
Proc. QPL 2004, pp. 163–178

Quantum typing

Benôıt Valiron
University of Ottawa, Canada

Abstract

The objective of this paper is to develop a functional programming language for
quantum computers. We develop a lambda-calculus for theQRAMmodel, following
the work of P. Selinger (2003) on quantum flow-charts. We define a call-by-value
operational semantics, and we develop a type system using affine intuitionistic linear
logic. The main result of this preprint is the subject-reduction of the language.

1 Introduction

The objective of this paper is to develop a functional programming language for quantum
computers. Quantum computing has become a fast growing research area in recent years.
The object is to study what would happen if one encodes data using quantum particles
instead of classical ones. For a good introduction, see e.g. [7, 6].

The laws of quantum physics restrict the kinds of operations that one can perform
on a quantum state: there are only two kinds of basic operations, namelyunitary trans-
formationsand measurements. Many existing models of quantum computation put an
emphasis on the former, i.e., a computation is understood as the evolution of a quantum
state by means of unitary gates. In these models, a quantum computer is considered as a
purely quantum system, i.e., without any classical parts. One example of such a model
is the quantum Turing machine [2, 4], where the entire machine state, including the tape,
the finite control, and the position of the head, is assumed to be in quantum superposi-
tion. Another example is the quantum lambda calculus of Van Tonder [10, 11], which is a
higher-order, purely quantum language without an explicit measurement operation.

On the other hand, one might imagine a more realistic model of a quantum computer
where unitary operations and measurements can be interleaved. One example is the so-
calledQRAM modelof Knill [5], which is also described by Bettelli, Calarco and Ser-
afini [3]. Here, a quantum computer consists of a classical computer with a quantum
device attached to it. In this configuration, the operation of the machine is controlled by
a classical program which emits a sequence of instructions to the quantum device for per-
forming measurements and unitary operations. This situation is summarized by the slogan
“quantum data, classical control” [8]. Several programming languages have been proposed
to deal with such a model [3, 9], but the one on which this paper is based is the work of
Selinger [8].

In this paper, we propose ahigher-orderquantum programming language, i.e., one
in which functions can be considered as data. In our language, a program is a lambda

164 B. Valiron

term, possibly with some quantum data embedded inside. The basic idea is that lambda
terms encode the control structure of a program, and thus, they would be implemented
classically, i.e., on the classical device of the QRAM machine. However, the data on
which the lambda terms act is possibly quantum, and is stored on the QRAM quantum
device.

Because our language combines classical and quantum features, it is natural to consider
two distinct basic data types: a type ofclassical bitsand a type ofquantum bits. They
behave in a complete different manner. For instance, a classical bit can be copied as many
times as needed. On the other hand, a quantum bit cannot be duplicated, due to the well-
known no cloning propertyof quantum states [7, 6]. However, quantum data types are
very powerful, due to the phenomena of quantum superposition and entanglement. Due to
entanglement, quantum bits cannot be directly encoded in the lambda-term. However one
can define it as a free variable and set an external function to link this variable to the actual
quantum bit in the quantum device.

The semantic described in this paper is operational: a program is an abstract machine
with reductions rules. The machine embbed a representation for the quantum device as a
vector in a suitable Hilbert space, a lambda-term and a function that links the free variables
of the term to the quantum bits in the quantum device. The reduction rules are probablistic,
and one problem we solve is to describe the behavior of the program with respect to this
probabilistic reduction. One part of the challenge is that we don’t want to consider the
quantum feature as a side effect.

Difficulties arise during manipulation of functions: the duplicability feature of a func-
tion is independant of the one of its argument and of its value: A non-duplicable function
may accept only duplicable argument, and a duplicable function may return non-duplicable
values. We describe a type system to handle all these cases, based on affine intuitionistic
linear logic. This paper expose how the validity of a program is linked to the reduction
procedure, and then induce the choice of the typing rules to make them verify subject
reduction.

2 Terms

2.1 Quantum States

The quantum data in theQRAMcan be modelized as a vector in a Hilbert space [7, 6].
Formally we define a quantum bit, orqubit , as a normalized vector of the2-dimensional
Hilbert spaceC2. We denote the orthonormal basis as{|0〉, |1〉}. A quantum superposition
of several qubits is a normalized vector in⊗n

i=1C2. We call it an-quantum bit, and we
denote it as|φ〉 =

∑2n

i=0 |binn(i)〉 with binn(i) being the binary representation ofi in n
digits. We will refer to thek-th qubit of thisn-qubit to refer to thek-th 0 or 1 in |binn(i)〉.

We would like to extend the lambda calculus with the ability to manipulate quantum
data. We first need a syntax to express quantum states in the lambda calculus. In simple
cases, we might simply insert quantum states into a lambda term, such as(λx.(α|0〉 +
β|1〉)). However, in the general case, such a syntax is insufficient. Consider for instance
the lambda term(λy.λf.fpy)(q), wherep and q are quantum bits which are jointly in
the entangled state|pq〉 = α|00〉 + β|11〉. Such a state cannot be represented locally by

Quantum typing 165

replacingp andq with some constant expressions of type qubit. The non-local nature of
quantum states thus forces to introduce a level of indirection into the representation of
a state. Thus, to represent a program, we should have a lambda-termM to encode the
operations, but also an exteriorn-qubit stateQ to store the quantum data of the program.
Further, to link both parts, we need a third element, which is a functionQf from FV (M)
to {0, . . . , n− 1}, such that ifQf (x) = i, x would be a representation of thei-th qubit in
Q.

We provide several built-in operations for quantum bits. The operatornew represents
a function that takes a bit (0 or 1) and allocates a new qubit of the corresponding value. We
also need to be able to act on qubits via unitary operations; thus, we will assume a given
setU1 of unary unitary gates. Currently, our language has no way of representing tuples,
so we will restrict ourselves to unary quantum gates for now; tuples andn-ary gates will
be considered in Section 5.

In the following examples, we will often use the Hadamard gateH, which we assume
to be an element ofU1:

H =
1√
2

(
1 1
1 −1

)
Finally, we equip the language with a measurement operation. Letmeas be the term for it.
It takes a quantum bit, performs a measurement, and returns the classical bit0 or 1 which
is the result of the measurement. Of course, the outcome of this operation is probabilistic.
If U ranges overU1, we define aterm by the following Backus-Naur Form:

RawTerm M,N,P ::= x | (MN) | λx.M | if (M ;N ;P)
| c | 0 | 1 | meas | new | U

with x ranging overV a countable set of variables, andc ranging overC a set of constants.
The set of constants should at least contain the truth values0 and1. λx.M represents a
function of variablex, and(MN) is the applicationM applied toN . We also callλx.M
an abstraction. The termif (M ;N ;P) denotes the conditional expression “ifM then
N elseP ”. Here, only one ofN or P is evaluated, depending on the truth value ofM .
Finally, the set of constants should also contain the termsmeas andnew , to be able to
measure and create qubits.

The notion of free and bound variable is defined as usual [1], just as the notion of
α-equivalence, substitution andβ-reduction.

As usual, terms are identified up toα-equivalence. In that sense we will writeλx.x =
λy.y.

Definition. A quantum state is a triple[Q,Qf ,M] whereQ is a normalized vector of
⊗n−1

i=0 C2, M is a lambda-term, andQf is a function fromW to {0, . . . , n − 1}, where
FV (M) ⊆W ⊆ V. Qf is also called thelinking function . We denote the set of quantum
states byS. If n = 0, then we denoteQ = 1 ∈ C byQ = |〉.

The notion ofα-equivalence extends naturally to quantum states, for instance, the
states

[|1〉, {x 7→ 0}, λy.x] and [|1〉, {z 7→ 0}, λy.z]

166 B. Valiron

are equivalent. More formally, theα-equivalenceon quantum states is the smallest equiv-
alence relation such that ifx ∈ FV (M) andz 6∈ FV (M), then

[Q,Qf ∪ {x 7→ i},M] =α [Q,Qf ∪ {z 7→ i},M [z/x]]

We will work under this equivalence when speaking of quantum states.
In order to simplify the notation, we will often use the following trick: we usepi

to denote the free variablex such thatQf (x) = i. A quantum state is abreviated by
[Q,M ′] with M ′ = M [pi1/x1] . . . [pin

/xn] if the domain ofQf is {x1, . . . , xn}, where
ik = Qf (xk).

Reduction of the quantum state We should now address the question of how a quan-
tum state should be reduced. One restriction is that it is forbidden to duplicate a quan-
tum bit, due to the no-cloning property of quantum physics. Let us illustrate this with
an example, using a call-by-value reduction procedure. Let us define a binaryand in
our language in that way:and = λxy. if (x; if (y; 1; 0); 0). Now consider the term
(λx.and(meas(x))(meas(H x)) (|0〉). Näıvely, we expect this to reduce to

and(meas(|0〉))(meas(H |0〉)),

then to measure the right argumentH |0〉, then the left argument which reduce to0 with
probability 1, and then apply theand function. We expect to obtain the result0 with
probability1. Using the quantum state notation, let us reduce this term more formally:

[|0〉, (λx.and(meas(x))(meas(H x)) (p0)]
−→CBV [|0〉,and(meas(p0))(meas(H p0))]

In the QRAM, applyingH to a qbit is modifying the actual state of the qbit. Let us reduce
the right argument(H p0):

−→CBV [
1√
2

(|0〉+ |1〉) ,and(meas(p0))(meas(p0))].

Reducing the right argument again, we obtain, assuming that the measurement is non-
destructive (Indeed, if we used destructive measurement, the program would not even be
well-defined, since we would have ap0 alone):

−→CBV

{
[|0〉,and(meas(p0))(0)] with prob. 0.5
[|1〉,and(meas(p0))(1)] with prob. 0.5.

This reduces to[|0〉, 0] with probability 0.5 and to[|1〉, 1] with probability 0.5. Clearly,
this is not the intended result.

The program is unpredictable due to the duplication ofp0. The problem derives from
the fact that a value such asp0 does not represent a constant, as in the classical lambda
calculus, but rather it is apointerinto the quantum state. We never actonp0, we act on the
value it points to. To ensure the predictability of programs, it is necessary to disallow the
duplication of terms that containpi’s, since we don’t want to allow side-effects. We will

Quantum typing 167

call an abstractionλx.M linear if x appears at most once as a free variable inM . We also
say thatM is linear in x in this case.

Another problem can occur: let us callplus the function which acts as the addition
modulo 2 on classical bits. We can easily construct such a function in our language:
plus = λxy. if (x; if (y; 0; 1); if (y; 1; 0)). Consider the state

[|〉, (λx.plus x x)(meas(H(new 0)))].

Now reduce that system using the call-by-value reduction system. Intuitively one shall
get:

−→CBV [|0〉, (λx.plus x x)(meas(H p0))]
−→CBV [1√

2
(|0〉+ |1〉), (λx.plus x x)(meas p0)]

and then with probability0.5:

[|0〉, (λx.plus x x)(0)] or [|1〉, (λx.plus x x)(1)]
[|0〉,plus 0 0] or [|1〉,plus 1 1]

which evaluate with probability0.5 to [|0〉, 0] or to [|1〉, 0].
Had we reduced the same term under a call-by-name strategy, we would have obained

in the first step

[|〉,plus (meas(H(new 0))) (meas(H(new 0))))],

and then a quantum state with an array of four qubits instead of two.
Moreover, if we had mixed the call-by-value and call-by-name strategies, the program

could have led to an ill-defined result: reducing by call-by-value until

[
√

2
2

(|0〉+ |1〉), (λx.plus x x)(meas p0)]

and then changing to call-by-name, we would obtain in one step:

[
√

2
2

(|0〉+ |1〉), (plus (meas p0) (meas p0)],

which is not even a valid program since there are2 occurences ofp0.
In other words, it does not make sense to speak of a generalβ-reduction procedure

for the whole quantum state. If we define a reduction procedure, we have to choose a
reduction procedure to before writing programs.

2.2 Probabilistic reduction system

We define aprobabilistic reduction systemas a tuple(X,U,R, prob) whereX is a set
of states, U ⊆ X is a subset ofvalue states, R ⊆ (X \ U) × X is a set ofreductions,
andprob : R → [0, 1] is a probability function , where[0, 1] is the real unit interval.
Moreover, we impose the following conditions: For anyx ∈ X,Rx = { x′ | (x, x′) ∈ R }
is finite, and

∑
x′∈Rx

prob(x, x′) ≤ 1. We callprob the one-step reduction, and we note
x −→p y for prob(x, y) = p.

168 B. Valiron

Let us extendprob to then-step reduction:

prob0(x, y) =
{

0 if x 6= y
1 if x = y

prob1(x, y) =
{
prob(x, y) if (x, y) ∈ R

0 else
probn+1(x, y) =

∑
z∈Rx

prob(x, z)probn(z, y)

We use the notationx −→n
p y for probn(x, y) = p.

We say thaty is reachable in one step with non-zero probabilityfrom x, denoted
x −→>0 y whenx −→p y with p > 0. We say thaty is reachable with non-zero
probability from x, denotedx −→∗

>0 y when there existsn such thatx −→n
p y with

p > 0.
We can then compute the probability to reachu ∈ U from x: It is a function from

X × U to R defined byprobU (x, u) =
∑∞

n=0 prob
n(x, u). The total probability for

reachingU from x is probU (x) =
∑∞

n=0

∑
u∈U prob

n(x, u).
On the other hand, there is also the probability todiverge from x, or never reaching

anything. This value isprob∞(x) = limn→∞
∑

y∈X probn(x, y).

Lemma 1 For all x ∈ X, probU (x) + prob∞(x) ≤ 1.

We define theerror probability of x to be the number

proberr(x) = 1− probU (x)− prob∞(x)

We can define a notion of equivalence inX:

x ≈ y iff ∀u ∈ U
{

probU (x, u) = probU (y, u)
prob∞(x) = prob∞(y)

In addition to the notion of reachability with non-zero probability, there is also a
weaker notion of reachability, given byR: We will say thaty is reachable from x if
xRy. By the properties ofprob,

x −→>0 y implies x −→ y

with x −→ y for xRy. Let us denote by−→∗ the relation such that

x −→∗ y iff ∃n xRny

with Rn define as then-th composition ofR. Similarly,

x −→∗
>0 y implies x −→∗ y

In a probabilistic reduction system, a statex is called anerror-state if x 6∈ U and∑
x′∈X

prob(x, x′) < 1

An elementx ∈ X is consistentif there is no error-statee such thatx −→∗ e

Quantum typing 169

Lemma 2 If x is consistent, thenproberr(x) = 0.

Note that the converse is false.
We need this notion of weak reachability, because a null probability of getting a certain

result is not an absolute warranty of its impossibility. In the QRAM, suppose we have a
qubit in state|0〉. Measuring it cannot theoretically yield the value1, but in practice, this
might happen with small probability, due to imprecision of the physical operations and
decoherence. What will happen if we measure this qubit and get1? We need to be sure
that even in this case the program will not crash. Hence we separate in a sense the null
probability of getting a certain result, and the computational impossibility.

2.3 Quantum reduction

We need a deterministic decision procedure to choose which redex to reduce. Let us
analyse a call by value procedure, since this is the most intuitive one.

A useful subset ofS is the subspaceV of value states:

V = { [Q,Qf , V] ∈ S | V is a value }

A value is a term of the following form:

Value V ::= x | λx.M | c | 0 | 1 | meas | new | U

We define a probabilistic call-by-value reduction procedure. We write
M−→CBV pN if M reduces toN with probabilityp, orM −→p N for short.

[Q, (λx.M)V] −→1 [Q,M [V/x]]

LetQ = α|Q0〉+ β|Q1〉 being normalized, with

|Q0〉 =
∑

i

αi|φ0
i 〉 ⊗ |0〉 ⊗ |ψ0

i 〉 |Q1〉 =
∑

i

βi|φ1
i 〉 ⊗ |1〉 ⊗ |ψ1

i 〉

with |0〉 and|1〉 being thei-th qubit. Letµ0 = |α|2 andµ1 = |β|2

[α|Q0〉+ β|Q1〉,meas pi] −→µ0 [|Q0〉, 0]
[α|Q0〉+ β|Q1〉,meas pi] −→µ1 [|Q1〉, 1]

If Q is in a space of dimension2n−1,

[Q,new 0] −→1 [Q⊗ |0〉, pn] [Q,new 1] −→1 [Q⊗ |1〉, pn]

If Q is in a space of dimension2n−1, letQ′ = (Ij ⊗H ⊗ In−j−2)(Q)

[Q,H pj] −→1 [Q′, pj]

In any case (V a value):

[Q,N] −→p [Q′, N ′]
[Q,MN] −→p [Q′,MN ′]

[Q,M] −→p [Q′,M ′]
[Q,MV] −→p [Q′,M ′V]

170 B. Valiron

The cases forif are:

[Q, if(0;M ;N)] −→1 [Q,N] [Q, if(1;M ;N)] −→1 [Q,M]

[Q,P] −→p [Q′, P ′]
[Q, if(P ;M ;N)] −→p [Q′, if(P ′;M ;N)]

We define a weaker relation . This relation modelize the transformations that can
happen due to decoherence and imprecision of physical operations. It is supposed to be at
least the one above, even whenp = 0 in the definition, plus the following one, ifQ andQ′

are in the same vector space:[Q,M] [Q′,M].

Lemma 3 Letprob fromS×S onto be the function such thatprob(x, y) = p if x −→p y
and0 else.(S,V, , prob) is a probabilistic reduction system.

3 Types

The notion of lambda-term is a powerful way of representing functions and programs. But
we need a way to prevent run-time errors as much as possible. The usual way to do that is
to use atype system.

3.1 Subtyping

Let us define a type system. We are going to define it together with an ordering relation
<:. We need constant types and types for abstractions (the functions). Moreover, we need
a notion of duplicability of term. We want to be able to say whether or not a term can be
duplicated. So let us define in BNF:

qType A,B ::= α | X | !A | (A(B)

whereα spans a poset of type constants ordered by≤ andX spans a countable set of type
variables.A (B stand for “function with argument of typeA which returns a result of
typeB”. The notation “!” is a flag to state that the typed term is duplicable. We will call a
type “exponential” if it is written “!A”.

Let us extend the ordering relation≤ on types by<:.
αi ≤ αj

αi <: αj
(ax) A <: B

!A <: B
(D)

X <: X
(var)

!A <: B
!A <:!B

(!) A <: A′ B <: B′

A′(B <: A(B′
(()

Lemma 4 For any typeA andB, if A <: B and (m = 0) ∨ (n ≥ 1), then(n)(A) <:
(m)(B)

Proof by double induction onm andn.

Quantum typing 171

Let us notice that one can rewrite types using the notation:

qType A,B ::= (n)(αi) | (n)(X), (n)(Y) . . . | (n)(A(B)

with n ∈ N. (n)(A) standing for!!! . . .!!︸ ︷︷ ︸
n times

A

The rules can be re-written:

(m = 0) ∨ (n ≥ 1)
(n)(X) <: (m)(X)

(var2)
αi ≤ αj (m = 0) ∨ (n ≥ 1)

(n)(αi) <: (m)(αj)
(α)

A <: A′ B <: B′ (m = 0) ∨ (n ≥ 1)
(n)(A′(B) <: (m)(A(B′)

((2)

The two sets of rules are equivalent.

Proof Set (2) implies set (1):(var) and(α) follow directly from the previous lemma,
((2) comes from the fact that we know thatA <: A′ andB <: B′. So by(() we have
A′ (B <: A(B′. And by Lemma 4, we have obtained the desired result. The proof
that set (1) implies set (2) is done by induction on the proof thatA <: B. �

Lemma 5 The rules of the second set are reversible.

Lemma 6 (qType,<:) is reflexive and transitive. If we can define an equivalence relation
+ byA + B iff A <: B andB <: A, (qType/ +, <:) is a poset.

The proof is done using the second set of rules, and the transitivity of the implication in
the equivalence(m = 0) ∨ (n ≥ 1) iff (m ≥ 1) ⇒ (n ≥ 1) �

Lemma 7 If A <:!B, then there existsC such thatA =!C.

Proof Using the first set of rules,A <:!B can only come from(D) or (!). In both cases,
A is of the form!C. �

3.2 Typing rules

We need to define what it means for a quantum state[Q,Qf ,M] to be well-typed. It
turns out that the typing does not depend onQ andQf , but only onM . Given a termM ,
we need to be able to say whether or not it is well-typed. As usual, we introduce typing
judgements to deal with terms that may have free variables. Note that the free variables of
M which are in the domain ofQf have to be of typeqbit .

A typing judgement is a tuple∆ B M : B whereM is a term,B is aqType, and∆
is a set of variables|∆| = {x1, . . . xn} together with a function∆f from |∆| to qType.
We usually denote∆ by {x1 : A1, . . . xn : An}, with Ai = ∆f (xi). ∆ is called atyping
context.

A program is defined as a closed quantum state[Q,Qf ,M], where there exists a type
B such that(∆ BM :B) with ∆ = { x:qbit | x ∈ FV (M) } is well-typed.

172 B. Valiron

ForA andB in qType:

The axioms: Forc a constant term,
A <: B

∆, x : A B x : B
(ax1)

Ac <: B
∆ B c : B

(ax2)

For theif term,
Γ1, !∆ B P : bit Γ2, !∆ BM : A Γ2, !∆ B N : A

Γ1,Γ2, !∆ B if(P ;M ;N) : A
(if)

The application:
Γ1, !∆ BM : A(B Γ2, !∆ B N : A

Γ1,Γ2, !∆ BMN : B
(app)

The lambda, wherex 6∈ |∆|: If FV (M) ∩ |Γ| = ∅:
x : A,∆ BM : B

∆ B λx.M : A(B
(λ1)

Γ, !∆, x : A BM : B
Γ, !∆ B λx.M : (n+ 1)(A(B)

(λ2)

Table 1:TYPING RULES

We know what type the constant terms should have. Let us assign a given typeAc for
each constant termc, from the set of constant terms toqType:

A0 =!bit A1 =!bit Anew =!(bit(qbit)
AU =!(qbit(qbit) Ameas =!(qbit(!bit)

Remark: we setnew :!(bit(qbit). We could also have put!bit in place ofbit, since
we want abit to be always duplicable. However, this will be a corollary of the typing
rules, and we therefore put the most general type for the constant.

For contexts∆, ∆1 and∆2: ∆ = ∆1,∆2 means|∆1| ∩ |∆2| = ∅ and∆ = ∆1 ∪∆2.
∆ = ∆1, x : A means∆ = ∆1, {x : A}. ∆ =!∆1 means∆ = {x1 :!A1, . . . xn :!An}
if ∆1 = {x1 : A1, . . . xn : An}. The rules for constructingvalid typing judgements are
shown in Table 1.

Lemma 8

1. If x 6∈ FV (M), (∆, x:A BM :A) implies(∆ BM :A).

2. IfA is in qType, (∆ BM :A) implies(Γ,∆ BM :A).

Proof by induction on the proof of∆ BM : A.

4 Subject reduction

We definea subtyping relation between contexts by:∆ <: ∆′ iff |∆′| = |∆| and for all
x ∈ |∆′|, ∆f (x) <: ∆′

f (x). This relation is an ordering relation.

Quantum typing 173

Lemma 9 If (Γ <: ∆), (∆ B N :A) and(A <: B), then(Γ B N :B).

Proof by structural induction onN .

Lemma 10 If V is a value such that(∆ B V :!A), then for allx ∈ FV (V), there is
U ∈ qType such that∆f (x) =!U .

Proof

• If V is a variablex, ∆ splits in (∆′, x : B) and the typing judgement comes from
B <:!A

∆′, x : B B x :!A . SinceB <:!A, by Lemma 7,B needs to be exponential.

Hence the lemma is verified.

• If V is a constantc: The term is closed, hence by vacuity we have the result.

• If V = λx.M , the only rule that applies is(λ2), and∆ splits into(∆1, !∆2) with
FV (M) ∩ |∆1| = ∅. So every free variabley except maybex in M is exponential.
SinceFV (λx.M) = (FV (M) \ {x}), the lemma is also true in this case.

�

Lemma 11 For A andB qType, andV a value, if !∆,Γ1 B V :A and !∆,Γ2, x:A B
M :B, thenΓ1,Γ2, !∆ BM [V/x]:B.

Letω be a proof-tree for!∆,Γ2, x : A BM : B. The proof is done by structural induction
onω.

Lemma 12 If Γ1, !∆, x:A BM :B andΓ2, !∆ B V :(τ)A, thenΓ1,Γ2, !∆ BM [V/x]:B.

This is a corollary from Lemmas 11 and 9.

Theorem 1 (Subject reduction)
The typed lambda-calculus defined is preserved by .

Proof We are going to restrict the study to the reduction rules, it extends easily to . If
[Q,M] −→p [Q′,M ′], we want to verify that(∆ B M :B) implies(∆ B M ′:B) Since it
is a relation defined by induction, we are going to do it by induction on the definition

• For the rule[Q, (λx.M)V] −→1 [Q,M [V/x]]. If Φ B (λx.M)V : B, we have the
following typing tree:

!∆,Γ1 B V : A
!∆,Γ2, x : A BM : B

!∆,Γ2 B λx.M : A(B

!∆,Γ1,Γ2 B (λx.M)V : B

with Φ splitting in (!∆,Γ1,Γ2). Using Lemma 12,M [V/x] is of typeB, since
(!∆,Γ1 B V :A) and(!∆,Γ2, x:A BM :B).

174 B. Valiron

• The rules formeas are

[|Q0〉, 0]
[α|Q0〉+ β|Q1〉,meas pi]

µ0 33fffff
µ1

++XXXXX
[|Q1〉, 1]

If Γ, !∆, x : qbit B meas x : B is valid it must come from:

ω1 ω2

Γ, !∆, x : qbit B meas x : B
(app)

with Γ = (Γ1,Γ2), andω1 andω2 to be:

ω1 =
{

!(qbit(bit) <: A(B

Γ1!∆ B meas : A(B
(ax)

ω2 =
{

qbit <: A
Γ2, !∆, x : qbit B x : A

(ax1)

From the subtyping rule((2), (ω1) implies thatbit <: B andA <: qtype. Hence

A = qtype, and
bit <: B

Γ1!∆ B 0 : B is a valid proof. In the same way
bit <: B

Γ1!∆ B 1 : B ,

hence we have subject reduction.

The idea is the same fornew andH. For the derivation rules of terms of the form
if (M ;N ;P) and(MN), the proof only use the induction hypothesis.�

Theorem 2 If [Q,M] is such that there exists a typeA such that(∆ B M :A) with |∆|
being the domain ofQf andQf (x) = qbit for all x in |∆|, then it is consistent. Hence
any closed well-typed term either converges to a value, or diverges.

Proof We prove that for all well-typed closed term[Q,M], either it is a value, or there
exists at least oneM ′ such thatM −→M ′. We do it by induction on the proof of validity
of the typing judgement. There is two cases. Either it is a value, in which case there is
nothing to do, or it is not, and the only 2 rules that apply are(app) and(if).

(app) M = PQ and the typing tree starts with
∆1 B P :B(A ∆2 B Q:B

∆ B PQ : A with ∆ =
(∆1,∆2) = {x:qbit | x ∈ FV (M)}. SinceFV (M) = FV (P) ∪ FV (Q), and
there are disjoint, the two typing judgements we have are of the form required by the
theorem. So by induction hypothesis, either we can reduceQ, and we are done, or it
is a value. If it is a value, let us studyP : P is also either reducible, and then we are
done, or it is a value. If it is a value, then it is an abstraction andPQ is reducible,
either it is a constant function,new , meas or H . Since the typing judgement is
valid, we are done, we can reduce in this last case.

(if) The if statement is the same:M = if(P ;Q;R), and either we can reduceP , or it
is a value, so0 or 1 and we can reduceM in Q orR.

So by induction any closed well-typed term is consistent.�

Quantum typing 175

RawTerm M,N,P ::= x |MN | λx.M | µfx.M | if(M ;N ;P)
| 0 | 1 | meas | new | U | ∗ | 〈M1, . . . ,Mk〉
| let 〈x1, . . . , xk〉 = M in N

Value V ::= x | λx.M | µfx.M 0 | 1
| meas | new | U | ∗ | 〈V1, . . . , Vk〉

qType A,B ::= (n)(α) | (n)(>) | (n)(X) | (n)(A(B)
| (n)(A1 ⊗ . . .⊗Ak)

The subtyping relation is extended to

> <: > (>)
∀i Ai <: Bi

A1 ⊗ . . .⊗Ak <: B1 ⊗ . . .⊗Bk
(⊗)

Table 2:EXTENDED TERMS AND TYPES

5 Extension of the language

Let us extend the language with product types and recursion. Extended terms and types are
defined in Table 2. In this case we allow theU to be unitary operations of more than one
qubit. For example ifU is a binary unitary gate, we use it in that way:U : qbit⊗ qbit(
qbit⊗ qbit. We add to the previous definition a notion of tuples: we will denote ak-tuple
by 〈M1, . . . ,Mk〉.

Product versus Tensor We use in our language the tensor product instead of a cartesian
product. The reason is the following: If we define our product as cartesian, we need two
projectionsπ1 : A × B → A andπ2 : A × B → B. Then there has to be a bijection
〈π1(M), π2(M)〉 ↔ M . But such a projection cannot exists: ifM is not duplicable, we
do not have the right to write〈π1(M), π2(M)〉. This is not linear inM .

Thus, we have to take care of the fact that we can have non-duplicable terms in a tuple.

Let us take an example.
[

1√
2
(|00〉+ |11〉), 〈p0, p1〉

]
is a perfectly valid quantum state. In

the termM = 〈p0, p1〉 we have stored two qubits. Let us say we want to apply theH gate

on p1 and then theCNOTgate on both of them. TheCNOTgate is


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Using projectionsπ1 andπ2, we would have to write this asCNOT 〈H(π1M), π2M〉, but
that is not a valid program since we are duplicatingM . If we want to stay linear, we have
either to forgetp1 in reducingπ2 or to forgetp2 in reducingπ1. So we cannot use cartesian
products.

With tensor product, the linearity is kept: we can retreive information in bothA andB
of a productA ⊗ B in a linear manner using(let 〈x, y〉 = M in N). In that way, we

176 B. Valiron

First let us define the type of the new term constant:
∗ 7→ >

For theµ abstraction, one needFV (M) ∩ |Γ| = ∅ andA′(B′ <: A(B:
Γ, !∆, f :!(A(B), x : A′ BM : B′

Γ, !∆ B µfx.M : (n+ 1)(A(B)
(∞)

!∆,Γ1 BM1 : (n)(A1) . . . !∆,Γk BMk : (n)(Ak)
!∆,Γ1, . . . ,Γk B 〈M1, . . . ,Mk〉 : (n)(A1 ⊗ . . .⊗Ak)

⊗.I

!∆,Γ1BM :(n)(A1⊗ . . .⊗An) !∆,Γ2, x1:(n)A1. . .xk:(n)AkBN :A
!∆,Γ1,Γ2 B let 〈x1, . . . , xk〉 = M in N :A

⊗.E

Table 3:TYPING RULES FOR TUPLES, UNIT AND RECURSION

have obtained a monoidal category: we can define the linear functions:

σ : A⊗B (B ⊗A α : (A⊗B)⊗ C (A⊗ (B ⊗ C)
λ : A⊗> (A ρ : A (A⊗>

as following:

α = λp.(let 〈x, y〉 = p in σ = λp.(let 〈x, y〉 = p in 〈y, x〉)
let 〈z, t〉 = x in λ = λp.(let 〈x, y〉 = p in x)

〈z, 〈t, y〉〉) ρ = λx.〈x, ∗〉

Moreover, givenf : A (B and g : C (D, one can definef ⊗ g : A ⊗ C (
B ⊗ D by f ⊗ g = λp.(let 〈x, y〉 = p in〈fx, gy〉). The above problem has this
solution: (let 〈x, y〉 = M in (CNOT 〈(Hx), y〉) since linearity of the product’s elements
is preserved.

The typing rules to add are in Table 3. The reduction procedure for these new terms is
found in Table 4.

Compatibility with the previous results All the previous lemmas still hold in the ex-
tended language, and the subject reduction still holds. For the subject reduction, we have
to check that the new structures added, to know the recursion and the tuples, have rules
that are compatible. The tuple rules are just an extension of the application rules, so using
a similar method, it is working. For the recursion, suppose we have, withV a value,

[Q, (µfx.M)V] −→1 [Q,M [µfx.M/f, V/x]]

with [Q, (µfx.M)V] a program. Then one can findB such that
∆ B (µfx.M)V : B and∆ = {x:qbit |x∈FV ((µfx.M)V)}. The only typing tree is

∆1, f :!(A(B), x : A′ BM : B′

∆1 B µfx.M :!(A(B) ∆2 B V : A
∆1,∆2 B (µfx.M)V : B

Quantum typing 177

If V is a value:
[Q, (µfx.M)V] −→1 [Q,M [µfx.M/f, V/x]]

If for all i, Vi is a value andN is linear inxi if Vi is non-duplicable
[Q, let 〈x1, . . . , xk〉 = 〈V1, . . . , Vk〉 in N] −→1 [N [V1/x1] . . . [Vn/xn]]

One reduces a tuple from left to right:
[Q,M1] −→p [Q′,M ′

1]
[Q, 〈M1, . . . ,Mk〉] −→p [Q′, 〈M ′

1, . . . ,Mk〉]
[Q,M2] −→p [Q′,M ′

2]
[Q, 〈M1,M2, . . . ,Mk〉] −→p [Q′, 〈M1,M

′
2, . . . ,Mk〉]

. . .
[Q,Mk] −→p [Q′,M ′

k]
[Q, 〈M1, . . . ,Mk〉] −→p [Q′, 〈M1, . . . ,M

′
k〉]

Table 4:EXTENDED REDUCTION

with |∆1| = FV (µfx.M) ⊆ FV (M) ∪ {f, x}, |∆2| = FV (V) andA′ (B′ <: A(
B. By the rule(∞), since there is no duplicable variable in∆1, |∆1| ∩ FV (M) = ∅.
SinceA <: A′ andB′ <: B,

∆1, f :!(A(B), x : A BM : B

is valid, and one can applyV to M from Lemma 11 and Lemma 12. Applying them to
replaceµfx.M for f gives

∆ BM [µfx.M/f, V/x] : B

valid.�

6 Conclusion and further work

In this paper, we have defined a higher-order quantum programming language based on a
linear typed lambda calculus. Compared to the quantum lambda calculus of Van Tonder
[10, 11], our language is characterized by the fact that it combines classical as well as
quantum features; thus, we have classical data types as well as quantum ones. We also
provide both unitary operations and measurements as primitive features of our language.

As the language shows, linearity constraints do not just exist at base types, but also at
higher-order types, due to the fact that higher-order functions are represented as closures
which may in turns contain embedded quantum data. We have shown that affine intuition-
istic linear logic provides precisely the right type system to deal with this situation.

There are many open problems for further work. It is an interesting question whether
one can have an automatic type inference algorithm for the language described here; this
question will be answered in the affirmative in the author’s forthcoming M.Sc. thesis.

178 B. Valiron

Another interesting question is whether the syntax of this language can be extended to
include the additive types of linear logic, in addition to the multiplicative ones discussed
here.

A very important open problem is to find a satisfactory denotational semantics for a
higher order quantum programming language. One approach for finding such a semantics
is to extend the framework of the work of Selinger [8] and to identify an appropriate
higher-order version of the notion of a superoperator.

7 Acknowledgments

I would like to thank Peter Selinger for his supervision and his feedback.

References

[1] H. P. Barendregt,The Lambda-Calculus, its Syntax and Semantics, North Holland,
2nd edition, 1984.

[2] P. Benioff: The computer as a physical system: A microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines,Journal of
Statistical Physics, 22, 563-591, 1980

[3] S. Bettelli, T. Calarco and L. Serafini: Toward an architecture for quantum program-
ming, arXiv:cs.PL/0103009 v3, 2003

[4] D. Deutsch: Quantum theory, the Church-Turing principle and the universal quantum
computer,Proceedings of the Royal Society of London A 400, 97-117, 1985.

[5] E. Knill: Convention for quantum pseudocode,LANL report LAUR-96-2724, 1996

[6] M. A. Nielsen and I. L. Chuang:Quantum Computation and Quantum Information,
Cambridge University Press, 2002.

[7] J. Preskill. Lecture Notes for Physics 229: Quantum Information and Compu-
tation, 1998. Available athttp://www.theory.caltech.edu/people/
preskill/ph229/#lecture .

[8] P. Selinger: Toward a Quantum programming language. To appear inMathematical
Structures in Computer Science, 2004.

[9] J.W. Sanders and P. Zuliani:Quantum Programming, Mathematics of Program Con-
struction, Springer LNCS 1837, 80-99, 2000.

[10] A. van Tonder: A lambda calculus for quantum computation, arXiv:quant-ph/
0307150 v5 (2004). To appear inSIAM Journal of Computing.

[11] A. van Tonder: Quantum computation, categorical semantics and linear logic,
arXiv:quant-ph/0312174, 2003.

