctness of the proofs. Purists might object that the proof assistant is itself

a piece of software that might be buggy. But, as has been argued eloquently by

[19, 23], current proof assistants can be scrutinized at many levels and are many

orders of magnitude more reliable than the traditional way of checking paper-and-

pencil proofs. The particular proof assistant we used in this work is Agda [1].

2.4.2 Agda

We will give an example to show how formal proofs work. For a detailed introduction,

please see [1]. We will define natural numbers, addition on natural numbers, and show

that addition is associative. Note that lines starting with -- are comments.

-- The following literally says N is a Set and N has two kinds of

-- elements:

-- 1) zero is an element of N;
-- 2) if n ∈ N, succ n is an element of N.

-- Note that ‘‘:’’ in code corresponds to ‘‘∈’’ in math. Set is

-- intuitively the class of all sets.

data N : Set where

zero : N
succ : N → N

-- Implicitly, the data keyword also guarantees:

-- 1) two kinds of elements are never equal, i.e., zero ̸= succ n for

-- all n ∈ N.
-- 2) succ n and succ m are never equal unless n = m.

-- 3) we can do a case distinction on elements of N, which is called

-- ‘‘pattern matching’’ by computer scientists.



17

-- 4) N is the smallest set satisfying the above conditions, or

-- equivalently for category theorists, N is an initial algebra.

-- Addition is defined as follows:

-- This says + is left associative with a priority 6 (e.g., less than

-- the priority of multiplication). Left associative means that a+b+c

-- will be interpreted as (a+b)+c.

infixl 6 _+_

-- We do pattern matching on the first argument. Note that the

-- recursive call terminates since the first argument is ‘‘smaller’’

-- (in Agda lingo, structurally smaller, since it contains one less

-- succ).

_+_ : N → N → N
zero + n = n

succ m + n = succ (m + n)

-- Before we show associativity we need to define the equality

-- predicate. We write a == b for the claim a equals b.

infix 5 _==_

-- Equality on a set A is defined as the smallest reflexive relation.

data _==_ {A : Set} (x : A) : A → Set where

refl : x == x

-- The following is a lemma showing that for any function f, if a == b

-- then f a == f b.

context : ∀ {A : Set} {B : Set} → {a b : A} → (f : A → B) →
a == b → f a == f b

context f refl = refl



18

-- Associativity. Note that the induction hypothesis is a recursive

-- call of lemma-add-assoc on a structural smaller argument.

lemma-add-assoc : ∀ (x y z : N) → (x + y) + z == x + (y + z)

lemma-add-assoc zero y z = refl

lemma-add-assoc (succ x) y z = context succ ih

where

ih = lemma-add-assoc x y z



Chapter 3

Presentation for 2-qubit Clifford+T operators

In this chapter, we give a complete set of relations for 2-qubit Clifford+T circuits.

We do this in several steps. First, a presentation of the group U4(Z[ 1√
2
, i]) of all

unitary 4 × 4-matrices over the ring Z[ 1√
2
, i] is known due to the work of Greylyn

[21]. Second, it is known that the group of 2-qubit Clifford+T circuits is exactly the

subgroup of this group consisting of matrices whose determinant is in {±1,±i} [16].

Third, there is a theorem in group theory called the Reidemeister-Schreier theorem,

by which a complete set of relations for a subgroup can be derived from a complete

set of relations for the supergroup. Fourth, since the resulting relations are very long

and complicated, we simplify them.

The last two steps of this procedure (applying the Reidemeister-Schreier theorem

and simplifying the resulting relations) require a large amount of algebraic manipu-

lations. Our longest equational proof has 480 steps, each of which in turn requires a

lemma or rewrite procedure whose proof itself requires many equational steps. Such

proofs would be impossible to verify by hand, and even verifying them by software

is error-prone since it is hard to guarantee that no unwarranted assumptions were

used. For this reason, we encoded our proof in machine-checkable form, using the

proof assistant Agda [1].

3.1 Statement of the main theorem

Theorem 3.1.1. The 2-qubit Clifford+T group is presented by (X ,Γ), where the set

of generators is

X = {ω,H0, H1, S0, S1, T0, T1, CZ},

and the set of relations Γ is shown in Figure 3.1.

In relations (B18)–(B20), we have used a number of abbreviations; these are de-

fined in Figure 3.2. The empty word is denoted ϵ.

19



20

(a) Monoidal relations:

ωA = Aω, where A ∈ {Hi, Si, Ti, CZ} (B1)

A0B1 = B1A0, where A,B ∈ {H,S, T} (B2)

(b) Order of Clifford group elements:

ω8 = ϵ (B3)

H2
i = ϵ (B4)

S4
i = ϵ (B5)

(SiHi)
3 = ω (B6)

CZ2 = ϵ (B7)

(c) Remaining Clifford relations:

S = S (B8)

S = S (B9)

H S S H =
S S
H S S H (B10)

H S S H
= S S

H S S H
(B11)

H = S H
S
S H S · ω−1 (B12)

H
=

S H
S
S H S

· ω−1 (B13)

(d) “Obvious” relations involving T :

T 2
i = Si (B14)

(TiHiSiSiHi)
2 = ω (B15)

T = T (B16)

H H
H H T =

T H H
H H (B17)

(e) “Non-obvious” relations involving T :

T H T † T H T † = T H T † T H T † (B18)

T H T H T † T H T † H T † = T H T H T † T H T † H T † (B19)

H T H
H T H = H T H

H T H
(B20)

Figure 3.1: Relations for 2-qubit Clifford+T operators. Here i ∈ {0, 1}.



21

T † = T 7

S† = S3

=
H H

=
H S S H

H
= S H T T † H S†

H
=

H H

Figure 3.2: Abbreviations used in circuit notations.

3.2 Proof outline

In a nutshell, the proof can be described in a few sentences. It proceeds as follows. Let

R = Z[ 1√
2
, i] be the smallest subring of the complex numbers containing 1√

2
and i, and

let G = U4(R) be the group of unitary 4×4-matrices with entries in R. Then it is clear

that CT (2) is a subgroup of G, because all of its generators belong to G. Moreover,

from [16], it is known that CT (2) is precisely equal to the subgroup of G consisting

of matrices whose determinant is a power of i. A presentation of G by generators

and relations was given by Greylyn [21]. There is a general procedure, called the

Reidemeister-Schreier procedure [31, 32], for finding generators and relations of a

subgroup, given generators and relations of the supergroup. Applying this procedure

therefore yields a complete set of relations for CT (2).

While in principle, the above proof outline suffices to prove Theorem 3.1.1, in

practice there is a large amount of non-trivial work involved in generating and simpli-

fying the actual relations. For this reason, we have formalized Theorem 3.1.1 and its

proof in the proof assistant Agda. This allows the proof to be independently checked

without too much manual work.

3.3 The Reidemeister-Schreier theorem for monoids

The Reidemeister-Schreier theorem is a theorem in group theory that allows one to

derive a complete set of relations for a subgroup from a complete set of relations for



22

the supergroup, given enough information about the cosets. We will use a version of

the Reidemeister-Schreier theorem that works for monoids, which we now describe.

To our knowledge, this monoid formulation of the Reidemeister-Schreier theorem does

not appear in the literature.

Definition 3.3.1. Given sets X, Y and a function f : X → Y ∗, let f ∗ : X∗ →
Y ∗ be the unique monoid homomorphism extending f . Concretely, f ∗ is given by

f ∗(x1 . . . xn) = f(x1) · . . . · f(xn).

More generally, given sets C,X, Y and a function f : C × X → Y ∗ × C, let

f ∗∗ : C×X∗ → Y ∗×C be the function defined by f ∗∗(c0, x1 . . . xn) = (w1 · . . . ·wn, cn),

where f(ci−1, xi) = (wi, ci) for all i = 1, . . . , n.

Note that in case C is a singleton, the functions f ∗ and f ∗∗ are essentially the

same. In general, the difference is that f ∗∗ also keeps a “state” in the form of an

element of C.

Theorem 3.3.2 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets,

and let Γ and ∆ be sets of relations over X and Y , respectively. Suppose that the

following additional data is given:

• a set C with a distinguished element I ∈ C,

• a function f : X → Y ∗,

• a function h : C × Y → X∗ × C,

subject to the following conditions:

(a) For all x ∈ X, if h∗∗(I, f(x)) = (v, c), then v ∼Γ x and c = I.

(b) For all c ∈ C and w,w′ ∈ Y ∗ with (w,w′) ∈ ∆, if h∗∗(c, w) = (v, c′) and

h∗∗(c, w′) = (v′, c′′) then v ∼Γ v′ and c′ = c′′.

Then for all v, v′ ∈ X∗, f ∗(v) ∼∆ f ∗(v′) implies v ∼Γ v′.

To better understand the utility of this theorem, let us briefly provide some con-

text. First, we note that we will be using this theorem in the case where G is a

monoid, H is a submonoid of G, (Y,∆) is a presentation of G, X is a set of gener-

ators for H, and we wish to show that some proposed set of relations Γ is complete



23

for H. Assuming that all hypotheses of Theorem 3.3.2 are satisfied, and further as-

suming that f represents the inclusion function of H into G, i.e., that for all x ∈ X,

[f(x)]G = [x]H , the completeness of Γ then follows. Namely, [v]H = [v′]H implies

[f ∗(v)]G = [f ∗(v′)]G, which implies f ∗(v) ∼∆ f ∗(v′) by completeness of ∆, which

implies v ∼Γ v′ by Theorem 3.3.2.

To see how the theorem works, it is useful to further concentrate on the case where

G and H are groups, although the theorem itself does not require this. In the case of

groups, one would typically consider the set H\G = {Hc | c ∈ G} of right cosets of

H in G, and one would let C be a set of chosen coset representatives. The function

f is then chosen to assign to each x ∈ X some word w ∈ Y ∗ such that [x]H = [w]G.

The function h is chosen to assign to each pair of a coset representative c ∈ C and

generator y ∈ Y the unique coset representative c′ ∈ C and some word v ∈ X∗ such

that c[y]G = [v]Hc
′. Conditions (a) and (b) are then sufficient for the set of relations Γ

to be complete. In the more general case of monoids, G is not necessarily partitioned

into cosets, but the method works anyway, provided that appropriate C, f , and h

can be chosen.

Proof of Theorem 3.3.2. Let us say that a word w ∈ Y ∗ is special if h∗∗(I, w) = (v, I)

for some v ∈ X∗. Let Y ∗
s be the set of special words. By definition of h∗∗, the

empty word is special and special words are closed under concatenation, so Y ∗
s is a

submonoid of Y ∗. Moreover, the image of f is special by property (a), and therefore

the image of f ∗ is also special. Finally, there is a translation back from special words

in Y to words in X: define g : Y ∗
s → X∗ by letting g(w) = v where h∗∗(I, w) = (v, I).

Clearly, g is a monoid homomorphism.

Claim A: for all v ∈ X∗, we have v ∼Γ g(f ∗(v)). Proof: Since both g and f ∗ are

monoid homomorphisms and ∼Γ is a congruence, it suffices to show this in the case

when v ∈ X is a generator. But in that case, it holds by assumption (a).

Claim B: for all w,w′ ∈ Y ∗ and c ∈ C, if w ∼∆ w′ and h∗∗(c, w) = (v, d) and

h∗∗(c, w′) = (v′, d′), then v ∼Γ v′ and d = d′. Proof: define a relation ∼ on Y ∗ by

w ∼ w′ if for all c ∈ C, h∗∗(c, w) = (v, d) and h∗∗(c, w′) = (v′, d′) implies v ∼Γ v′ and

d = d′. We must show that w ∼∆ w′ implies w ∼ w′. Since ∼∆ is, by definition,

the smallest congruence containing ∆, it suffices to show that ∼ is a congruence

containing ∆. The fact that ∼ is reflexive, symmetric, and transitive is obvious from



24

its definition. The fact that it is a congruence follows from the definition of h∗∗ and

the fact that ∼Γ is a congruence. Finally, ∼ contains ∆ by assumption (b).

Note that, as a special case of claim B, we also have the following: if w,w′ ∈ Y ∗
s

are special words, then w ∼∆ w′ implies g(w) ∼Γ g(w′). This follows directly from

the definition of g.

To finish the proof of the Reidemeister-Schreier theorem, let v, v′ ∈ X∗ and assume

that f ∗(v) ∼∆ f ∗(v′). Then we have:

v ∼Γ g(f ∗(v)) ∼Γ g(f ∗(v′)) ∼Γ v′,

where the first and last congruence holds by claim A, and the middle one holds by

the special case of claim B. Therefore, v ∼Γ v′ as claimed.

Corollary 3.3.3. Let G be a monoid with presentation (Y,∆), where Y ⊆ G. Suppose

H ⊆ G is a submonoid and X is a set of generators for H. Let Γ be a set of valid

relations for H. Assume a set C and functions f and h are given, satisfying the

hypotheses of Theorem 3.3.2, and assume that f represents the inclusion function of

H into G, i.e., that x ∈ X, [f(x)]G = [x]H . Then Γ is a complete set of relations for

H.

3.4 Pauli rotation representation

One of the problems we face in applying the Reidemeister-Schreier theorem is that

we must show that a large number of (computer-generated) Clifford+T relations

follow from the relations in Figure 3.1. It would be very useful if this task could be

automated. Ideally, the relations in Figure 3.1 could be turned into a set of rewrite

rules with the property that every Clifford+T circuit can be rewritten to a unique

normal form; in that case, to show that a given relation follows from the ones in

Figure 3.1, it would be sufficient to reduce the left-hand and right-hand sides to

normal form and check that they are equal.

Unfortunately, no such rewrite system or normal form is known. Instead, the best

we can do is a semi-automated process in which words are rewritten to something

that is “almost” a normal form, i.e., not quite unique, but close enough so that many

relations can be proved automatically, and the rest are more easily solvable by hand.



25

For this, the Pauli rotation representation of Clifford+T operators turns out to

be useful. This representation was first described in [20, Section 3].

Recall that a Pauli operator is an operator of the form λP1 ⊗ ... ⊗ Pn where

λ ∈ {±1,±i} and P1, ..., Pn ∈ {I,X, Y, Z} [34]. Here Z = SS, and Y = iXZ. Note

that a Pauli operator is self-adjoint if and only if λ = ±1. We say a self-adjoint Pauli

operator is positive if λ = 1.

We start by noting that the T -gate is a linear combination of the identity I and

the Pauli operator Z. Specifically:

T =

(︃
1 0

0 ω

)︃
=

1 + ω

2
I +

1− ω

2
Z. (3.1)

Therefore, an operator A commutes with T if and only if it commutes with Z. More

generally, given any n-qubit non-trivial self-adjoint Pauli operator P , define

RP =
1 + ω

2
I +

1− ω

2
P. (3.2)

Note that RZ = T . We refer to the operators RP as (45 degree) Pauli rotations. Note

that RP is not a Pauli operator; we call it a Pauli rotation because it is a rotation

about a Pauli axis. By (3.2), it is again obvious that an operator A commutes with

RP if and only if it commutes with P . Moreover, from (3.2), we get the following

fundamental property of Pauli rotations:

CPC−1 = Q if and only if CRPC
−1 = RQ. (3.3)

Let Z(i) = I ⊗ . . .⊗ I ⊗ Z ⊗ I ⊗ . . .⊗ I be the n-qubit Pauli operator with Z acting

on the ith qubit, and similarly T(i) = I ⊗ . . .⊗ I ⊗ T ⊗ I ⊗ . . .⊗ I = RZ(i)
. Since the

Clifford operators act transitively on the set of non-trivial self-adjoint Pauli operators

by conjugation, for every such n-qubit Pauli operator P , there exists a (non-unique)

Clifford operator C such that CZ(1)C
−1 = P , and therefore CT(1)C

−1 = RP . We

therefore see that all of the Pauli rotations are Clifford conjugates of the T(1)-gate.

Next, we note that every Clifford+T operator can be written as a product of

Pauli rotations followed by a single Clifford operator. Specifically, by definition,

every Clifford+T operator can be written as

C1T(i1)C2T(i2)C3 · · ·CnT(in)Cn+1.



26

For all k, let Dk = C1C2 · · ·Ck, so that Ck = D−1
k−1Dk. Then the above can be

rewritten as

C1T(i1)C2T(i2)C3 · · ·CnT(in)Cn+1

= C1RZ(i1)
C2RZ(i2)

C3 · · ·CnRZ(in)
Cn+1

= D1RZ(i1)
D−1

1 D2RZ(i2)
D−1

2 D3 · · ·D−1
n−1DnRZ(in)

D−1
n Dn+1

= RD1Z(i1)
D−1

1
RD2Z(i2)

D−1
2

· · ·RDnZ(in)D
−1
n
Dn+1

= RP1RP2 · · ·RPnDn+1,

where Pk = DkZ(ik)D
−1
k . Therefore, every Clifford+T operator can be written as a

product of Pauli rotations followed by a single Clifford operator, as claimed. It also

shows that the number of required Pauli rotations is at most equal to the T -count of

the original circuit. In fact, since every Pauli rotation has T -count 1, it is clear that

every product of n Pauli rotations can be converted to a circuit of T -count n, and

vice versa. In particular, the minimal T -count of a circuit is equal to the minimal

number of Pauli rotations required to express it.

The Pauli rotation representation is not unique. There are some obvious relations:

(a) RP and RQ commute if and only if P and Q commute. This follows from (3.2).

(b) For any P , the operatorR2
P is Clifford, and therefore can be eliminated, resulting

in a shorter word. To see why, recall that there exists a Clifford operator C such

that RP = CT(1)C
−1; therefore R2

P = CT 2
(1)C

−1. Since T 2
(1) = S(1) is a Clifford

gate, it follows that R2
P is Clifford.

(c) For any non-trivial positive Pauli operator P , there exists a Clifford operator

D such that R(−P ) = RPD. Indeed, let C be a Clifford operator such that

P = CZ(1)C
−1. Then −P = C(−Z(1))C

−1 = CX(1)Z(1)X(1)C
−1. Therefore

R(−P ) = CX(1)T(1)X(1)C
−1. Using the relation XTX = TS†ω, we have

R(−P ) = CT(1)S
†
(1)ωC

−1 = CT(1)C
−1CS†

(1)ωC
−1 = RPCS†

(1)ωC
−1.

Thus, the claim holds with D = CS†
(1)ωC

−1.

It is relatively easy to standardize the Pauli rotation representation modulo the above

three relations: First, we eliminate any generators of the form R(−P ) where P is a



27

non-trivial positive Pauli operator. This can be done from left to right, using relations

from (c); the resulting Clifford operator can be shifted all the way to the end of the

word using relations of the form DRP = RQD, where Q = DPD−1, see (3.3). Next,

we use relations from (a) to swap adjacent generators when possible, for example

arriving at the lexicographically smallest word that is equal to the given word up

to such commuting permutations. Next, we use relations from (b) to remove any

duplicates. Should there be any such duplicates, the resulting word will need to be

standardized again, but since it uses fewer Pauli rotations, the process eventually

terminates.

However, even when the Pauli rotation representation is standardized modulo the

relations (a), (b), and (c), it is still not unique. Indeed, there are some “non-obvious”

relations. In a sense, the contribution of this chapter is to state exactly what these

non-obvious relations are. They turn out to be the following. Here, for brevity, we

have omitted the tensor symbol ⊗, i.e., we wrote RIX instead of RI⊗X .

RIXRIZRZZRZX = RZXRIZRZZRIX ,

RIXRIZRIXRZXRZZRZX = RZXRIZRIXRZXRZZRIX ,

RXYRY ZRXZRIXRZIRY XRZYRZXRXIRIZ = RY XRZYRZXRXIRIZRXYRY ZRXZRIXRZI .

These turn out to be equivalent to relations (B18), (B19), and (B20) in Figure 3.1,

respectively. We will address the question of what these relations might “mean” (i.e.,

how one might be able to see that they are true without computing the matrices) in

Section 3.7.

3.5 Soundness and completeness

Our goal is to prove that Theorem 2.2.1 implies Theorem 3.1.1. Recall that Greylyn’s

set of generators for U4(R) is Y = {ω[j], X[j,k], H[j,k] | j, k ∈ {1, ..., 4} and j < k}. Also
recall that our target set of generators for CT (2) is X = {ω,H0, H1, S0, S1, T0, T1, CZ}.
We fix a translation from X to Y∗ as in Figure 3.3. We prove the following soundness

and completeness theorems for this translation:

Theorem 3.5.1 (Soundness). For all w, v ∈ X ∗, w ∼Γ v implies f ∗(w) ∼∆ f ∗(v).

Theorem 3.5.2 (Completeness). For all w, v ∈ X ∗, f ∗(w) ∼∆ f ∗(v) implies w ∼Γ v.

As already noted in Section 3.3, these two theorems, together with Theorem 2.2.1,

immediately imply Theorem 3.1.1. Specifically, we have w ∼Γ v if and only if



28

f(ω) = ω[0]ω[1]ω[2]ω[3],

f(H0) = H[1,3]H[0,2],

f(H1) = H[2,3]H[0,1],

f(S0) = ω2
[2]ω

2
[3],

f(S1) = ω2
[1]ω

2
[3],

f(T0) = ω[2]ω[3],

f(T1) = ω[1]ω[3],

f(CZ) = ω4
[3].

Figure 3.3: Translation from X to Y∗.

f ∗(w) ∼∆ f ∗(v) if and only if [f ∗(w)] = [f ∗(v)] if and only if [w] = [v], where

the first equivalence follows from Theorems 3.5.1 and 3.5.2, the second equivalence

follows from Theorem 2.2.1, and the last equivalence holds because the function f

respects the interpretation.

3.6 The formal proof

Soundness and completeness are formally proved in the Agda code accompanying the

paper [9] this chapter is based on. We organized the code to make it hopefully as

easy as possible to verify the result. The code consists of 67 files that are listed in

Figure 3.4, and which we now briefly describe.

(a) Background. The eight files in the “background” section contain general-

purpose definitions of the kind that are usually found in the Agda standard library,

i.e., basic properties of booleans, integers, equality, propositional connectives, etc.

The reason we did not use the actual Agda standard library is that it is very large

and changes frequently. We felt that it is better for our code to be self-contained

rather than depending on a particular library version.

(b) Statement of the result. In these two files, we give a minimal set of definitions

that allows us to state the soundness and completeness theorems. The file Word.agda

defines what it means to be a word over a set of generators, as well as the inference

rules we use for deriving relations from a set of axioms (such as reflexivity, symmetry,

transitivity, congruence, associativity, and the left and right unit laws). Note that in



29

the Agda code, we define a word as a term in the language of monoids, rather than as

a sequence of generators. In other words, associativity and the unit laws are treated as

laws, rather than being built into the definition. The file Word.agda also defines the f ∗

operation used in the statement of the soundness and completeness theorems. The file

Generator.agda defines the Clifford+T generators and the relations from Figure 3.1,

Greylyn’s generators and the relations from Figure 2.1, and the translation function

f from Section 3.5. It also contains the statement of the soundness and completeness

theorems, but not their proofs. The reason we state these theorems separately from

their proofs is to make sure that Agda (and a human reviewer) can verify that the

statement of these theorems only depends on the relatively small number of definitions

given so far, and not on the much larger number of definitions and tactics used in the

proof.

(c) Details of the proof. The proof of the soundness and completeness theorems

relies on a large number of auxiliary definitions and lemmas, and comprises the bulk

of our code with 56 files. This includes a formal proof of the Reidemeister-Schreier

theorem; several tactics for automating steps in certain equational proofs; a simplified

presentation of Greylyn’s generators and relations, using only 5 generators and 19

relations (instead of Greylyn’s original 16 generators and 123 relations), along with

the proof of its completeness; a formalization of Pauli rotations and their relevant

properties; as well as 46 step-by-step proofs of individual relations. These details are

primarily intended to be machine-readable, and can safely be skipped by readers who

trust Agda and merely want to check the proof rather than reading it. However, all

of the files are documented and human-readable.

The relations in the files Equation1.agda to Equation46.agda are at the heart

of the completeness proof. These are the relations that must be proved to satisfy

the hypotheses of the Reidemeister-Schreier theorem. Some of these relations are

trivial, such as Equation13.agda. Others are highly non-trivial and require almost

a thousand proof steps, such as Equation44.agda. In particular, the proofs that

require relations (B18)–(B20) from Figure 3.1 tend to be non-obvious; in fact, this is

how we discovered relations (B18)–(B20) in the first place. We did not write these

equational proofs by hand; instead, we used a semi-automated process where most of



30

the proofs were generated by a separate Haskell program and output in a format that

is convenient and efficient for Agda to check. Originally, we also attempted to write

Agda tactics that would allow Agda to derive these relations fully automatically;

however, this failed due to performance issues with Agda.

(d) Proof witness. Finally, the file Proof.agda contains nothing but a witness of

the fact that the soundness and completeness theorems have been formally proven.

A reader who wants to skip the details of the formal proof only needs to check two

things: the statement of the main theorem in Generator.agda (to make sure the

statement correctly captures what we said it does), and the fact that the Agda proof

checker accepts Proof.agda.

3.7 Discussion of the axioms

Here, we give some further perspectives on what the axioms of Figure 3.1 might

“mean”, and in particular, how one might convince oneself that the relations are true

without having to compute the corresponding matrices.

Note that we are not claiming that axioms (B1)–(B20) are independent; for exam-

ple, (B8) clearly follows from (B14) and (B16); however, we found it useful to separate

the Clifford relations from the rest, which is why (B8) was included. It would be nice

to know whether axioms (B18)–(B20) are independent from the others and from each

other, and this seems likely to be true, but we do not know.

The axioms in groups (a)–(c) are well-known; they merely express the Clifford re-

lations [34] and the fact that operators on disjoint qubits commute. Relations (B14)

and (B15) express the well-known facts that T 2 = S and (TX)2 = ω, whereas rela-

tion (B16) holds because diagonal operators commute. Note that the upside-down

version of relation (B16) was not included among our axioms; this is because it is

actually derivable from the remaining axioms. Relation (B17) becomes obvious once

one realizes that the swap gate can be expressed as a sequence of three controlled

not-gates:

= .

Relation (B17) is then obtained by simplifying the following, which expresses the fact



31

(a) Background:

Boolean.agda The type of booleans.

Proposition.agda Basic definitions in propositional logic.

Equality.agda Basic properties of equality.

Decidable.agda Some definitions to deal with decidable properties.

Inspect.agda Agda’s “inspect” paradigm, to assist with pattern matching.

Nat.agda Basic properties of the natural numbers.

Maybe.agda The “Maybe” type.

List.agda Basic properties of lists.

(b) Statement of the result

Word.agda Basic properties of words.

Generator.agda Generators and relations for our two groups, and statement of

main theorem.

(c) Proof of the result

Word-Lemmas.agda Lemmas about monoids and groups, and equational reasoning.

Reidemeister-Schreier.agda Two versions of the Reidemeister-Schreier theorem.

Word-Tactics.agda Some tactics for proving properties of words.

Clifford-Lemmas.agda A decision procedure for equality of 2-qubit Clifford operators.

CliffordT-Lemmas.agda Properties and tactics for Clifford+T operators.

Greylyn-Lemmas.agda Some automation for Greylyn’s 1- and 2-level operators.

Soundness.agda Proof of soundness.

Greylyn-Simplified.agda A smaller set of generators and relations for Greylyn’s opera-

tors.

PauliRotations.agda Definitions, properties, and tactics for Pauli rotations.

Equation(1-46).agda Explicit proofs of 46 relations required for completeness.

Completeness.agda Proof of completeness.

(d) Top-level proof witness

Proof.agda The final witness for soundness and completeness.

Figure 3.4: List of Agda files. The files are listed in order of dependency, i.e., each
file only imports earlier files.



32

that a T -gate can be moved past a swap-gate:

T =
T

.

We will now focus on the “non-obvious” relations (B18)–(B20). Relations (B18)

and (B19) are of the form

A A† = A A† . (3.4)

They hold because positively controlled gates commute with negatively controlled

gates. Note that there are infinitely many relations of the form (3.4), where A is

any single-qubit Clifford+T operator, but our completeness proof shows that, in the

presence of the remaining axioms, two of them are sufficient to prove all the others.

Relation (B20) is more interesting. It, too, states that two operators commute,

but it is less obvious why this is so. Ideally, we would be able to find some simpler and

more obvious relations that imply (B20). While we have not been able to find such

simpler relations in the Clifford+T generators, we can do this if we permit ourselves

a controlled T -gate. Note that the controlled T -gate is not itself a member of the

2-qubit Clifford+T group, since representing it as a Clifford+T operator requires an

ancilla [16]. But the use of controlled T -gates is nevertheless helpful in explaining

relation (B20). We start by noting that the controlled T -gate satisfies the following

obvious circuit identities (and their upside-down versions):

T
= T (3.5)

T T
= T (3.6)

T

T
=

T

T (3.7)

H T H
=

T H T
. (3.8)

Identities (3.5)–(3.7) are obvious because all of the operators in them are diagonal.

Identity (3.8) holds by case distinction: this circuit applies either HT or TH to the

bottom qubit, depending on whether the top qubit is |0⟩ or |1⟩. Using these identities,
we can easily prove (B20) as in Figure 3.5.



33

H T H

H T H (3.8)
=

T H T

T H T

(3.5)
=

T H T T

H T

(3.6)
=

T H T

H T

=
T H T

H T

(3.5),(3.7)
= T H T

H T

= T H T

H T

(3.6)
= T H

H

T T

T

(3.5)
= T H

H

T

T T

(3.8)
= H T H

H T H
.

Figure 3.5: Relation (B20) is derivable using controlled T -gate.

Note that there is again an infinite family of such relations, because in the above

derivation, we could have used any gate in place of H. However, due to completeness,

all other such relations are consequences of (B18)–(B20) and the remaining axioms.

Another way to look at relations (B18)–(B20) is in terms of their Pauli rotation

representations. As we already mentioned in Section 3.4, up to basis changes, the

three relations can be written in terms of Pauli rotations, respectively as follows:

RIXRIZRZZRZX = RZXRIZRZZRIX ,

RIXRIZRIXRZXRZZRZX = RZXRIZRIXRZXRZZRIX ,

RXYRY ZRXZRIXRZIRY XRZYRZXRXIRIZ = RY XRZYRZXRXIRIZRXYRY ZRXZRIXRZI .

When written in this form, the first two of these relations only use X and Z

Paulis, and use only Z on the left qubit. This indicates that these relations are

about controlled gates. We can also see that in both cases, the relation exchanges the

positions of the leftmost RIX and the rightmost RZX . The first relation can also be

seen to express the fact that RIZRZZ commutes with RZXR
−1
IX , and similarly for the

second relation. The third relation again takes the form of an operator commuting

with its upside-down version.



Chapter 4

Presentation for Un(Z[12 , i])

4.1 Statement of the main theorem

Let G be the set of all one- and two-level matrices of types X, K, and i. We refer to

the elements of G as the generators. Specifically, they are:

• X[j,ℓ], for 0 ≤ j < ℓ < n;

• K[j,ℓ], for 0 ≤ j < ℓ < n; and

• i[j], for 0 ≤ j < n.

Recall that D = Z[1
2
] and D[i] = Z[1

2
, i]. The purpose of this chapter is to prove the

following theorem:

Theorem 4.1.1 (Main theorem). Let ∆ be the set of relations shown in Figure 4.1.

Then (G,∆) is a presentation of Un(D[i]). In other words, the relations in Figure 4.1

are sound and complete for Un(D[i]).

In Figure 4.1, relations (C1)–(C3) give the order of the generators. They also

ensure that all of the generators (and therefore all words of generators) are invertible.

Relations (C4)–(C9) state that generators with disjoint indices commute. Relations

(C10)–(C14) state that X[j,k] can be used to swap indices j and k in any other gener-

ator. Finally, relations (C15)–(C17) state additional properties of the generators. We

note that the relations in Figure 4.1 are not minimal; for example, (C1) and (C18)

imply (C3). However, we think that they are a “nice” set of relations.

To prove the soundness part of Theorem 4.1.1, by Remark 2.3.5, it suffices to

check that each relation in ∆ is true in Un(D[i]). This can be verified by calculation.

The remainder of this chapter is devoted to proving completeness.

For convenience, we say that two words w, u are relationally equivalent if w ∼∆ u

and semantically equivalent if [w] = [u]. Completeness is thus the statement that

34



35

(a) Order of generators:

i4[j] = ε (C1)

X2
[j,k] = ε (C2)

K8
[j,k] = ε (C3)

(b) Disjoint generators commute:

i[j]i[k] = i[k]i[j] (C4)

i[j]X[k,ℓ] = X[k,ℓ]i[j] (C5)

i[j]K[k,ℓ] = K[k,ℓ]i[j] (C6)

X[j,k]X[ℓ,m] = X[ℓ,m]X[j,k] (C7)

X[j,k]K[ℓ,m] = K[ℓ,m]X[j,k] (C8)

K[j,k]K[ℓ,m] = K[ℓ,m]K[j,k] (C9)

(c) X permutes indices:

i[k]X[j,k] = X[j,k]i[j] (C10)

X[k,ℓ]X[j,k] = X[j,k]X[j,ℓ] (C11)

X[j,ℓ]X[k,ℓ] = X[k,ℓ]X[j,k] (C12)

K[k,ℓ]X[j,k] = X[j,k]K[j,ℓ] (C13)

K[j,ℓ]X[k,ℓ] = X[k,ℓ]K[j,k] (C14)

(d) Relations for K:

K[j,k]i
2
[k] = X[j,k]K[j,k] (C15)

K[j,k]i
3
[k] = i[k]K[j,k]i[k]K[j,k] (C16)

K[j,k]i[j]i[k] = i[j]i[k]K[j,k] (C17)

K2
[j,k]i[j]i[k] = ε (C18)

K[j,k]K[ℓ,m]K[j,ℓ]K[k,m] = K[j,ℓ]K[k,m]K[j,k]K[ℓ,m] (C19)

Figure 4.1: A sound and complete set of relations for Un(Z[12 , i]). In each relation,
the indices are assumed to be distinct; moreover, whenever a generator X[a,b] or K[a,b]

is mentioned, we assume a < b.



36

all semantically equivalent words are relationally equivalent, and soundness is the

converse.

4.2 The exact synthesis algorithm

The concepts and results of this section are similar to those used in [17, 21, 2, 28].

Let Un(D[i]) be the group of unitary matrices with entries in D[i]. In this section,

we will show that every element of Un(D[i]) can be written as a product of one- and

two-level matrices of the form i[j], X[j,k], and K[j,k], where i is the imaginary unit and

the matrices X and K are the ones that were defined in the introduction. In other

words, we will show that these matrices are generators for the group Un(D[i]). We

will do so by exhibiting a particular algorithm that inputs a matrix U ∈ Un(D[i])
and outputs a corresponding word in the generators. In quantum computing, such

an algorithm is called an exact synthesis algorithm (as opposed to an approximate

synthesis algorithm, which only approximates a unitary matrix up to some given ε).

The algorithm in this section is adapted from [17] and [2].

Remark 4.2.1. A slight technical inconvenience arises because the matrix K is not

self-inverse. Therefore, in the following presentation we sometimes use K as a gen-

erator and sometimes its inverse K†. We have carefully chosen which one to use in

each instance, to make the proofs in the later parts of the paper as simple as possible.

However, readers who wish to ignore the difference between K and K† can safely do

so, because in any case we have the relation K† = iK, so whatever is generated by

K is also generated by K† and vice versa.

We start with a number of lemmas. Since Z[i] and D[i] are subrings of C, the
usual properties of complex numbers, complex vectors, and complex matrices, such as

complex conjugation, inner product, norm, and conjugate transposition are naturally

inherited. For example, for a vector v ∈ D[i]n, the norm of v is ∥v∥ =
√
v†v, where

v† is the conjugate transpose of v. Note that ∥v∥2 = v†v ∈ D, since v†v ∈ D[i] ∩ R.
Similarly if v ∈ Z[i], then v†v ∈ Z. A unit vector is a vector of norm 1.

If v is a vector, the notation vj refers to its jth entry; entries are numbered starting

from j = 0.



37

Lemma 4.2.2. Let v be a unit vector in Z[i]n. Then v has exactly one non-zero

entry, and that entry is a power of i.

Proof. First note that for α = a+ bi ∈ Z[i], ∥α∥2 = a2 + b2 is a non-negative integer,

and ∥α∥ = 0 if and only if α = 0. Let v = [v0, v1, ..., vn−1]
T . By assumption,∑︁n−1

j=0 ∥vj∥2 = 1. Since each ∥vj∥2 is a non-negative integer, there is exact one non-

zero vj such that ∥vj∥ = 1. Then it is easy to see that vj ∈ {±1,±i}.

Corollary 4.2.3. Let v be a unit vector in Z[i]n, and let p ∈ {0, . . . , n − 1}. Then

there exists a matrix G that is a product of one- and two-level matrices of types i and

X, such that Gv = ep, where ep is the pth standard basis vector.

Proof. By Lemma 4.2.2, v has a unique non-zero entry vm ∈ {±1,±i}. Let e ∈
{0, 1, 2, 3} such that ievm = 1. Define

G =

⎧⎨⎩ie[m] if m = p,

X[m,p]i
e
[m] otherwise.

Then Gv = ep as desired.

Recall from Section 2.3.1 that γ = 1 + i. Also recall the definitions of oddness

and denominator exponents from Definitions 2.3.1 and 2.3.4.

Lemma 4.2.4. Let v be a unit vector in D[i]n with least denominator exponent k > 0,

and let w = γkv ∈ Z[i]n. Then w has an even number of odd entries.

Proof. We have

n−1∑︂
j=0

∥wj∥2 = ∥w∥2 = |γ|2k∥v∥2 = (γγ†)k ≡ 0 (mod γ).

Therefore, there are an even number of j ∈ {0, ..., n − 1} such that ∥wj∥2 is odd. It

follows by Lemma 2.3.2 that an even number of wj are odd.

For brevity, we sometimes write α(γℓ) to denote any member of the congruence

class of α modulo γℓ. In other words, we write α(γℓ) for any element of Z[i] of the
form α + βγℓ, when the value of β is not important.



38

Lemma 4.2.5 (Row operation). Let v ∈ D[i]n be a vector with ldeγ(vj) = ldeγ(vℓ) =

k > 0. Then there exists an exponent q ∈ {0, 1} such that, if we let v′ = K†
[j,ℓ]i

q
[ℓ]v,

then ldeγ(v
′
j), ldeγ(v

′
ℓ) < k. The remaining entries of v are unchanged.

Proof. Let wj = γkvj and wℓ = γkvℓ. Then both wj and wℓ are odd. By Lemma 2.3.3,

there exists q ∈ {0, 1} such that wj ≡ iqwℓ (mod γ2). Then we have

K†iq[1]

[︄
wj

wℓ

]︄
= K†

[︄
wj

iqwℓ

]︄
= K†

[︄
wj

wj + αγ2

]︄
=

1

γ†

[︄
2wj + αγ2

−αγ2

]︄
=

[︄
(wj + αi)γ

−αiγ

]︄
=

[︄
0(γ)

0(γ)

]︄
.

This means ldeγ(K
†iq[1]

[︄
vj

vℓ

]︄
) < k. Clearly, performing K†

[j,ℓ]i
q
[ℓ] on v has the same

effect, and does not change any entries of v besides vj and vℓ, proving the lemma.

Lemma 4.2.6 (Column lemma). Let v be a unit vector in D[i]n, and p ∈ {0, 1, ..., n−
1}. Then there exists a matrix G that is a product of one- and two-level matrices of

types X, K†, and i, such that Gv = ep.

Proof. By induction on k, the least denominator exponent of v, and nested induction

on the number of entries of v with least denominator exponent k. If k = 0, then the

result follows from Corollary 4.2.3. Otherwise, by Lemma 4.2.4, v has at least two

entries with least denominator exponent k. Pick a pair of such entries. Lemma 4.2.5

yields some one- and two level matrices that decrease this pair’s least denominator

exponent. The result then follows by the induction hypothesis.

Since each column of a unitary matrix is a unit vector, the column lemma naturally

gives a way to “fix” every column of a unitary matrix to the jth standard basis vector.

Lemma 4.2.7 (Matrix decomposition). Let U be a unitary n×n-matrix with entries

in D[i]. Then there exists a matrix G that is a product of one- and two-level matrices

of types X, K†, and i such that GU = I.

Proof. This is an easy consequence of the column lemma. Specifically, first use the

column lemma to find a suitable G1 such that the rightmost column of G1U is en−1.

Because G1U is unitary, it is of the form⎡⎣ U ′ 0

0 1

⎤⎦ .



39

Now recursively find one- and two-level matrices to reduce U ′ to the identity matrix.

Corollary 4.2.8. A matrix U with entries in D[i] is unitary if and only if it can be

written as a product of one- and two-level matrices of types X, K, and i.

Proof. The right-to-left implication is obvious, because the relevant one- and two-

level matrices are themselves unitary. The left-to-right implication follows from

Lemma 4.2.7. Specifically, by Lemma 4.2.7, we can find a product G of one- and

two-level matrices of types X, K†, and i such that GU = I. Then U = G−1. Since

X−1 = X, (K†)−1 = K, and i−1 = i3, the inverse G−1 can be expressed as a product

of one- and two-level matrices of the required types.

Note that Corollary 4.2.8 implies part of Theorem 4.1.1, namely that G is a set of

generators for Un(D[i]). The rest of this section is concerned with the completeness of

the relations. Since the proof of Lemma 4.2.7 is constructive, it yields an algorithm

that inputs an element of Un(D[i]) and outputs a sequence G of one- and two-level

matrices of types X, K†, and i such that GU = I. We call this an “exact synthesis

algorithm”. In principle, there are many different ways to achieve this; for example,

one step in the proof of the column lemma requires us to “pick a pair” of entries, and

the computed sequence of generators will depend on which pair we pick. For the rest of

this section, it is important to fix, once and for all, a particular deterministic method

for making these choices. Therefore, we specify one such deterministic procedure in

Algorithm 4.2.9.

In the following, by the pivot column of a matrix U , we mean the rightmost column

where U differs from the identity matrix.

Algorithm 4.2.9 (Exact synthesis algorithm).

INPUT: A unitary n× n-matrix U with entries in D[i].
OUTPUT: A sequence of one- and two-level matrices Gl, . . . , G1 of types X, K†,

and i such that Gl · · ·G1U = I.

STATE: Let M be a storage for a unitary n × n-matrix, and let G⃗ be a storage

for a sequence of one- and two-level matrices.

1. Set M to be U , and set G⃗ to be the empty sequence.



40

2. If M = I, stop, and output G⃗.

3. Let p be the index of the pivot column of M , and let k be the least denominator

exponent of the pivot column of M .

(a) If k = 0, let S⃗ be obtained by applying Corollary 4.2.3 to the pivot column

and p.

(b) If k > 0, Lemma 4.2.4 dictates there are an even number of entries that

have least denominator exponent k. Let the indices of the first two odd

entries be j < ℓ. Let S⃗ be obtained by applying Lemma 4.2.5 to the pivot

column and j, ℓ.

4. Set M to be S⃗M , and prepend S⃗ to G⃗. Go to step 2.

We refer to the S⃗ in step 3 as a syllable. We can also regard G⃗ as a sequence of

syllables, so we can talk about the nth syllable in G⃗.

The fact that the algorithm is correct and terminating can be proved in exactly

the same way as Lemma 4.2.7. However, we will provide a more explicit proof of

correctness and termination, as this will be useful later in this chapter.

Definition 4.2.10. Let M ∈ Un(D[i]). The level of M , denoted by level(M), is

defined as follows: If M = I, then level(M) = (0, 0, 0). Otherwise, level(M) is a

triple (p, k,m) where:

• p is the greatest index such that Mep ̸= ep, i.e., the index of the pivot column.

• k = lde(v), where v is the pivot column.

• m is the number of odd entries in γkv.

Note that p, k,m are natural numbers, so the set of all possible levels is a subset

of N3. We use the lexicographic order on N3, defined by (p, k,m) < (p′, k′,m′) iff

p < p′ or (p = p′ and k < k′) or (p = p′ and k = k′ and m < m′). This makes N3 into

a well-ordered set.

Theorem 4.2.11. Given a unitary matrix U ∈ Un(D[i]), Algorithm 4.2.9 outputs a

finite sequence of one- and two-level matrices Gl, . . . , G1 such that Gl · · ·G1U = I.



41

Proof. For correctness, it suffices to note that after the initialization in step 1, M and

G⃗ are only updated in step 4, and at each point in the algorithm, we have M = G⃗U .

The algorithm only stops when M = I, at which point we therefore have I = G⃗U .

The only thing that remains to be shown is that the algorithm terminates.

We prove termination by well-ordered induction on the level of M . Specifically, we

prove that after the algorithm reaches step 2, it always terminates. When M = I, this

is trivially true. Otherwise, step 3 yields a syllable S⃗ such that level(S⃗M) < level(M).

Step 4 sets M to S⃗M , and loops back to step 2. At this point, since M now has a

strictly smaller level, the algorithm terminates by the induction hypothesis.

4.3 The Cayley graph

In order to conceptualize the proof of Theorem 4.1.1, it is useful to define a particular

kind of infinite directed graph, which we call the Cayley graph of Un(D[i]). The

vertices of the Cayley graph are the elements of Un(D[i]), i.e., unitary matrices with

entries in D[i]. The identity matrix I plays a special role and we call it the root of the

graph. We often use letters such as s, r, t, q to denote vertices of the Cayley graph.

Our Cayley graph contains two different kinds of edges:

• Simple edges. Simple edges are labelled by generators G ∈ G and denoted by

single arrows
G−→. There is an edge s

G−→ t if and only if Gs = t. For the

latter equation to make sense, keep in mind that G, s, and t are all elements of

Un(D[i]).

• Normal edges. Recall from Section 4.2 that each word S⃗ that is produced in

step 3 of Algorithm 4.2.9 is called a syllable. From now on, we often write N to

denote a single such syllable (which may, however, be a word consisting of more

than one generator). Normal edges are labelled by syllables, and are denoted

by double arrows
N
=⇒. For every non-root vertex s of the Cayley graph, there is

a unique normal edge originating at s, and it is given by s
N
=⇒ t, where N is the

syllable that Algorithm 4.2.9 produces when M = s, and t = S⃗s.

Note that as a consequence of these definitions, the Cayley graph has a tree

structure with respect to the normal edges. Specifically, for every vertex s, there



42

exists a unique path of normal edges starting at s. Also note that if s
N
=⇒ t, then

level(t) < level(s), so the path of normal edges starting at any given vertex s is

necessarily finite. Since the root I is the only vertex with no outgoing normal edge,

every such path therefore necessarily ends at I, i.e., it is of the form s = s0
N1=⇒ s1

N2=⇒
. . .

Nm==⇒ sm = I, for m ≥ 0.

Definition 4.3.1. Given any matrix U ∈ Un(D[i]), its normal word is the word

w ∈ G∗ defined as follows: Let U = s0
N1=⇒ s1

N2=⇒ . . .
Nm==⇒ sm = I be the unique path

of normal edges from U to I in the Cayley graph. Then we define w to be the con-

catenation Nm · · ·N1, where each occurrence of K† is replaced by K7. Equivalently,

w is the word output by Algorithm 4.2.9 on input U . Note that, by definition of the

Cayley graph or equivalently by Theorem 4.2.11, we have [w]U = I, or in other words

[w] = U−1. We write w = normal(U) when w is the normal word of U .

Moreover, given any word u ∈ G∗, not necessarily normal, define its normal form

to be normal([u]−1). Note that by definition, every word u has a unique normal form,

and if w is the normal form of u, then [w] = [u]. Moreover, if [u] = [u′] then u and u′

have the same normal form. We write nf(u) for the normal form of a word u.

Given a path G⃗ = s0
G1−→ s1

G2−→ s2 . . . sn−1
Gn−→ sn of simple edges in the Cayley

graph, we define the level of the path by level(G⃗) = max{level(si) | i = 0, . . . , n}.
Here, the level of a vertex is of course as defined in Definition 4.2.10.

4.4 Basic generators

To simplify the proof of completeness, it will sometimes be useful to consider a smaller

set of generators for Un(D[i]), which we call the basic generators. They are the

following:

• X[j,j+1], for 0 ≤ j < n− 1;

• K[0,1]; and

• i[0].

We also call the corresponding edges of the Cayley graph basic edges.



43

Lemma 4.4.1. Each generator G ∈ G can be written as a product of basic generators

by means of repeated applications of the following relations:

i[j] ∼∆ X[0,j]i[0]X[0,j] for j > 1,

K[j,ℓ] ∼∆ X[0,j]K[0,ℓ]X[0,j] for j > 0,

K[0,ℓ] ∼∆ X[1,ℓ]K[0,1]X[1,ℓ] for ℓ > 1,

X[j,ℓ] ∼∆ X[j,j+1]X[j+1,ℓ]X[j,j+1] for ℓ > j + 1.

Proof. By case distinction. For example, by repeated application of these relations,

we have:

K[2,4] ∼∆ X[0,1]X[1,2]X[0,1]X[1,2]X[2,3]X[3,4]X[2,3]X[1,2]K[0,1]X[1,2]X[2,3]X[3,4]X[2,3]X[1,2]X[0,1]X[1,2]X[0,1].

Moreover, we will use the following fact: if s
G−→ r is a simple edge of the Cayley

graph and s
G1−→ s1

G2−→ . . .
Gm−−→ r is the corresponding sequence of basic edges obtained

from the above relations, then level(s1), . . . , level(sm−1) ≤ max(level(s), level(r)). In

other words, the conversion to basic generators does not increase the level.

4.5 Reduction of completeness to the Main Lemma

We now outline our strategy for proving completeness. For pedagogical reasons, the

following lemmas are stated in the opposite order in which they are proved, i.e., each

lemma implies the one before it. Completeness is a direct consequence of the following

lemma.

Lemma 4.5.1. Every word is relationally equivalent to its normal form.

To see why the lemma implies completeness, let v, u be any two words such that

[v] = [u]. Then v and u have the same normal form, say w. By the lemma, v ∼∆

w ∼∆ u, from which completeness follows by transitivity.

We will prove Lemma 4.5.1 by induction on the length of the word u. Since by

Lemma 4.4.1, each generator is relationally equivalent to a word of basic generators,

we can assume without loss of generality that u consists of basic generators. For the

induction step, we use the following lemma:



44

Lemma 4.5.2. Consider any basic edge s
G−→ r of the Cayley graph. Let w =

normal(s) and u = normal(r). Then w ∼∆ uG. Or in pictures, the following di-

agram commutes relationally:

s G →→

N1 ↓↘

r
N ′

1↙↓

N2 ↓↘

∼∆

N ′
2↙↓

···
↓↘

···
↙↓

Nm ↓↘ N ′
m′↙↓

I

To see why Lemma 4.5.2 implies Lemma 4.5.1, consider any word u composed

of basic generators. If u = ε, then u is already normal so there is nothing to show.

Otherwise, u = u′G for some generator G. Let s = [u]−1 and r = [u′]−1; then s
G−→ r

is a basic edge of the Cayley graph. By Lemma 4.5.2, we have normal(r)G ∼∆

normal(s). Also, by the induction hypothesis, since u′ is a shorter word than u,

we have u′ ∼∆ nf(u′). Then the claim follows because u = u′G ∼∆ nf(u′)G =

normal(r)G ∼∆ normal(s) = nf(u). The following diagram illustrates the proof in

case u = G4G3G2G1 is a word of length 4.

s
r

•

•

I

G1 G2

G3

G4

∼∆
∼∆

∼∆

∼∆

So now, what is left to do is to prove Lemma 4.5.2. We will prove this by induction

on the level of s. The induction step uses the following lemma.

Lemma 4.5.3 (Main Lemma). Assume s
G−→ r is a basic edge of the Cayley graph,

and s
N
=⇒ t is a normal edge. Then there exists a sequence of normal edges r

N⃗
′

=⇒ q

and a sequence of basic edges t
G⃗

′

−→ q such that N⃗
′
G ∼∆ G⃗

′
N and level(G⃗

′
) < level(s).



45

Here is the relation N⃗
′
G ∼∆ G⃗

′
N as a diagram:

s
G →→

N
↓↓
∼∆

r

N⃗
′

↓↓
t G⃗

′
→→ q.

(4.1)

The proof that Lemma 4.5.3 implies Lemma 4.5.2 proceeds by induction on the

level of s. The base case arises when s = I. In that case, an easy case distinction

shows that the claim holds for all generators G. For the induction step, we have

s ̸= I, so there exists a unique normal edge s
N
=⇒ t. By Lemma 4.5.3, there exists

a sequence of normal edges r
N⃗

′

=⇒ q and a sequence of basic edges t
G⃗

′

−→ q such that

(4.1) holds and level(G⃗
′
) < level(s). Since the level of each vertex occurring in the

path t
G⃗

′

−→ q is strictly less than the level of s, by the induction hypothesis, the claim

of Lemma 4.5.2 is already true for each edge in this path. Then the lemma follows

by the following diagram; note that each part commutes relationally and therefore so

does the whole diagram.

s r

t t1 t2 . . . q

I

G

N N⃗
′

G′
1 G′

2 G′
3 G′

n

∼∆

∼∆ ∼∆ ∼∆ ∼∆

Given the above sequence of lemmas, to finish the completeness proof, all that is now

left to do is to prove Lemma 4.5.3.

4.6 Proof of the Main Lemma

Before we prove Lemma 4.5.3, we collect a number of useful consequences of the

relations from Figure 4.1. These are shown in Figure 4.2. The proofs of these relations

are straightforward.

To keep the proof of Lemma 4.5.3 as readable as possible, we make the following

simplification. Each time we complete the diagram (4.1), we will permit G⃗
′
to be a

sequence of simple edges, rather than basic edges as required by the lemma. This is



46

justified because each such sequence of simple edges can be expanded into a (usually

much longer) sequence of basic edges whose level is no higher than that of the original

sequence.

With that in mind, we now proceed to prove Lemma 4.5.3 by case distinction.

Assume s
G−→ r is a basic edge of the Cayley graph, and s

N
=⇒ t is a normal edge. Let

L = (p, k,m) be the level of s; specifically, p is the index of the pivot column, k is

the least denominator exponent of the pivot column, m is the number of odd entries

in γkv, where v is the pivot column. Also let w = γkv.

Case 1. G = i[0]. Let j be the index of the first odd entry of w.

Case 1.1. j > 0. Note that 0 < j ≤ p. Then the normal edge N does not act on row

0, and N is still the normal edge for state r. We complete the diagram as follows.

s
i[0]
→→

N
↓↓

r

N

↓↓
t

i[0]
→→ q

The diagram commutes relationally by (C4)–(C9), which ensure that disjoint gen-

erators commute. We will encounter additional cases in which the states s and r

generate the same syllable N and the indices that N acts on are disjoint from those

of G. We will refer to such cases as “disjoint” cases.

Case 1.2. j = 0, k = 0, and p = 0. Since the jth entry of v is odd, by Lemma 4.2.2,

it must be of the form ie for some e ∈ {0, . . . , 3}. Note that e = 0 is not possible,

because then v would be ep and would not be a pivot column. Therefore e > 0. In

that case, the normal edge from s is i4−e
[0] and we complete the diagram as follows.

s
i[0]
→→

i4−e
[0]
↓↓

r

i3−e
[0]
↓↓

t ε
→→ t

Note that here,
ε−→ denotes a path of length 0. Also,

i3−e
[0]
==⇒ denotes a path of length

0 if e = 3 and a path of length 1 otherwise. The diagram commutes relationally by

reflexivity.

Case 1.3. j = 0, k = 0, and p > 0. In this case, the exact synthesis algorithm

specifies that the normal edge from s is X[0,p]i
−e
[0] , and the normal edge from r is



47

K†
[j,ℓ]i[j] ∼∆ i[j]i[ℓ]X[j,ℓ]K

†
[j,ℓ]i[ℓ] (4.2)

K[j,ℓ] ∼∆ i3[j]i
3
[ℓ]K

†
[j,ℓ] (4.3)

K†
[j,ℓ]i[ℓ]K[j,ℓ] ∼∆ i3[ℓ]X[j,ℓ]K

†
[j,ℓ]i[ℓ] (4.4)

X[j,ℓ]i
q
[j]X[k,ℓ] ∼∆ X[j,k]X[j,ℓ]i

q
[j] (4.5)

X[k,ℓ]i
q
[k]X[j,k] ∼∆ X[j,k]X[j,ℓ]i

q
[j] (4.6)

K[j,ℓ]i
q
[ℓ]X[k,ℓ] ∼∆ X[k,ℓ]K[j,k]i

q
[k] (4.7)

K†
[ℓ,ℓ′]K

†
[j,j′]K

†
[j′,ℓ′]K

†
[j,ℓ]X[ℓ,j′] ∼∆ X[ℓ,j′]K

†
[ℓ,ℓ′]K

†
[j,j′]K

†
[j′,ℓ′]K

†
[j,ℓ] (4.8)

K†
[j,ℓ]i[ℓ]X[j,ℓ] ∼∆ X[j,ℓ]i

3
[j]i[ℓ]K

†
[j,ℓ]i[ℓ] (4.9)

Figure 4.2: Some useful relations in ∼∆. All of these are consequences of the relations
in Figure 4.1. As before, in each relation, the indices are assumed to be distinct, and
when a generator X[a,b] or K[a,b] is mentioned, we assume a < b. K† abbreviates K7.

X[0,p]i
−e−1
[0] . Here and from now on, we will tacitly understand all exponents of i[j] to

be taken modulo 4, which is justified by relation (C1). Similarly, from now on we

will also tacitly use relations (C2) and (C3) to invert the X and K generators when

appropriate. We complete the diagram as follows.

s
i[0]
→→

X[0,p]i
−e
[0]
↓↓

r

X[0,p]i
−e−1
[0]

↓↓
t ε

→→ q

Case 1.4. j = 0 and k > 0. By Lemma 4.2.4, w has an even number of odd entries.

Let ℓ be the index of the second odd entry of w. In this case, the exact synthesis

algorithm specifies that the normal edge from s is K†
[0,ℓ]i

q
[ℓ] and the normal edge from

r is K†
[0,ℓ]i

q′

[ℓ], for q, q
′ ∈ {0, 1} and q′ ̸= q. We complete the diagram as follows:

s
i[0]

→→

K†
[0,ℓ]

iq
[ℓ]
↓↓

r

K†
[0,ℓ]

iq
′

[ℓ]
↓↓

t
i[0]i[ℓ]X

q
[0,ℓ]

→→ q

This diagram commutes relationally by (C15) when q = 0 and by (4.2) when q = 1.

Case 2. G = K[0,1].

Case 2.1. k = 0. Let j be the index of the first odd entry of w.



48

Case 2.1.1. j < 2. In this case, the exact synthesis algorithm specifies that the

normal edge from r is K†
[0,1]. We complete the diagram as follows, and it commutes

relationally by (C3).

s
K[0,1]

→→

N
↓↓

r

K†
[0,1]

↓↓
t

ε

↘↘

s

N

↓↓
q

We will encounter additional cases in which the normal edge from r is relationally the

inverse of G. In such cases, the diagram can always be completed in the same way.

We refer to these cases as “retrograde”.

Case 2.1.2. j ≥ 2. Note that v0 = v1 = 0. Here, and from now on, we write vj for

the jth component of a vector v. Since j ≤ p, the normal edges from both s and r

are X[j,p]i
−e
[j] , which are disjoint from K[0,1]. This is a disjoint case.

Case 2.2. k > 0. By Lemma 4.2.4, w has an even number of odd entries. Let j and

ℓ be the indices of the first two odd entries of w.

Case 2.2.1. j = 0 and ℓ = 1. In this case, the exact synthesis algorithm specifies

that the normal edge from s is K†
[0,1]i

q
[1]. If q = 0, then level(r) < level(s), and we

complete the diagram as follows. It commutes relationally by (4.3).

s
K[0,1]

→→

K†
[0,1]
↓↓

r

ε

↓↓
t

i3
[0]

i3
[1]
→→ r

If q = 1, then the exact synthesis algorithm specifies that the normal edge from

r is also K†
[0,1]i[1]. In this case, we complete the diagram as follows. It commutes

relationally by (4.4).

s
K[0,1]

→→

K†
[0,1]

i
[1]
↓↓

r

K†
[0,1]

i
[1]

↓↓
t

i3
[1]

X[0,1]
→→ r

Case 2.2.2. j = 0 and ℓ > 1. Note that j < ℓ ≤ p, so the first two entries in

each column after the pivot column are 0, hence K[0,1] does not change p. But it will

increase the least denominator exponent of the pivot column from k to k + 1. The

exact synthesis algorithm then specifies that the normal edge from r is K†
[0,1], so this

case is retrograde.



49

Case 2.2.3. j = 1. This is similar to the previous case. Again, K[0,1] increases the

denominator exponent of the pivot column, the normal edge is K†
[0,1], and so the case

is retrograde.

Case 2.2.4. j > 1. In this case, lde(v0, v1) < k. Note that j < ℓ ≤ p, so the first two

entries in each column after the pivot column are 0, hence K[0,1] does not change p.

The exact synthesis algorithm specifies that the normal edge from s is K†
[j,ℓ]i

q
[ℓ]. Let

v′ be the pivot column of r.

If lde(v′0, v
′
1) < k, then the normal edge from r is also K†

[j,ℓ]i
q
[ℓ] and the case is

disjoint. On the other hand, if lde(v′0, v
′
1) = k. Let w′ = γkv′. One can show that in

this case, w′
0 ≡ w′

1 (mod γ2), and therefore the normal edge from r is K†
[0,1]. Then

this case is retrograde.

Case 3. G = X[α,α+1].

Case 3.1. k = 0. Let j be the index of the first odd entry of v. Note that j ≤ p.

Also, by Lemma 4.2.2, the jth entry of v is of the form ie for some e ∈ {0, . . . , 3}.
Case 3.1.1. α ≥ p. Applying X[α,α+1] increases p, and the exact synthesis algorithm

specifies that the normal edge from r is X[α,α+1]. Hence this case is retrograde using

(C2).

Case 3.1.2. α = p− 1.

Case 3.1.2.1. j = α + 1. Note that e = 0 is not possible, because then v would

be ep and would not be a pivot column. Therefore e > 0. The exact synthesis

algorithm specifies that the normal edge from s is i−e
[α+1] and the normal edge from r

is X[α,α+1]i
−e
[α]. We complete the diagram as follows, and it commutes relationally by

(C10) and (C2).

s
X[α,α+1]

→→

i−e
[α+1]

↓↓

r

X[α,α+1]i
−e
[α]

↓↓
t ε →→ q

Case 3.1.2.2. j = α. The exact synthesis algorithm specifies X[α,α+1]i
−e
[α] and i−e

[α+1]

as the normal edges from s and r, respectively. We complete the diagram as follows,

and it commutes relationally by (C10).

s
X[α,α+1]

→→

X[α,α+1]i
−e
[α]
↓↓

r

i−e
[α+1]

↓↓
t ε →→ q



50

Case 3.1.2.3. j ≤ α−1. The exact synthesis algorithm specifies that the normal edge

from both s and r is X[j,α+1]i
−e
[j] . We complete the diagram as follows. It commutes

relationally by (4.5).

s
X[α,α+1]

→→

X[j,α+1]i
−e
[j]
↓↓

r

X[j,α+1]i
−e
[j]

↓↓
t

X[j,α]
→→ q

Case 3.1.3. α ≤ p− 2.

Case 3.1.3.1. j = α. The exact synthesis algorithm specifies that the normal

edge from s is X[α,p]i
−e
[α] and the normal edge from r is X[α+1,p]i

−e
[α+1] We complete the

diagram as follows. It commutes relationally by (4.6).

s
X[α,α+1]

→→

X[α,p]i
−e
[α]
↓↓

r

X[α+1,p]i
−e
[α+1]

↓↓
t

X[α,α+1]
→→ q

Case 3.1.3.2. j = α + 1. The exact synthesis algorithm specifies that the normal

edge from s is X[α+1,p]i
−e
[α+1] and the normal edge from r is X[α,p]i

−e
[α] We complete the

diagram as follows. It commutes relationally by (4.6) and (C2).

s
X[α,α+1]

→→

X[α+1,p]i
−e
[α+1]

↓↓

r

X[α,p]i
−e
[α]

↓↓
t

X[α,α+1]
→→ q

Case 3.1.3.3. j ̸= α and j ̸= α + 1. In this case, both normal edges are X[j,p]i
−e
[j] .

This case is disjoint.

Case 3.2. k > 0. By Lemma 4.2.4, w has an even number of odd entries. Let j and

ℓ be the indices of the first two odd entries of w.

Case 3.2.1. α ≥ p. Applying X[α,α+1] increases p, and the normal edge from r is

X[α,α+1]. Therefore this case is retrograde.

Case 3.2.2. α < p. We will do a case distinction on how j < ℓ overlaps with

α < α+ 1.

Case 3.2.2.1. ℓ < α. The normal edge from both s and r is K†
[j,ℓ]i

q
[ℓ], so this case is

disjoint.

Case 3.2.2.2. ℓ = α. The exact synthesis algorithm specifies that the normal edge

from s is K†
[j,α]i

q
[α], for some q ∈ {0, 1}.



51

If wα+1 is even, then the normal edge from r will be K†
[j,α+1]i

q
[α+1]. In this case, we

can complete the diagram as follows. It commutes relationally by (4.7).

s
X[α,α+1]

→→

K[j,α]i
q
[α]

↓↓

r

K[j,α+1]i
q
[α+1]

↓↓
t

X[α,α+1]
→→ q

Now assume that wα+1 is odd. By Lemma 4.2.4, we have a fourth odd entry. Let

j′ = α + 1 and ℓ′ be the index of the fourth odd entry. By Lemma 2.3.3, we have

wj = ie + aγ3, wℓ = if + bγ3, wj′ = ig + cγ3, and wℓ′ = ih + dγ3, for some e, f, g, h ∈
{0, . . . , 3} and a, b, c, d ∈ Z[i].
Case 3.2.2.2.1. e = f = g = h = 0. In this special case, the normal edges from s

and r are both K†
[j,ℓ]. We complete the diagram as follows.

s
X[ℓ,j′]

→→

K†
[j,ℓ]
↓↓

r

K†
[j,ℓ]

↓↓
t

K†
[j′,ℓ′]

→→
K†

[j,j′]
→→

K†
[ℓ,ℓ′]

→→
X[ℓ,j′]

→→
K[ℓ,ℓ′]

→→
K[j,j′]

→→
K[j′,ℓ′]

→→ q

The fact that this diagram commutes relationally follows from (4.8). We verify that

it satisfies the level condition in Figure 4.3. The figure shows only entries j, ℓ, j′, ℓ′

of γk times the pth column of each state. Since in all 8 states below the top row, at

least two entries are even, the level of all of these states is strictly less than that of s.

Case 3.2.2.2.2. Otherwise. In the general case, the normal edge from s is K†
[j,ℓ]i

q
[ℓ],

where q = 0 if e− f is even and q = 1 if e− f is odd. Similarly, the normal edge from

r is K†
[j,ℓ]i

q′

[ℓ], where q′ = 0 if e − g is even and q′ = 1 if e − g is odd. Define q′′ = 0

when −q − f + e ≡ 0 (mod 4) and q′′ = 1 when e − f − q ≡ 2 (mod 4). Similarly,

define q′′′ = 0 when e− g− q′ ≡ 0 (mod 4) and q′′′ = 1 when −q− g+ e ≡ 2 (mod 4).

We complete the diagram using the outer perimeter of Figure 4.4. Here, the bottom

edge is given as in the previous case. To see that the outer perimeter relationally

commutes, it suffices to show that the four inner faces relationally commutes. The

bottom face does so by the previous case. The middle face commutes by repeated

applications of (C5) and (C10). To see why the left face commutes, we first note that

K†
[j,ℓ] i

e−f−q
[ℓ] ∼∆ Xq′′

[j,ℓ] K
†
[j,ℓ]. (4.10)



52

⎛⎜⎜⎝
1 + aγ3

1 + bγ3

1 + cγ3

1 + dγ3

⎞⎟⎟⎠ X[ℓ,j′]
→→

K†
[j,ℓ]
↓↓

⎛⎜⎜⎝
1 + aγ3

1 + cγ3

1 + bγ3

1 + dγ3

⎞⎟⎟⎠
K†

[j,ℓ]
↓↓⎛⎜⎜⎝

(1 + i) + i(a+ b)γ2

i(a− b)γ2

1 + cγ3

1 + dγ3

⎞⎟⎟⎠
K†

[j′,ℓ′]
↓↓

⎛⎜⎜⎝
(1 + i) + i(a+ c)γ2

i(a− c)γ2

1 + bγ3

1 + dγ3

⎞⎟⎟⎠
↑↑

K[j′,ℓ′]⎛⎜⎜⎝
(1 + i) + i(a+ b)γ2

i(a− b)γ2

(1 + i) + i(c+ d)γ2

i(c− d)γ2

⎞⎟⎟⎠
K†

[j,j′]
↓↓

⎛⎜⎜⎝
(1 + i) + i(a+ c)γ2

i(a− c)γ2

(1 + i) + i(b+ d)γ2

i(b− d)γ2

⎞⎟⎟⎠
↑↑

K[j,j′]⎛⎜⎜⎝
2i− (a+ b+ c+ d)γ

i(a− b)γ2

−(a+ b− c− d)γ
i(c− d)γ2

⎞⎟⎟⎠
K†

[ℓ,ℓ′]
↓↓

⎛⎜⎜⎝
2i− (a+ c+ b+ d)γ

i(a− c)γ2

−(a+ c− b− d)γ
i(b− d)γ2

⎞⎟⎟⎠
↑↑

K[ℓ,ℓ′]⎛⎜⎜⎝
2i− (a+ b+ c+ d)γ
−(a− b+ c− d)γ
−(a+ b− c− d)γ
−(a− b− c+ d)γ

⎞⎟⎟⎠ X[ℓ,j′]
→→

⎛⎜⎜⎝
2i− (a+ c+ b+ d)γ
−(a− c+ b− d)γ
−(a+ c− b− d)γ
−(a− c− b+ d)γ

⎞⎟⎟⎠
Figure 4.3: Level condition verification.



53

s
X[ℓ,j′]

→→

i−e
[j]

i−f
[ℓ]

i−g

[j′]i
−h
[ℓ′]

↓↓

K†
[j,ℓ]

iq
[ℓ]

↙↙

r

K†
[j,ℓ]

iq
′

[ℓ]

↘↘i−e
[j]

i−g
[ℓ]

i−f

[j′]i
−h
[ℓ′]

↓↓i−e
[j]

i−e
[ℓ]

Xq′′
[j,ℓ]

i−g

[j′]i
−h
[ℓ′]

↓↓

i−e
[j]

i−e
[ℓ]

Xq′′′
[j,ℓ]

i−f

[j′]i
−h
[ℓ′]

↓↓

s′

K†
[j,ℓ]

↙↙

X[ℓ,j′]

→→ r′

K†
[j,ℓ]

↘↘
previous case

→→

Figure 4.4: A diagram which reduces case 3.2.2.2.2 to a previous case.

Namely, this holds by (C13) in case e− f − q ≡ 2 (mod 4) and q′′ = 1, and it holds

trivially in case e − f − q ≡ 0 (mod 4) and q′′ = 0. Then the left face commutes

because

K†
[j,ℓ] i

−e
[j] i

−f
[ℓ] i

−g
[j′] i

−h
[ℓ′] ∼∆ K†

[j,ℓ] i
−e
[j] i

−e
[ℓ] i

e−f−q
[ℓ] iq[ℓ]i

−g
[j′] i

−h
[ℓ′] by (C1)

∼∆ i−e
[j] i

−e
[ℓ] K

†
[j,ℓ] i

e−f−q
[ℓ] iq[ℓ]i

−g
[j′] i

−h
[ℓ′] by (C15)

∼∆ i−e
[j] i

−e
[ℓ] X

q′′

[j,ℓ] K
†
[j,ℓ] i

q
[ℓ] i

−g
[j′] i

−h
[ℓ′] by (4.10)

∼∆ i−e
[j] i

−e
[ℓ] X

q′′

[j,ℓ] i
−g
[j′] i

−h
[ℓ′] K

†
[j,ℓ] i

q
[ℓ] by (C4) and (C6).

The right face commutes for the same reason, just swapping the rules of f and g.

Finally, we need to verify that the diagram satisfies the level condition. To this end,

note that s, r, s′, and r′ all have the same level, because the operations X[ℓ,j′] and

i−e
[j] i

−f
[ℓ] i

−g
[j′] i

−h
[ℓ′] neither change the pivot column, the denominator exponent, nor the

number of odd entries. Together with the fact that normal edges are level decreasing

and with what was shown in the previous case, this implies the level condition.

Case 3.2.2.3. ℓ = α + 1 and j = α. In this case, the exact synthesis algorithm

prescribes that the normal edges from both s and r are K†
[α,α+1]i

q
[α+1], for q ∈ {0, 1}.

We complete the diagram as follows. It commutes relationally by the inverse of (C13)



54

when q = 0 and by (4.9) when q = 1.

s
X[α,α+1]

→→

K†
[α,α+1]

iq
[α+1]

↓↓

r

K†
[α,α+1]

iq
[α+1]

↓↓
t

Xq
[α,α+1]

i−q
[α]

i2−q
[α+1]

→→ q

Case 3.2.2.4. ℓ = α + 1 and j ̸= α. In this case, the exact synthesis algorithm

specifies that the normal edge from s is K†
[j,α+1]i

q
[α+1] and the normal edge from r is

K†
[j,α]i

q
[α]. We complete the diagram as follows. It commutes relationally by (C10)

and (C12).

s
X[α,α+1]

→→

K†
[j,α+1]

iq
[α+1]

↓↓

r

K†
[j,α]

iq
[α]

↓↓
t

X[α,α+1]

→→ q

Case 3.2.2.5. ℓ > α+ 1 and j < α. This case is disjoint.

Case 3.2.2.6. ℓ > α + 1 and j = α. In this case, the exact synthesis algorithm

specifies that the normal edge from s is K†
[α,ℓ]i

q
[ℓ] and the normal edge from r is

K†
[α+1,ℓ]i

q
[ℓ]. We complete the diagram as follows. It commutes relationally by (C5)

and (C12).

s
X[α,α+1]

→→

K†
[α,ℓ]

iq
[ℓ]
↓↓

r

K†
[α+1,ℓ]

iq
[ℓ]

↓↓
t

X[α,α+1]

→→ q

Case 3.2.2.7. ℓ > α + 1 and j = α + 1. In this case, the exact synthesis algorithm

specifies that the normal edge from s is K†
[α+1,ℓ]i

q
[ℓ] and the normal edge from r is

K†
[α,ℓ]i

q
[ℓ]. We complete the diagram as follows. It commutes relationally by (C5) and

(C12).

s
X[α,α+1]

→→

K†
[α+1,ℓ]

iq
[ℓ]
↓↓

r

K†
[α,ℓ]

iq
[ℓ]

↓↓
t

X[α,α+1]

→→ q

Case 3.2.2.8. ℓ > α+ 1 and j > α+ 1. This case is disjoint.

This finishes the proof of Lemma 4.5.3, and therefore of completeness.



Chapter 5

Presentation for 3-qubit Clifford+CS operators

5.1 Statement of the main theorem

Theorem 5.1.1. The 3-qubit Clifford+CS group is presented by (X ,ΓX), where the

set of generators is

X = {i,K0, K1, K2, S0, S1, S2, CS01, CS12},

and the set of relations ΓX is shown in Figure 5.1.

Note that in Figure 5.1, for convenience we have used the following abbreviations:

X = KSSKi, =
K

i i
K

· i, = K
i i

K · i.

One interesting feature of the axioms in Figure 5.1 is that the upside-down version

of each relation is also a relation, except for (D15). The upside-down version of (D15)

is provable, so we do not require it as an axiom.

5.2 Proof outline

Our proof follows a similar general outline as the corresponding proof for 2-qubit

Clifford+T operators in Chapter 3. Let G = U8(Z[12 , i]) be the group of unitary

8 × 8-matrices with entries in Z[1
2
, i]. In Chapter 4, we gave a presentation of G by

generators and relations. It is clear that CCS(3) is a subgroup of G, because all of

its generators belong to G. Moreover, by a result of Amy et al. [2], we know that

CCS(3) is precisely the subgroup of G consisting of matrices whose determinant is ±1.

The only other possible values for the determinant are ±i, and therefore CCS(3) is a
subgroup of G of index 2. We can therefore apply the Reidemeister-Schreier procedure

[31, 32] to find generators and relations for CCS(3), given the known generators and

relations for G. Applying this procedure yields a complete set of relations for CCS(3).

55



56

(a) Relations for n ≥ 0:
i4 = ϵ (D1)

(b) Relations for n ≥ 1:

K2 = i3 (D2)

S4 = ϵ (D3)

SKSKSK = i3 (D4)

(c) Relations for n ≥ 2:

i i i i = (D5)

S
i = i

S (D6)

S
i = i

S
(D7)

X
i = i i i

X

S
(D8)

X
i = i i i

X

S (D9)

S K
i
K

i = i
K

i
K S (D10)

S K
i
K

i = i
K

i
K S

(D11)

(d) Relations for n = 3:

i
i = i

i
(D12)

i
=

i
(D13)

i i i i
= i i i i (D14)

i i
=

i i i i
(D15)

i
K

i
K

i
K

i = i
K

i
K

i
K

i
(D16)

i
K

i i i
K

i
K

i
= i

K
i i i

K
i
K

i (D17)

(e) Monoidal relations: the scalar i commutes with everything, and non-overlapping
gates commute.

Figure 5.1: Complete relations for CCS(3). Each relation in (b) denotes three relations
(one for each qubit), and each relation in (c) denotes two relations (one for each pair
of adjacent qubits).



57

The application of the Reidemeister-Schreier method produces thousands of rela-

tions, compared to the 17 cleaned-up relations in Figure 5.1. Moreover, these relations

are very large. In our code, which actually uses a sequence of multiple applications

of the Reidemeister-Schreier theorem passing through a number of intermediate rep-

resentations, some of the longest relations involve more than 50,000 generators. Our

main contribution is the simplification of these relations. Due to the sheer magnitude

of this task, we must rely on a computer to expedite the computation. However, as

we did in Chapter 3, we also require the simplification process to be trustworthy, as

it is very easy in a computer program to accidentally use a relation that has not yet

been proved. To this end, we have formalized Theorem 5.1.1 and its proof in the

proof assistant Agda. This allows the proof to be verified independently and with a

high degree of confidence in its correctness, despite the magnitude of the proof.

The main idea of the simplification is to use the 17 relations from Figure 5.1, along

with some of their easy consequences, to rewrite the thousands of relations until they

are all eliminated. We define several rewrite systems for this task. Some of these

rewrite systems are confluent and terminating, and others are just heuristics. All of

these rewrite systems are implemented in Agda and the computations are verified

within Agda.

5.3 Normal forms and an almost-normal form

5.3.1 Notations

For convenience, we will use the notations in Figure 5.2. The definitions for a Tof-

foli gate with target on the second, respectively first, qubit are given by CCX1 =

Swap01CCX0 Swap01 and CCX2 = Swap12CCX1 Swap12. The last notation uses a

twice-controlled K ′ gate. Here K ′ = KS† is a variant of the K-gate that has de-

terminant 1. The reason we are not using a twice-controlled K-gate is that it has

determinant i and is therefore not an element of CCS(3).

5.3.2 Normal forms for finite subgroups of Clifford+CS operators

We will define normal forms and discuss the structure of the finite subgroups of

Clifford+CS operators that are shown in Figure 5.3. The inclusion relations between



58

Swap01 = = , Swap12 = =

CS02 = i
=

i
, CX20 = =

K

i i

K
· i

CK10 =
K

= i
K

i
K

i
S3 · i, CK20 =

K
=

K

CCZ = = i i i i
i
, CCX0 = =

K K
· i

CCK ′
0 =

K ′

=
K

i
K

i

K
i
K

i i
· i2

Figure 5.2: Notations for definable gates.

these subgroups are visualized in Figure 5.4.

Note that P is the group of all permutations of the computational basis vectors; we

call its members permutation operators. Q, C, and CQ are subgroups of P . Similarly,

D is the group of all diagonal operators in CCS(3). The remaining subgroups play a

technical role in our proofs.

Given that all claims about finite groups can be proved by just enumerating the

elements, we will not give proofs of the following claims about finite subgroups of

CCS(3). Instead, we will illustrate the proofs with examples. Some of the proofs can

be found in the Agda code.

The group W is the group of permutations of 3 qubits. The generators of Q all

commute with each other and are self-inverse. Therefore, each element of Q can be

uniquely written of the form Xa
0 CXb

10CXc
20CCXd

0 , where a, b, c, d ∈ {0, 1}. We say

that the subgroup Q has the following normal form:

Q ::= Xa
0 CXb

10CXc
20CCXd

0 , where a, b, c, d ∈ {0, 1}. (5.1)

We use Q to range over normal forms for Q. More generally, given any group G for

which normal forms are defined, we use G to range over the normal forms of G. The

group Q has 24 = 16 distinct normal forms corresponding to 16 distinct elements. It

is easy to see that Swap12 ∈ C, and therefore also X2 ∈ C. The group C has the



59

• W , the subgroup of permutation matrices generated by XW = {Swap01, Swap12}.

• Q, the subgroup of permutation matrices generated by

XQ = {X0, CX10, CX20, CCX0}.

• C, the subgroup of permutation matrices generated by XC = {X1, CX12, CX21}.

• CQ, the subgroup generated by XC and XQ.

• P , the subgroup of permutation matrices generated by

XP = {CX01, CX10, CX12, CX21, CCX0, X0}.

• D, the diagonal subgroup generated by

XD = {i, S0, S1, S2, CS01, CS12, CS02, CCZ}.

• PD, the subgroup generated by XP and XD.

• QD, the subgroup generated by XQ and XD.

• CQD, the subgroup generated by XC , XQ and XD.

• K0D the subgroup generated by {K0} ∪ XD. Note that this group contains Q,
so it can also be denoted by K0QD.

• K0CD, the subgroup generated by {K0} ∪ XC ∪ XD. Since this group contains
Q, it can also be denoted by K0CQD.

• K0W , the subgroup generated by K0 and XW .

Figure 5.3: Finite subgroups of Clifford+CS operators.

PD K0W K0CQD

P CQD K0QD

W CQ QD ⟨K0⟩

C Q D

Figure 5.4: The inclusion graph of various finite subgroups of CCS(3).



60

following normal form:

C ::= c4c3c2 (5.2)

where

c2 ∈ {ϵ, CX12},
c3 ∈ {ϵ, CX21, CX12CX21},
c4 ∈ {Xa

1X
b
2 | a, b ∈ {0, 1}}.

There are 4! = 24 distinct normal forms in C.

The group CQ is a semidirect product of C and Q with Q being normal. A

semidirect product structure means that we have commuting relations of the form

qc = cq′, or more precisely, for all q ∈ Q and c ∈ C, there exists a unique q′ ∈ Q such

that qc = cq′. Consequently, CQ has the following normal form:

CQ ::= C Q.

The group P contains CQ as a subgroup with 105 cosets. We get the following normal

form for P :

P = cCQ, (5.3)

where c ranges over the set V of 105 left coset representatives. One can easily spot

a normal form for D, since all the generators commute with each other, CCZ has

order 2, and all of the other generators have order 4. The normal form is:

D ::= in0Sn1
0 Sn2

1 Sn3
2 CSn4

01CSn5
12CSn6

02CCZn7 , (5.4)

where n0, . . . , n6 ∈ {0, 1, 2, 3} and n7 ∈ {0, 1}. The group PD is a semidirect product

of P and D, with D being normal. It therefore has the following normal form:

PD ::= P D. (5.5)

Since Q is a subgroup of P , it follows that QD is also a semidirect product. It enjoys

a similar normal form as (5.5), with P replaced by Q.

It is easy to see that the group K0D contains XQ, hence Q is a subgroup of K0D.

We have the following normal form:

K0D ::= e4e3e2e1D Q, (5.6)



61

where
e1 ∈ {ϵ, CCK ′

0, CCK ′
0CCK ′

0},
e2 ∈ {ϵ, CK10, S0CK10},
e3 ∈ {ϵ, CK20, S0CK20},
e4 ∈ {ϵ, K0, S0K0}.

Note that CK10, CK20 and K0 commute with each other but not with CCK ′
0.

Notice that each element of XC commutes with K0. For any element of K0CD, for

example w = X1K0CS01K0CCZ, we can commute X1 all the way to the right using

the commuting relations and the semidirect product structure ofQD. For example, we

get w = K0CS01CS01CS01S0K0CCZCS02CS02X1. We will use the following normal

form for K0CD:

K0CD = (K0D) C = e4e3e2e1D Q C. (5.7)

Note that this also proves that K0CD is finite, which perhaps wasn’t obvious from

its definition.

5.3.3 An almost-normal form for CCS(3)

Consider a Clifford+CS circuit. We can replace the generators K1 and K2 by

Swap01K0 Swap01 and Swap12 Swap01K0 Swap01 Swap12, respectively. The circuit be-

comes an alternating sequence of elements of PD and K0:

PDK0 PDK0 . . . PDK0 PD.

By repeatedly converting subcircuits to normal forms of the form (5.5), (5.3), and

(5.7), we can rewrite this circuit as follows:

PDK0 PDK0 . . . PDK0 PD
(5.5)(5.3)→ cCQDK0cCQDK0 . . . cCQDK0cCQD

(5.7)→ ce4e3e2e1D Q CcCQDK0 . . . cCQDK0cCQD
(5.5)(5.3)→ ce4e3e2e1cCQDK0 . . . cCQDK0cCQD
repeat→ ce4e3e2e1 ce4e3e2e1 . . . ce4e3e2e1cCQD.

We can further rewrite the last expression, for example using relations in Figure 5.5.

After this step, we might get some new gates that are not in V or of the form ei. In

this case, we continue with the first arrow step. We repeat the whole process until

there is no further simplification. We call the resulting word an almost-normal form.



62

K K
=

K K

K K
=

K K

K K ′

=
K K ′

K K ′

=
K K ′

K
=

K

K K
=

K K

Figure 5.5: Some relations used to rewrite words of the form ce4e3e2e1 . . . ce4e3e2e1.

It turns out this almost-normal form is “canonical” enough. It can be used to

show that a complete set of thousands of relations hold by rewriting both sides of

each relation to almost-normal form. Moreover, all rewriting rules used to get an

almost-normal form are consequences of the relations in Figure 5.1. This shows that

the relations in Figure 5.1 are complete.

5.3.4 Comparison with Pauli rotation decomposition

Unlike our previous work on generators and relations for 2-qubit Clifford+T opera-

tors in Chapter 3, which used a Pauli rotation decomposition to guide the rewriting,

we found that the analog of the Pauli rotation decomposition, i.e., taking syllables

that are conjugates of the CS gate under the action of the Clifford operators, does

not work very well. Instead, we were surprised to find that a more useful decompo-

sition was to take conjugates of K0 (basically a Hadamard gate) under the action of

diagonal and permutation operators. We may call this the Hadamard decomposition

of Clifford+CS.

The fact that the Hadamard decomposition turned out to be more useful than

the analog of the Pauli rotation decomposition raises the question whether our earlier

work on Clifford+T could benefit from the same insight. By applying these lessons,

perhaps one can come up with a simpler complete set of relations. For example, our



63

Clifford+T axiomatization involved a number of obvious relations and three “non-

obvious” ones. We were never able to resolve the question of whether these non-

obvious relations actually follow from something simpler.

5.4 Formal proof

The machine-checkable proof of Theorem 5.1.1 can be found in [11]. It has been

formalized in the proof assistant Agda [1]. The proof assumes only the result of

Chapter 4, i.e., the soundness and completeness of the relations from Figure 4.1 for

Un(Z[12 , i]). Everything else is proved from first principles, including, for example, a

complete proof of the version of the Reidemeister-Schreier theorem that we used.

Verifying the proof. Readers who are interested in verifying the proof only need

to know the following: The statement of Theorem 5.1.1 is contained in the file

Theorem.agda, and the final step of the proof of Theorem 5.1.1 is contained in the

file Proof.agda. As in Chapter 3, the reason we separated the statement of the the-

orem from its proof is to ensure that the statement assumes as little as possible: in

fact, the file Theorem.agda is almost completely self-contained and only depends on

a few definitions concerning generators, words, indices, and two-level relations. On

the other hand, the proof requires a large number of auxiliary files with definitions,

lemmas, tactics, and more. We checked the proof with Agda 2.6.4, and it took about

120 minutes on our laptop.

Reading the proof. For readers who are interested in inspecting our proof, here

are some pointers. The folder Lib contains some general-purpose definitions, such as

booleans and natural numbers, and some definitions and tactics related to monoids

and relations. The main parts of the proof are contained in the folders Step1 – Step8.

Each of these steps transforms a set of generators and relations into an equivalent set

of generators and relations, gradually simplifying the relations. The file Gate.agda

provides the definitions for all gates used. The file CosetNF.agda contains definitions

related to semidirect products and normal forms. The final proof witness is contained

in the file Proof.agda.



64

5.5 CCS(3) is an amalgamated product of three finite groups

Using Theorem 5.1.1, we can show that CCS(3) is an amalgamated product of three

finite groups. We choose the sets of generators as follows:

X = {K0, i},
Y = {X0, X1, X2, CX12, CX21, CX10, CX20, CCX0, S0, S1, S2, CS01, CS12, CS02, CCZ, i},
Z = {Swap01, Swap12}.

One can check that ⟨X ∪Y ⟩ = K0CQD, ⟨X ∪Z⟩ = K0W , and ⟨Y ∪Z⟩ = PD. Since

X ∪ Y , X ∪ Z, and Y ∪ Z each generate a finite subgroup of CCS(3), all that is left
to show is that each relation of CCS(3) is a consequence of relations in one of these

three subgroups.

Before we prove this, we must adjust the relations of Figure 5.1 to fit the new set

of generators X∪Y ∪Z. This requires two adjustments. First, compared to the set of

generators from Theorem 5.1.1, a number of new generators have been added, namely

X0, X1, X2, CX12, CX21, CX10, CX20, CCX0, CS02, CCZ, Swap01, and Swap12. For

each of these, we must add a defining relation in terms of the old generators. These

relations are as in Section 5.3.1. Second, the two generators K1 and K2 are no

longer used, so where they appear in the relations, they must now be regarded as

abbreviations for the words Swap01K0 Swap01 and Swap12 Swap01K0 Swap01 Swap12,

respectively. With these adjustments, we still have a sound and complete presentation

of CCS(3) using the generators X ∪ Y ∪ Z.

Now we must show that each of the relations follows from relations that hold in

⟨X ∪ Y ⟩, ⟨X ∪ Z⟩, or ⟨Y ∪ Z⟩. Many of the relations, such as (D1), (D3), (D5)–

(D9), and (D12) are already in one of the three subgroups, so there is nothing else

to show for them. The remaining relations must be proved individually; here, we

give a proof of (D16) as a representative example in Figure 5.6. In Figure 5.6,

steps (1) and (5) use the definition of K1, which is at this point merely an abbre-

viation for Swap01K0 Swap01. Steps (2) and (4) uses the relations Swap201 = ϵ and

Swap01CS12 Swap01 = CS02 and Swap01CS01 Swap01 = CS01. All three of these rela-

tions come from ⟨Y ∪Z⟩. Step (3) uses the relation CS02K0CS02K0CS01K0CS01 =

CS01K0CS01K0CS02K0CS02, which comes from ⟨X ∪ Y ⟩.
In addition to (D16), there are a number of other relations to be proved, but they

all follow a similar pattern.



65

CS12K1CS12K1CS01K1CS01

= CS12 Swap01K0 Swap01CS12 Swap01K0 Swap01CS01 Swap01K0 Swap01CS01 (1)
= Swap01CS02K0CS02K0CS01K0CS01 Swap01 (2)
= Swap01CS01K0CS01K0CS02K0CS02 Swap01 (3)
= CS01 Swap01K0 Swap01CS01 Swap01K0 Swap01CS12 Swap01K0 Swap01CS12 (4)
= CS01K1CS01K1CS12K1CS12 (5)

Figure 5.6: An example: a relation is derivable using relations in three finite sub-
monoids.



Chapter 6

Conclusion and future work

The first contribution of this thesis is a presentation of the 2-qubit Clifford+T group

by generators and relations. We did this by applying the Reidemeister-Schreier the-

orem to Greylyn’s presentation of the group of unitary 4 × 4-matrices over the ring

Z[ 1√
2
, i]. Since there is a very large number of relations to check and simplify, and

checking them by hand or by an unverified computer program would be error-prone,

we used the proof assistant Agda to formalize our proof. This result was first an-

nounced in [7], and was published in [10].

The second contribution is a presentation by generators and relations of the group

of unitary n × n-matrices with entries in the ring D[i] = Z[1
2
, i]. This matrix group

has some applications in quantum computing because it arises as the group of unitary

operations that are exactly representable by a certain gate set that is a subset of the

Clifford+T circuits; namely, the Clifford+CS gates. We have described this group in

terms of generators that are 1- and 2-level matrices. This work was published in [8].

The third contribution is a presentation of the group of 3-qubit Clifford+CS op-

erators by just 17 relatively simple relations. We prove this by a combination of a

the result from Chapter 4, the Reidemeister-Schreier method, and an Agda program

that simplified several thousand large relations into the aforementioned 17 simple

ones. Doing this simplification by brute force would not have been feasible. Instead,

we proceeded by identifying a number of finite subgroups of the Clifford+CS opera-

tors, defining normal forms for these, and then combining them into carefully chosen

rewrite rules. These rules eventually reduced the relations to a manageable size. In

the process, we learned many interesting facts about finite subgroups of Clifford+CS.

One of these facts is that the 3-qubits Clifford+CS group is an amalgamated prod-

uct of three of its finite subgroups. Concretely, this means that every relation that

holds in this group follows from relations that already hold in some finite subgroup

of Clifford+CS.

66



67

One candidate for future work would be to find a complete set of relations for

the Clifford+T group with 3 or more qubits. This is currently out of reach for two

reasons: first, the computations required to simplify any potential set of relations will

be even more labor-intensive than in the 2-qubit case. Second, and more seriously,

there is no known presentation of the group of unitary n × n-matrices over the ring

Z[ 1√
2
, i] for n > 4.

Complete relations for 4-qubit Clifford+CS operators might be a more feasible

project for future work, since we have given a finite presentation of Un(Z[12 , i]) for

all n, and the group of 4-qubit Clifford+CS operators is an index 4 subgroup. Also,

many of our results about finite subgroups of Clifford+CS are valid for n qubits.

The only problem remaining is that compared to the 3-qubit case, we probably need

at least one thousand times more computation power for applying the Reidemeister-

Schreier method to a set of 2-level relations for 16× 16-matrices and then simplifying

a massive set of relations. Right now, our Agda program runs for about 2 hours, and

we don’t think Agda can handle such a large computation.

Another intriguing question is whether one can find a unique normal form for

3-qubit Clifford+CS circuits, like the Matsumoto-Amano normal form for 1-qubit

Clifford+T circuits. We currently only have an “almost-normal” form, but the fact

that it efficiently reduced all of our relations is encouraging. If we succeed, it also

might help solve the 4-qubit Clifford+CS presentation problem.

There is also some possible future work about two-level presentations. Other

subgroups of the Clifford+T group have been described by generators and relations

[28], but this has not yet been done for the Clifford+T group itself, except in the

case of matrices of size 4× 4 [21]. Doing so would require extending our results from

the ring D[i] to the ring D[ω]. This problem turns out to be harder than one would

expect, because as the complexity of the ring increases, it becomes more and more

difficult to complete all the cases of the Lemma 4.5.3.



Bibliography

[1] Agda documentation. https://agda.readthedocs.io/. Accessed: 2023-06-13.

[2] Matthew Amy, Andrew N. Glaudell, and Neil J. Ross. Number-theoretic char-
acterizations of some restricted Clifford+T circuits. Quantum, 4:252, Apr 2020.
Also available from arXiv:1908.06076.

[3] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time T -depth op-
timization of Clifford+T circuits via matroid partitioning. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476–1489,
2014. Also available from arXiv:1303.2042.

[4] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-
in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits.
Available from arXiv:1206.0758v2, August 2012.

[5] Matthew Amy and Michele Mosca. T -count optimization and Reed-Muller codes.
IEEE Transactions on Information Theory, 65(8):4771–4784, 2019. Also avail-
able from arXiv:1601.07363.

[6] Michael Beverland, Earl Campbell, Mark Howard, and Vadym Kliuchnikov.
Lower bounds on the non-Clifford resources for quantum computations. Quan-
tum Science and Technology, 5(3):035009, 2020.

[7] Xiaoning Bian and Peter Selinger. Relations for the 2-qubit Clifford+T operator
group. Slides presented at theWorkshop on Quantum Programming and Circuits,
Waterloo, Canada, June 8–11, 2015. Available from https://mathstat.dal.ca/

~xbian/talks/slide_cliffordt2.pdf, 2015.

[8] Xiaoning Bian and Peter Selinger. Generators and relations for Un(Z[1/2, i]). In
Proceedings of the 18th International Conference on Quantum Physics and Logic,
QPL 2021, Gdansk, Poland, volume 343 of Electronic Proceedings in Theoretical
Computer Science, pages 145–164, 2021. Also available from arXiv:2105.14047.

[9] Xiaoning Bian and Peter Selinger. Agda code for 2-qubit Clifford+T complete
relations. Available as ancillary material at arXiv:2204.02217, 2022.

[10] Xiaoning Bian and Peter Selinger. Generators and relations for 2-qubit
Clifford+T operators. To appear in QPL 2022. Available from arXiv:2204.02217,
April 2022.

[11] Xiaoning Bian and Peter Selinger. Agda code for 3-qubit Clifford+CS complete
relations. Available from https://www.mathstat.dal.ca/~selinger/papers/

downloads/cliffordcs3/, 2023.

68

https://agda.readthedocs.io/
https://arxiv.org/abs/1908.06076
https://arxiv.org/abs/1303.2042
https://arxiv.org/abs/1206.0758v2
https://arxiv.org/abs/1601.07363
https://mathstat.dal.ca/~xbian/talks/slide_cliffordt2.pdf
https://mathstat.dal.ca/~xbian/talks/slide_cliffordt2.pdf
https://arxiv.org/abs/2105.14047
https://arxiv.org/abs/2204.02217
https://arxiv.org/abs/2204.02217
https://www.mathstat.dal.ca/~selinger/papers/downloads/cliffordcs3/
https://www.mathstat.dal.ca/~selinger/papers/downloads/cliffordcs3/


69

[12] Harry Buhrman, Richard Cleve, Monique Laurent, Noah Linden, Alexander
Schrijver, and Falk Unger. New limits on fault-tolerant quantum computation.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), pages 411–419, 2006. Also available from arXiv:quant-
ph/0604141.

[13] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Fast and effective tech-
niques for T -count reduction via spider nest identities. In Steven T. Flammia, ed-
itor, 15th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2020), volume 158 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 11:1–11:23, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. Also available from arXiv:2004.05164.

[14] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Techniques to reduce
π/4-parity-phase circuits, motivated by the ZX calculus. Electronic Proceedings
in Theoretical Computer Science, 318:131–149, May 2020. Also available from
arXiv:1911.09039.

[15] Shelly Garion and Andrew W Cross. Synthesis of CNOT-dihedral circuits with
optimal number of two qubit gates. Quantum, 4:369, 2020.

[16] Brett Giles and Peter Selinger. Exact synthesis of multiqubit Clifford+T cir-
cuits. Physical Review A, 87(3):032332 (7 pages), 2013. Also available from
arXiv:1212.0506.

[17] Brett Giles and Peter Selinger. Exact synthesis of multiqubit Clifford+T cir-
cuits. Physical Review A, 87:032332 (7 pages), 2013. Also available from
arXiv:1212.0506.

[18] Andrew N. Glaudell, Neil J. Ross, and Jacob M. Taylor. Optimal two-qubit
circuits for universal fault-tolerant quantum computation. npj Quantum Infor-
mation, 7(1):103, Jun 2021.

[19] Georges Gonthier. Formal proof — the four color theorem. Notices of the Amer-
ican Mathematical Society, 55(11):1382–1393, 2008.

[20] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algo-
rithm for the T-count. Quantum Information and Computation, 14(15–16):1261–
1276, 2014. Also available from arXiv:1308.4134.

[21] Seth E. M. Greylyn. Generators and relations for the group U4(Z[ 1√
2
, i]). M.Sc.

thesis, Dalhousie University, 2014. Available from arXiv:1408.6204.

[22] Jeongwan Haah and Matthew B Hastings. Codes and protocols for distilling T ,
controlled-S, and Toffoli gates. Quantum, 2:71, 2018.

[23] Thomas C. Hales. Formal proof. Notices of the American Mathematical Society,
55(11):1370–1380, 2008.

https://arxiv.org/abs/quant-ph/0604141
https://arxiv.org/abs/quant-ph/0604141
https://arxiv.org/abs/2004.05164
https://arxiv.org/abs/1911.09039
https://arxiv.org/abs/1212.0506
https://arxiv.org/abs/1212.0506
https://arxiv.org/abs/1308.4134
https://arxiv.org/abs/1408.6204


70

[24] Luke E. Heyfron and Earl T. Campbell. An efficient quantum compiler that
reduces T count. Quantum Science and Technology, 4(1):015004, 2018. Also
available from arXiv:1712.01557.

[25] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number
Theory. Graduate Texts in Mathematics 84. Springer, 1982.

[26] Aleks Kissinger and John van de Wetering. Reducing the number of non-Clifford
gates in quantum circuits. Phys. Rev. A, 102:022406, Aug 2020. Preprint avail-
able from arXiv:1903.10477.

[27] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Fast and efficient exact
synthesis of single qubit unitaries generated by Clifford and T gates. Quan-
tum Information and Computation, 13:607–630, June 2013. Available from
arXiv:1206.5236.

[28] Sarah Meng Li, Neil J. Ross, and Peter Selinger. Generators and relations for
the group on(z[1/2]). Electronic Proceedings in Theoretical Computer Science,
343:210–264, September 2021.

[29] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov.
Automated optimization of large quantum circuits with continuous param-
eters. NPJ Quantum Information, 4(1), May 2018. Also available from
arXiv:1710.07345.

[30] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2002.

[31] Kurt Reidemeister. Knoten und Gruppen. Abhandlungen aus dem Mathematis-
chen Seminar der Universität Hamburg, 5(1):7–23, 1927.

[32] Otto Schreier. Die Untergruppen der freien Gruppen. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 5(1):161–183, 1927.

[33] Peter Selinger. Towards a quantum programming language. Mathematical Struc-
tures in Computer Science, 14(4):527–586, 2004.

[34] Peter Selinger. Generators and relations for n-qubit Clifford operators. Log-
ical Methods in Computer Science, 11(2:10):1–17, 2015. Also available from
arXiv:1310.6813.

[35] P.W. Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, 1994.

https://arxiv.org/abs/1712.01557
https://arxiv.org/abs/1903.10477
https://arxiv.org/abs/1206.5236
https://arxiv.org/abs/1710.07345
https://arxiv.org/abs/1310.6813

	Title Page
	Table of Contents
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Outline
	Contributions

	Preliminaries
	Quantum computation
	n-qubit states
	n-qubit unitary transformations and quantum circuits
	Measurement
	One- and two-level matrices

	Presentation of U₄(ℤ[1/√2, i])
	Some algebra
	Gaussian integers and Gaussian dyadics
	Monoid presentation
	Amalgamation

	Proof assistant Agda
	Proof assistants
	Agda


	Presentation for 2-qubit Clifford+T operators
	Statement of the main theorem
	Proof outline
	The Reidemeister-Schreier theorem for monoids
	Pauli rotation representation
	Soundness and completeness
	The formal proof
	Discussion of the axioms

	Presentation for Uₙ(ℤ[½, i])
	Statement of the main theorem
	The exact synthesis algorithm
	The Cayley graph
	Basic generators
	Reduction of completeness to the Main Lemma
	Proof of the Main Lemma

	Presentation for 3-qubit Clifford+CS operators
	Statement of the main theorem
	Proof outline
	Normal forms and an almost-normal form
	Notations
	Normal forms for finite subgroups of Clifford+CS operators
	An almost-normal form for CS(3)
	Comparison with Pauli rotation decomposition

	Formal proof
	CS(3) is an amalgamated product of three finite groups

	Conclusion and future work
	Bibliography

