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Abstract

The objective of this paper is to develop a functional programming language for
quantum computers. We develop a lambda-calculus foRAMmodel, following
the work of P. Selinger (2003) on quantum flow-charts. We define a call-by-value
operational semantics, and we develop a type system using affine intuitionistic linear
logic. The main result of this preprint is the subject-reduction of the language.

1 Introduction

The objective of this paper is to develop a functional programming language for quantum
computers. Quantum computing has become a fast growing research area in recent years.
The object is to study what would happen if one encodes data using quantum particles
instead of classical ones. For a good introduction, see e.g. [7, 6].

The laws of quantum physics restrict the kinds of operations that one can perform
on a quantum state: there are only two kinds of basic operations, namitdyy trans-
formationsand measurements Many existing models of quantum computation put an
emphasis on the former, i.e., a computation is understood as the evolution of a quantum
state by means of unitary gates. In these models, a quantum computer is considered as a
purely quantum system, i.e., without any classical parts. One example of such a model
is the quantum Turing machine [2, 4], where the entire machine state, including the tape,
the finite control, and the position of the head, is assumed to be in quantum superposi-
tion. Another example is the quantum lambda calculus of Van Tonder [10, 11], which is a
higher-order, purely qguantum language without an explicit measurement operation.

On the other hand, one might imagine a more realistic model of a quantum computer
where unitary operations and measurements can be interleaved. One example is the so-
called QRAM modebf Knill [5], which is also described by Bettelli, Calarco and Ser-
afini [3]. Here, a quantum computer consists of a classical computer with a quantum
device attached to it. In this configuration, the operation of the machine is controlled by
a classical program which emits a sequence of instructions to the quantum device for per-
forming measurements and unitary operations. This situation is summarized by the slogan
“quantum data, classical control” [8]. Several programming languages have been proposed
to deal with such a model [3, 9], but the one on which this paper is based is the work of
Selinger [8].

In this paper, we propose ldgher-orderquantum programming language, i.e., one
in which functions can be considered as data. In our language, a program is a lambda
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term, possibly with some quantum data embedded inside. The basic idea is that lambda
terms encode the control structure of a program, and thus, they would be implemented
classically, i.e., on the classical device of the QRAM machine. However, the data on
which the lambda terms act is possibly quantum, and is stored on the QRAM quantum
device.

Because our language combines classical and quantum features, it is natural to consider
two distinct basic data types: a typeaéssical bitsand a type ofjuantum bits. They
behave in a complete different manner. For instance, a classical bit can be copied as many
times as needed. On the other hand, a quantum bit cannot be duplicated, due to the well-
known no cloning propertyof quantum states [7, 6]. However, quantum data types are
very powerful, due to the phenomena of quantum superposition and entanglement. Due to
entanglement, quantum bits cannot be directly encoded in the lambda-term. However one
can define it as a free variable and set an external function to link this variable to the actual
guantum bit in the quantum device.

The semantic described in this paper is operational: a program is an abstract machine
with reductions rules. The machine embbed a representation for the quantum device as a
vector in a suitable Hilbert space, a lambda-term and a function that links the free variables
of the term to the quantum bits in the quantum device. The reduction rules are probablistic,
and one problem we solve is to describe the behavior of the program with respect to this
probabilistic reduction. One part of the challenge is that we don’t want to consider the
guantum feature as a side effect.

Difficulties arise during manipulation of functions: the duplicability feature of a func-
tion is independant of the one of its argument and of its value: A non-duplicable function
may accept only duplicable argument, and a duplicable function may return non-duplicable
values. We describe a type system to handle all these cases, based on affine intuitionistic
linear logic. This paper expose how the validity of a program is linked to the reduction
procedure, and then induce the choice of the typing rules to make them verify subject
reduction.

2 Terms

2.1 Quantum States

The quantum data in th@RAMcan be modelized as a vector in a Hilbert space [7, 6].
Formally we define a quantum bit, qubit, as a normalized vector of tteedimensional
Hilbert spaceC2. We denote the orthonormal basis{é®), |1)}. A quantum superposition
of several qubits is a normalized vectordf_, C2. We call it an-quantum bit, and we
denote it ag¢p) = Zf:o |bin,(i)) with bin, (i) being the binary representation i n
digits. We will refer to thek-th qubit of thisn-qubit to refer to the:-th 0 or 1 in |bin,, (7).

We would like to extend the lambda calculus with the ability to manipulate quantum
data. We first need a syntax to express quantum states in the lambda calculus. In simple
cases, we might simply insert quantum states into a lambda term, syeh: 4&|0) +
B1))). However, in the general case, such a syntax is insufficient. Consider for instance
the lambda term{Ay.\f. fpy)(q), wherep and ¢ are quantum bits which are jointly in
the entangled stafgq) = «|00) + 5|11). Such a state cannot be represented locally by
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replacingp andq with some constant expressions of type qubit. The non-local nature of
guantum states thus forces to introduce a level of indirection into the representation of
a state. Thus, to represent a program, we should have a lambda4eiorencode the
operations, but also an exteriorqubit state) to store the quantum data of the program.
Further, to link both parts, we need a third element, which is a fun@ipfrom F'V (M)
to {0,...,n — 1}, such that ifQ s (z) = ¢, x would be a representation of th¢h qubit in
Q.

We provide several built-in operations for quantum bits. The operatorrepresents
a function that takes a bi0 (©r 1) and allocates a new qubit of the corresponding value. We
also need to be able to act on qubits via unitary operations; thus, we will assume a given
setU' of unary unitary gates. Currently, our language has no way of representing tuples,
so we will restrict ourselves to unary quantum gates for now; tupleseamy gates will
be considered in Section 5.

In the following examples, we will often use the Hadamard gatevhich we assume

to be an element afl*:
1 1 1
H_ﬁ(14>

Finally, we equip the language with a measurement operationnket be the term for it.

It takes a quantum bit, performs a measurement, and returns the classicat bitvhich

is the result of the measurement. Of course, the outcome of this operation is probabilistic.
If U ranges ovet(!, we define aerm by the following Backus-Naur Form:

RawTerm M,N,P == x| (MN) | x.M | if(M;N; P)
[c]0]1] meas | new | U

with z ranging ovefV a countable set of variables, andanging ovel€ a set of constants.
The set of constants should at least contain the truth vélwesi1. \z.M represents a
function of variabler, and(M N) is the application\/ applied toN. We also call\x.M
an abstraction. The termif (M; N; P) denotes the conditional expression M then
N elseP”. Here, only one ofN or P is evaluated, depending on the truth value\éf
Finally, the set of constants should also contain the tefrags and new, to be able to
measure and create qubits.

The notion of free and bound variable is defined as usual [1], just as the notion of
a-equivalence, substitution amtdreduction.

As usual, terms are identified updeequivalence. In that sense we will writg:.2 =

AY.y.

Definition. A quantum stateis a triple[Q, @y, M] where(@ is a normalized vector of
®I,C2, M is a lambda-term, an@ is a function fromi¥" to {0,...,n — 1}, where
FV (M) CW CWV. Qy is also called théinking function . We denote the set of quantum
states bys. If n = 0, thenwe denot€) =1 € Cby Q =|).

The notion ofa-equivalence extends naturally to quantum states, for instance, the
states

[11), {z — 0}, \y.z] and [|1},{z — 0}, \y.Z]
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are equivalent. More formally, the-equivalenceon quantum states is the smallest equiv-
alence relation such thatif ¢ FV (M) andz ¢ FV (M), then

Q,QrU{z— i}, M] =, [Q,Q;U{z— i}, M[z/x]]

We will work under this equivalence when speaking of quantum states.

In order to simplify the notation, we will often use the following trick: we yse
to denote the free variable such thatQ,(x) = . A quantum state is abreviated by
[Q, M'] with M" = M{p;, /x1] ... [pi, /xx] if the domain ofQ is {z1, ..., z,}, where
ik = Qf ({,Ck)

Reduction of the quantum state We should now address the question of how a quan-
tum state should be reduced. One restriction is that it is forbidden to duplicate a quan-
tum bit, due to the no-cloning property of quantum physics. Let us illustrate this with
an example, using a call-by-value reduction procedure. Let us define a hindryn

our language in that wayand = Azy.if(x;if (y;1;0);0). Now consider the term
(Az.and(meas(z))(meas(H x)) (|0)). Naively, we expect this to reduce to

and(meas(]0)))(meas(H |0))),

then to measure the right argumdiit|0), then the left argument which reducetavith
probability 1, and then apply thend function. We expect to obtain the resdltwith
probability 1. Using the quantum state notation, let us reduce this term more formally:

[10), (Az.and(meas(z))(meas(H x)) (po)]
—cpv [|0), and(meas(po))(meas(H po))]

In the QRAM, applyingH to a gbit is modifying the actual state of the gbit. Let us reduce
the right argumentH py):

—cBY [% (10) + [1)) , and(meas(po)) (meas(po))]-

Reducing the right argument again, we obtain, assuming that the measurement is non-
destructive (Indeed, if we used destructive measurement, the program would not even be
well-defined, since we would havepg alone):

. { [|0), and(meas(po))(0)] with prob. 0.5
CBV A [)1), and(meas(po))(1)] with prob. 0.5.

This reduces t9|0), 0] with probability 0.5 and to[|1), 1] with probability 0.5. Clearly,
this is not the intended result.

The program is unpredictable due to the duplicatiopgofThe problem derives from
the fact that a value such ag does not represent a constant, as in the classical lambda
calculus, but rather it is pointerinto the quantum state. We never aatp,, we act on the
value it points to. To ensure the predictability of programs, it is necessary to disallow the
duplication of terms that contajn’s, since we don't want to allow side-effects. We will



Quantum typing 167

call an abstractionz. M linear if x appears at most once as a free variabl&/inWe also
say thatM is linear in x in this case.

Another problem can occur: let us callus the function which acts as the addition
modulo 2 on classical bits. We can easily construct such a function in our language:
plus = A\zy. if (x; if (y; 0; 1); if (y; 1;0)). Consider the state

[}, (Az.plus z x)(meas(H (new 0)))].

Now reduce that system using the call-by-value reduction system. Intuitively one shall
get:
—cnv [|0), (Az.plus x x)(meas(H pp))]
—cnv [5(10) + 1)), (Az.plus z z)(meas po)]

and then with probability.5:

[10), (Az.plus z x)(0)] or [|1), (Az.plus z z)(1)]
[10),plus 0 0] or [|1),plus 1 1]

which evaluate with probabilitg.5 to [ |0),0 ] orto[ |1),0].
Had we reduced the same term under a call-by-name strategy, we would have obained
in the first step

[ 1), plus (meas(H (new 0))) (meas(H (new 0))))],

and then a quantum state with an array of four qubits instead of two.
Moreover, if we had mixed the call-by-value and call-by-name strategies, the program
could have led to an ill-defined result: reducing by call-by-value until

V2

2

[
and then changing to call-by-name, we would obtain in one step:

V2

2

(10) + |1)), (Az.plus x z)(meas po)]

[

which is not even a valid program since there amecurences ofy.

In other words, it does not make sense to speak of a gefleneduction procedure
for the whole quantum state. If we define a reduction procedure, we have to choose a
reduction procedure to before writing programs.

(10) +11)), (plus (meas po) (meas po)l,

2.2 Probabilistic reduction system

We define gprobabilistic reduction systemas a tuple X, U, R, prob) whereX is a set
of states U C X is a subset ofalue states R C (X \ U) x X is a set ofreductions,
andprob : R — [0,1] is aprobability function , where[0, 1] is the real unit interval.
Moreover, we impose the following conditions: Forang X, R, = { 2’ | (z,2') € R }

is finite, and) _ ., _prob(z,z’) < 1. We callprob the one-step reduction, and we note
x —p y for prob(z, y) = p.
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Let us extenchrob to then-step reduction:

0 if z#y
0 _
p’I“Ob (LU, y) - 1 |f T=y
1 _ prob(z,y) if (z,y) € R
prob'(z,y) = 0 else
prob™(z,y) = 3. g, prob(z,z)prob”(z,y)

We use the notation —7 y for prob™ (z, y) = p.

We say thaty is reachable in one step with non-zero probabilityfrom z, denoted
r —so y Wwhenz —, y with p > 0. We say thaty is reachable with non-zero
probability from z, denotedr —%, y when there exista such thatr — y with
p>0.

We can then compute the probability to reacke U from z: It is a function from
X x U to R defined byproby (z,u) = > 7 prob™(z,u). The total probability for
reachingl from z is proby (x) = 37" >, cp prob™(x, u).

On the other hand, there is also the probabilitylieerge from z, or never reaching
anything. This value iprobo (z) = limy, o0 3, ¢ x Prob™(z,y).

Lemma 1 For all z € X, proby (z) + probe(z) < 1.
We define theerror probability of x to be the number
probeq(x) = 1 — proby (x) — probes ()

We can define a notion of equivalenceXn

o proby (x,u) = proby (y, u)
r~y iff Yue U{ prob_ (x) = prob_(y)

In addition to the notion of reachability with non-zero probability, there is also a
weaker notion of reachability, given bi: We will say thaty is reachable from x if
xRy. By the properties oprob,

r—soy Implies z—y
with x — y for x Ry. Let us denote by—* the relation such that
x—"y iff In zR"y
with R™ define as the:-th composition ofR. Similarly,
x—L,y implies z —"y

In a probabilistic reduction system, a statés called arerror-state if x ¢ U and

Z prob(z,x’) <1

z'eX

An elementr € X is consistentif there is no error-state such thatt —* e
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Lemma 2 If z is consistent, theprob,,..(z) = 0.

Note that the converse is false.

We need this notion of weak reachability, because a null probability of getting a certain
result is not an absolute warranty of its impossibility. In the QRAM, suppose we have a
qubit in statel0). Measuring it cannot theoretically yield the valuebut in practice, this
might happen with small probability, due to imprecision of the physical operations and
decoherence. What will happen if we measure this qubit and yéte need to be sure
that even in this case the program will not crash. Hence we separate in a sense the null
probability of getting a certain result, and the computational impossibility.

2.3 Quantum reduction

We need a deterministic decision procedure to choose which redex to reduce. Let us
analyse a call by value procedure, since this is the most intuitive one.
A useful subset of is the subspac¥ of value states

V={ [Q,Qs,V]eS | Visavalue }
A valueis a term of the following form:
Value V- = x| Ae.M |c| 0| 1| meas | new |U

We define a probabilistic call-by-value reduction procedure. We write
M—cpv,N if M reduces taV with probabilityp, or M/ —,, N for short.

Let@Q = «o|Qo) + 5]|Q1) being normalized, with

Qo) =D aildl) @)@ vf) @) =D Biler) @ 1) @ i)

with |0) and|1) being thei-th qubit. Letu = |a|? andp, = |B]?

[ Qo) + B|Q1), meas p;] — 4, [|Q0), 0]
[a|Qo) + B|Q1), meas p;] — ., [|Q1),1]

If Qis in a space of dimensiaf—!,

[Qa new O] -1 [Q & |O>apn] [Qa new ]-] -1 [Q & |1>apn]
If Qisin a space of dimensia !, letQ’ = (I; ® H ® I,,_j—2)(Q)

(Q, H pj] —1 [Q',pj]
In any case\ a value):

(@, N] —p (@, N'] @, M] —, [Q', M]
[QaMN] —)p [leMN/] [QaMV] —>P [Q/aM/V]
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The cases foif are:

[Q,if(0; M; N)] —1 [Q,N] [Q,if(1; M; N)] —1 [Q, M]

(@, P] —p (@', P]
[Q,f(P; M; N)| —, [Q',If(P'; M; N)]

We define a weaker relatiow. This relation modelize the transformations that can
happen due to decoherence and imprecision of physical operations. It is supposed to be at
least the one above, even wheg- 0 in the definition, plus the following one, @® andQ’
are in the same vector spag€, M| ~ [Q’, M].

Lemma 3 Letprob fromS xS onto~- be the function such thatob(z,y) = pifc —, y
ando else.(S, V, ~, prob) is a probabilistic reduction system.

3 Types

The notion of lambda-term is a powerful way of representing functions and programs. But
we need a way to prevent run-time errors as much as possible. The usual way to do that is
to use aype system

3.1 Subtyping

Let us define a type system. We are going to define it together with an ordering relation
<. We need constant types and types for abstractions (the functions). Moreover, we need
a notion of duplicability of term. We want to be able to say whether or not a term can be
duplicated. So let us define in BNF:

qType A,B = a| X |!A| (A — B)

wherea spans a poset of type constants ordereglland X spans a countable set of type
variables.A — B stand for “function with argument of typé which returns a result of
type B”. The notation *" is a flag to state that the typed term is duplicable. We will call a
type “exponential” if it is written tA”.

Let us extend the ordering relatighon types by<:.

Q; S &%}

—— (ax) A< B -
@ < @ 'A< B (D) X< X (var)
!A<:B() A< A B< B (—o)
1IA<!B V A —owB<A—oDB

Lemma 4 For any typed and B, if A < B and(m = 0) V (n > 1), then(n)(4) <
(m)(B)

Proof by double induction om andn.
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Let us notice that one can rewrite types using the notation:
qType A, B = (n)(ai) [ (n)(X), (n)(Y)... | (n)(A — B)

with n € N. (n)(A) standing for!!l...Il A
——

~ ntimes
The rules can be re-written:

(m=0)V(n>1) ) a; <a; (m=0)V(n>1)
(X)) < m)x) (n)(ai) < (m)(ay)
A< A B<B (m=0Vn=>1)
(n)(A”— B) < (m)(A — B)

The two sets of rules are equivalent.

(@)

Proof Set (2) implies set (1)(var) and(«) follow directly from the previous lemma,
(—o2) comes from the fact that we know that<: A’ andB < B’. So by(—) we have

A’ — B << A — B’. And by Lemma 4, we have obtained the desired result. The proof
that set (1) implies set (2) is done by induction on the proof that B. [

Lemma5 The rules of the second set are reversible.

Lemma 6 (¢Type, <) is reflexive and transitive. If we can define an equivalence relation
=byA=Biff A< BandB < A, (¢Type/ =, <:) is a poset.

The proof is done using the second set of rules, and the transitivity of the implication in
the equivalencém =0) vV (n > 1)iff (m > 1) = (n>1)0O

Lemma 7 If A <:!B, then there exist€' such thatd =!C.

Proof Using the first set of rules4 <:!B can only come fron{D) or (!). In both cases,
A is of the form!C. O

3.2 Typing rules

We need to define what it means for a quantum sf@te) , M] to be well-typed. It
turns out that the typing does not dependi@and(@ s, but only on)M. Given a termi/,
we need to be able to say whether or not it is well-typed. As usual, we introduce typing
judgements to deal with terms that may have free variables. Note that the free variables of
M which are in the domain ap y have to be of typebit.

A typing judgementis a tupleA > M : B whereM is aterm,B is aqType, andA
is a set of variablegA| = {1, ...z, } together with a functiom ; from |A| to ¢T'ype.
We usually denote\ by {z; : A,... 2, : A}, with A; = Ag(x;). A'is called atyping
context

A program is defined as a closed quantum st@eq , M|, where there exists a type
B such thalA > M:B) with A = { z:¢bit | x € FV (M) } is well-typed.
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For A and B in ¢Type:

The axioms: For a constant term,
__A<B (az1) A< B (az2)
Ax:A>z: B ! A>c:B 2

For theif term,
I'i,JA>P:bit Th,!/A>M:A T ,IA>DN:A

T,,To, A if(P;M;N): A (@f)
The application:
I,JAbM:A—-B T3, )/A>N:A (app)
T,,T5,/A> MN: B app
The lambda, where ¢ |A|: If FV(M)N|T| = 0:
z:AA>M:B Az A>M: B
: (A1) : (A2)
A> e M:A—-B T,IA> Az M : (n+1)(A —o B)

Table 1:TYPING RULES

We know what type the constant terms should have. Let us assign a giveA type
each constant termm) from the set of constant terms 4@ ype:

Aq =!bit Ay =!lbit Apew =!(bit —o gbit)
Ay =!(gbit — gbit)  A,,c.s =!(gbit —o!bit)

Remark: we setew :!(bit — gbit). We could also have plitit in place ofbit, since
we want abit to be always duplicable. However, this will be a corollary of the typing
rules, and we therefore put the most general type for the constant.

For contexts\, A; andAs: A = Ay, Ay meang AN |[Az] = D andA = A; U A,
A=A,z : AmeansA = Ay, {x : A}. A =IA; meansA = {z :!A;, ...z, 1A, }
if Ay ={x1: A4,...2,: A,}. The rules for constructingalid typing judgements are
shown in Table 1.

Lemma 8
1 Ife g FV(M), (A, x:A > M:A) implies(A > M:A).
2. If AisingType, (A > M:A) implies(I', A > M:A).
Proof by induction on the proof ak > M : A.

4 Subject reduction

We define a subtyping relation between contexts ky: < A’ iff |A’| = |A] and for all
z € |[A'], Ap(z) < A(x). This relation is an ordering relation.
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Lemma9 If (T' < A), (A > N:A)and(A < B), then(T' > N:B).
Proof by structural induction ofv.

Lemma 10 If V' is a value such thatA > V:lA), then for allz € FV(V), there is
U € qType such thatA ¢ (z) =!U.

Proof

e If Vis a variabler, A splits in(A’,z : B) and the typing judgement comes from
B <lA . .
ANz BoalA- Since B <:!A, by Lemma 7,B needs to be exponential.

Hence the lemma is verified.
e If V is a constant: The term is closed, hence by vacuity we have the result.

e If V = X\z.M, the only rule that applies i§\2), and A splits into (A4, !A,) with
FV(M)N|A1| = 0. So every free variablg except maybe in M is exponential.
SinceFV (Az.M) = (FV(M) \ {z}), the lemma is also true in this case.

O

Lemma 11 For A and B ¢Type, andV a value, iflA Ty > V:Aand!A T, z:A >
M:B, thenl'y, Ty, !A > M[V/z]:B.

Letw be a proof-tree fotA, I's, z : A > M : B. The proof is done by structural induction
onw.

Lemma 12 If T'y,!A,2:A > M:Bandly, A > V(1) A, thenl'y, T, A > M[V/x]:B.
This is a corollary from Lemmas 11 and 9.

Theorem 1 (Subject reduction)
The typed lambda-calculus defined is preserved-by

Proof We are going to restrict the study to the reduction rules, it extends easily tb
Q,M] —, [Q', M'], we want to verify thatA > M:B) implies (A > M’:B) Since it
is a relation defined by induction, we are going to do it by induction on the definition

e Forthe rulg@Q, (Az.M)V] —1 [Q, M[V/z]]. If ® > (Az.M)V : B, we have the
following typing tree:

AT,z : A> M : B
IANT1> VA IATeo> A e M:A—B
AT, T > (Ae. M)V : B

with @ splitting in (IA,T'1,T3). Using Lemma 12M[V/x] is of type B, since
(IA, Ty > V:A)and(IA, Ty, z:A > M:B).
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e The rules formeas are
Ho HQO>1 0]
[]Qo) + BlQ1), meas pJ=—__
H1 HQ1>a 1]

If I',!A, x : gbit > meas x : Bis valid it must come from:

W1 w2
[IA x : gbit > meas z : B

(app)

with I' = (I'1,T'2), andw; andws to be:

!(gbit —o bit) < A — B
w1 = { I'''A > meas: A— B (az)
_ gbit < A (az1)
w2 Do, !Az:gbit>x: A !

From the subtyping rulé—os), (w1) implies thatbit <« B and A < gtype. Hence
Aot q bit < B . lid £ Inth bit < B
= qtype,and A, p isavalid proof. Inthe same ways 1A 5

hence we have subject reduction.

The idea is the same fartew and H. For the derivation rules of terms of the form
if (M; N; P) and(M N), the proof only use the induction hypothedis.

Theorem 2 If [Q, M] is such that there exists a typesuch that(A > M:A) with |A|
being the domain of)y and Q¢ (z) = g¢bit for all z in |A|, then it is consistent. Hence
any closed well-typed term either converges to a value, or diverges.

Proof We prove that for all well-typed closed terf®, M|, either it is a value, or there
exists at least on#&/’ such that\/ — M’. We do it by induction on the proof of validity

of the typing judgement. There is two cases. Either it is a value, in which case there is
nothing to do, or itis not, and the only 2 rules that apply @) and (i f).

(app)

(i)

Ai>P:B-—-A AQDQZB
M = PQ and the typing tree starts with A PQ: A with A =
(A1,A) = {a:qbit | © € FV(M)}. SinceFV(M) = FV(P)U FV(Q), and
there are disjoint, the two typing judgements we have are of the form required by the
theorem. So by induction hypothesis, either we can redy@nd we are done, or it
is a value. Ifitis a value, let us study: P is also either reducible, and then we are
done, or itis a value. Ifitis a value, then it is an abstraction Baglis reducible,
either it is a constant functiomew, meas or H. Since the typing judgement is
valid, we are done, we can reduce in this last case.

Theif statement is the saméf = i f(P; Q; R), and either we can redud®, or it
is a value, s® or 1 and we can reduc&/ in @Q or R.

So by induction any closed well-typed term is consistént.
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RawTerm M,N,P := a| MN | e.M |pfe.M |if(M;N;P)
|0] 1| meas | new |U | x | (My,..., M)
|let(zq,...,2) =MinN

Value 1% w= x| AeM | pfe.MO]1
| meas |new |U | * | (V1,..., V)
)(@) [ ()(T) | (n)(X) | (n)(A — B)

gType A B = (n
| (TL)(Al & ... ®Ak)

The subtyping relation is extended to

Vi A; < B;
(T)

Al®...Q A, < B1®...® By

=T (®)

Table 2:EXTENDED TERMS AND TYPES

5 Extension of the language

Let us extend the language with product types and recursion. Extended terms and types are
defined in Table 2. In this case we allow thieto be unitary operations of more than one
qubit. For example it/ is a binary unitary gate, we use it in that wdy:: gbit ® gbit —

gbit ® gbit. We add to the previous definition a notion of tuples: we will denatetaple

by (M, ..., Mg).

Product versus Tensor We use in our language the tensor product instead of a cartesian
product. The reason is the following: If we define our product as cartesian, we need two
projectionsm; : A x B — A andm, : A x B — B. Then there has to be a bijection
(m (M), m2(M)) < M. But such a projection cannot exists:Nf is not duplicable, we
do not have the right to writér; (M), mo(M)). This is not linear inM/.

Thus, we have to take care of the fact that we can have non-duplicable terms in a tuple.
Let us take an example{%(mo) +]11)), <p0,p1>} is a perfectly valid quantum state. In

the termM = (po, p1) we have stored two qubits. Let us say we want to applyHtgate
1 0 0 0

. 01 0 O
on p; and then theCNOT gate on both of them. ThENOT gate is 00 0 1
0 01 0
Using projectionsr; andr,, we would have to write this aSNOT (H (w1 M), mo M), but
that is not a valid program since we are duplicativig If we want to stay linear, we have
either to forgep, in reducingr, or to forgetp, in reducingr,. So we cannot use cartesian
products.

With tensor product, the linearity is kept: we can retreive information in boimd B
of a productd ® B in a linear manner usinfet (z,y) = M in N). Inthat way, we
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First let us define the type of the new term constant:
* = T

For they abstraction, one needV (M) N |T'| = andA’ — B’ << A — B:
F,!A,f:!(A—OB),x:A’DM:B’( )
CVAD pfe.M: (n+1)(A — B) >

ATy > My (n)(Ar) ... ATy > Mg : (n)(Ax)
!A,Fl,...,l“k > <M1,...,Mk> : (n)(A1®®Ak)

®.I

'A,Fle(n)(A1®®An) !A,Fg,xlz(n)Al...xk:(n)AkDN:A B
IAT1, T > let (71, an) = Min N:A ®

Table 3:TYPING RULES FOR TUPLESUNIT AND RECURSION

have obtained a monoidal category: we can define the linear functions:

c: A®B — B®A|a: (A®B)®C — A®(B&Q()
A AT — A p: A — ART

as following:

a=Mp.(let {x,y)=p in|o=Ap.(let (z,y) =p in (y,z))
let (z,t)y =2 in | A= Ap.(let (x, i

(2, () | p = ez, )

Moreover, givenf : A — B andg : C — D, one candefingd ® g : A® C —
B Dby f®g = Ap.(let {(x,y) = p in{fx,gy)). The above problem has this
solution: (let (z,y) = M in (CNOT ((Hz),y)) since linearity of the product’s elements
is preserved.

The typing rules to add are in Table 3. The reduction procedure for these new terms is
found in Table 4.

Compatibility with the previous results All the previous lemmas still hold in the ex-
tended language, and the subject reduction still holds. For the subject reduction, we have
to check that the new structures added, to know the recursion and the tuples, have rules
that are compatible. The tuple rules are just an extension of the application rules, so using
a similar method, it is working. For the recursion, suppose we have,Wvilvalue,

@, (ufx.M)V] —1 [Q, Mpfx.M/f,V/x]]

with [@, (ufz.M)V] a program. Then one can firigl such that
A > (pfe. M)V : BandA = {z:¢bit|lxreFV ((ufx.M)V)}. The only typing tree is
Ay fN(A—B)z: A >M:B
Ay > pfx.M (A — B) Ay>V: A
Ay, Ay > (pfe. M)V : B
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If V is a value:

Q, (ufx.M)V] —1 [@, Mpfx.M/f,V/x]]

If for all 4, V; is a value andV is linear inx; if V; is non-duplicable
@Q,let(zy,..., o) = (Vi,..., Vi) In N] —1 [N[Vi/az1] ... [Vi/20]]

One reduces a tuple from left to right:

(Q, My] — [Q', M{]
[Qv <M17" >] —p [Q/ <M17"’7Mk>]

Q. Ma] —, Q' M)
[Q,(]\/fl,Mg,.. >] —p [ <M1,Mé,...,Mk>]
(@, M) —, (@, M)

Q. (M1, -, M) — (@' (My, - M)

Table 4:EXTENDED REDUCTION

with |Ay| = FV (ufe. M) C FV(M)U{f,a}, |As] = FV(V) andA’ — B’ < A —o
B. By the rule(co), since there is no duplicable variable A, |A;| N FV (M) = 0.
SinceA < A’ andB’ < B,

Ay, f(A—B),z:A>M:B

is valid, and one can apply to M from Lemma 11 and Lemma 12. Applying them to
replaceu fx.M for f gives

A> MlufeM/f,V/x]: B

valid. O

6 Conclusion and further work

In this paper, we have defined a higher-order quantum programming language based on a
linear typed lambda calculus. Compared to the quantum lambda calculus of Van Tonder
[10, 11], our language is characterized by the fact that it combines classical as well as
guantum features; thus, we have classical data types as well as quantum ones. We also
provide both unitary operations and measurements as primitive features of our language.

As the language shows, linearity constraints do not just exist at base types, but also at
higher-order types, due to the fact that higher-order functions are represented as closures
which may in turns contain embedded quantum data. We have shown that affine intuition-
istic linear logic provides precisely the right type system to deal with this situation.

There are many open problems for further work. It is an interesting question whether
one can have an automatic type inference algorithm for the language described here; this
guestion will be answered in the affirmative in the author’s forthcoming M.Sc. thesis.
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Another interesting question is whether the syntax of this language can be extended to
include the additive types of linear logic, in addition to the multiplicative ones discussed
here.

A very important open problem is to find a satisfactory denotational semantics for a
higher order qguantum programming language. One approach for finding such a semantics
is to extend the framework of the work of Selinger [8] and to identify an appropriate
higher-order version of the notion of a superoperator.
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