
Assignment 4
General Instructions: Due March 22. Graduate students should attempt all problems. Under-
graduate students should attempt problems 1,3,4,6. Problems 2,5 will count as extra credit.

(1) (a) Let U, V,W ⊂ R2 be 2-dimensional domains and F : U → V and G : V → W
diffeomorphisms. Prove that

(G ◦ F )(1) = G(1) ◦ F (1)

Hint: note that for (u, v) = F (x, y) the transformation of the derivative

v1 =
vx + vyy1
ux + uyy1

is a fractional linear transformation.
(b) Let A = ξ(x, y)∂x + η(x, y)∂y be a C2 vector-field defined on a 2-dimensional domain

with coordinates (x, y). Let Φt be the C2 flow generated by A. Prove that the 1-

parameter family of prolonged transformations Φ
(1)
t defines a flow.

(c) Prove that the prolonged vector field A(1) generates the prolonged flow Φ
(1)
t . Hint:

first, write (u, v) = Φt(x, y) and prove that(
u̇x u̇y
v̇x v̇y

) ∣∣∣
t=0

=

(
ξx ξy
ηx ηy

)
.

(2) Let A = ξ(x, y)∂x + η(x, y)∂y be a vector field on a 2-dimensional domain with coordinates
(x, y). Let

A(1) = ξ(x, y)∂x + η(x, y)∂y + ν(x, y, y1)∂y1

where

ν(x, y, y1) = (∂x + y1∂y)[η(x, y)− y1ξ(x, y)]

be the prolongation of A, a vector field in the 3-dimensional domain with coordinates
(x, y, y1). Let Sω be the surface in this 3-dimensional domain defined by the equation
y1 = ω(x, y) . Prove that A is an infinitesimal symmetry of a 1st-order ODE

dy

dx
= ω(x, y)

if and only if A(1) is tangent to the surface Sω. Hint: review the symmetry determining
equation.

(3) (a) Show that ∂y is an infinitesimal symmetry of the second-order ODE having the form

d2y

dx2
= ω

(
x,
dy

dx

)
. (1)
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(b) Show that the above ODE admits the following reduction of order:

dy1
dx

= ω(x, y1),
dy

dx
= y1.

(4) Let y = f(x) be a non-zero solution of the second-order homogeneous linear ODE

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0. (2)

(a) Consult a standard ODE text and describe the usual procedure for reduction of order
in such situations.

(b) Show that f(x)∂y is a symmetry of the above ODE.
(c) Show that f(x)∂y = ∂v where u = x, v = y/f(x), and that correspondingly the ODE

in question takes the form

d2v

du2
= ω

(
u,
dv

du

)
.

Conclude by showing that the reduction of order described in question 6 is equivalent
to the standard reduction of order procedure described in part (a) of the present
question.

(5) A hodograph transformation is a change of coordinates that reverses the roles of the de-
pendent and independent variables. For scalar ODEs the hodograph transformation is
simply

x̂ = y, ŷ = x.

In particular we say that functions y = f(x) and ŷ = f̂(x̂) are related by a hodograph
transformation if

x = ŷ = f̂(x̂) = f̂(y) = f̂(f(x));

in other words if f and f̂ are functional inverses.
(a) Show that second-order ODEs

d2y

dx2
= ω

(
x, y,

dy

dx

)
,

d2ŷ

dx̂2
= ω̂

(
x̂, ŷ,

dŷ

dx̂

)
are related by a hodograph transformation if and only if

ω̂(x̂, ŷ, ŷ1) = −(ŷ1)
3 ω(ŷ, x̂, 1/ŷ1)

(b) Use the hodograph transformation to solve the ODE

d2y

dx2
=

(
dy

dx

)3

.



Assignment 4 3

(c) Use the above transformation law to show that the hodograph transformation relates
an ODE of the form

d2y

dx2
= ω

(
x,
dy

dx

)
(3)

(see Question 6) to an autonomous ODE.

(6) (a) Let y be a real number, and consider the function T̂y : R→ R defined by

T̂y : x 7→ x+ (y − sin(x)) , x ∈ R.
Fix a value of y between −1 and 1 (your choice), set x0 = 0, and inductively define

xk+1 = T̂y(xk). Write down the first few elements of the xk sequence. Compare these
numbers to arcsin(y). Report your findings. Next, fix a value of y > 1, and again
write down the first few elements of the sequence xk. Report your findings.

(b) Let Cε = C([−ε, ε],R) and consider the operator T : Cε → Cε defined by

T [g](y) = g(y) + (y − sin(g(y))), g ∈ Cε .

Let g0 = 0 ∈ Cε be the zero function and inductively define gk+1 = T [gk]. Write out
the first few functions in the sequence {gk}∞k=0

(c) Use Maple to plot the first few elements of the sequence gk(y) over the range −1.5 ≤
y ≤ 1.5. Describe the apparent convergence properties. Use Maple to plot the differ-
ence gk(y) − arcsin(y) over the range −1 ≤ y ≤ 1 and, again, describe the apparent
convergence properties.

(d) Let K be a real number strictly between 0 and 1. Set δ =
√

2K. Show that for
x1, x2 ∈ Bδ(0) and for every y we have

|T̂y(x1)− T̂y(x2)| ≤ K|x1 − x2|.
Hint: use the mean value theorem and the fact (explain) that

x2

2
> 1− cos(x).

(e) Set ε = δ(1 − K). Let x ∈ Bδ(0) and y ∈ Bε(0), and set x̂ = T̂y(x). Prove that
x̂ ∈ Bδ(0) also. Hint, you will need to show that

|x− sin(x)| ≤ K|x|.
(f) Fix δ > 0 and let Cε,δ ⊂ Cε be the closed subset consisting of functions whose absolute

value is bounded by δ, i.e., the closed ball of radius δ around the zero function in Cε.
With T as above, show that T : Cε,δ → Cε,δ is a well defined operator Hint: use part
(e).

(g) Show that T : Cε,δ → Cε,δ is a contraction operator with Lipschitz constant K. Hint:
use part (d).

(h) Use the fixed point theorem to conclude that the function g(y) = arcsin(y), |y| ≤ ε is
the unique fixed point of the operator T : Cε,δ → Cε,δ


