
Math 4190/5190 — Solutions to assignment 1

(1) Let Φ(t,x) be a flow in n-dimensional space, and let V(x) = Φ̇(0,x) be the corresponding

vector field. Recall that Φ̇ is the derivative with respect to the first “time” variable, and that
for a fixed t, we use Φt to denote the function x 7→ Φ(t,x).
(a) Use the chain rule to prove the following identities:

Φ̇t = JΦt · V (1)

Φ̇t = V ◦ Φt. (2)

Conclude that for all t,

(Φt)∗V = V. (3)

Note: in the first equation the · symbol denotes matrix-vector multiplication. In the
second equation the ◦ symbol denotes composition.

Solution: Since Φ is a flow, we have

Φ(t, Φ(s,x)) = Φ(t + s,x).

Taking the partial derivative with respect to s and using the chain rule gives

∂Φ(t + s,x)

∂s
= Φ̇(t + s,x),

∂Φ(t, Φ(s,x))

∂s
= JΦt(Φ(s,x)) · Φ̇(s,x).

Setting s = 0 and using the fact that Φ(0,x) = x and that Φ̇(0,x) = V(x) gives

Φ̇(t,x) = JΦt(x) ·V(x).

This proves relation (1). Next, we take the partial derivative with respect to t to obtain

∂Φ(t + s,x)

∂t
= Φ̇(t + s,x),

∂Φ(t, Φ(s,x))

∂t
= Φ̇(t, Φ(s,x)).

Setting t = 0 gives

Φ̇(s,x) = V(Φ(s,x)),

which is a restatement of (2). Since the inverse of Φt is the transformation Φ−t, by
definition of push-forward

(Φt)∗V = (JΦt ·V) ◦ Φ−t.

Hence, by (1) and (2),

(Φt)∗V = Φ̇t ◦ Φ−t = (V ◦ Φt) ◦ Φ−t = V.

(b) Verify that the following transformations are flows. Calculate the corresponding vector
fields. In both cases, verify that the flow gives the solutions of the corresponding ODE.
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(i) Φ(t, x, y) = (x + t, y − f(x) + f(x + t)), where f(x) is fixed C1 function.

Solution: Evidently Φ(0, x, y) = (x, y). Let us check the 1-parameter group law.
We have

Φ(s, Φ(t, x, y)) = Φ(s, x + t, y − f(x) + f(x + t))

= (x + s + t, y − f(x) + f(x + t) − f(x + t) + f(x + s + t))

= (x + s + t, y − f(x) + f(x + s + t))

= Φ(s + t, x, y)

The corresponding vector field is given by

Φ̇(0, x, y) = (1, f ′(x)) =
∂

∂x
+ f ′(x)

∂

∂y
.

The corresponding ODE is written as

dx

dt
= 1,

dy

dt
= f ′(x).

Writing the general solution curve as

x = x0 + t, y = y0 − f(x0) + f(x0 + t),

we have

ẋ = 1, ẏ = f ′(x0 + t) = f(x).

(ii) Ψ(t, x, y) = (cosh(t)x + sinh(t)y, sinh(t)x + cosh(t)y).

Solution: Again, a straightforward calculation shows that Ψ(0, x, y) = (x, y).
Let’s verify the 1-parameter group law. We have

Ψ(s, Ψ(t, x, y)) = Ψ(s, cosh(t)x + sinh(t)y, sinh(t)x + cosh(t)y)

= ((cosh(s) cosh(t) + sinh(s) sinh(t))x + (cosh(s) sinh(t) + sinh(s) cosh(t)y,

(cosh(s) sinh(t) + sinh(s) cosh(t))x + (cosh(s) cosh(t) + sinh(s) sinh(t)y)

= (cosh(s + t)x + sinh(s + t)y, sinh(s + t)x + cosh(s + t)y)

= Ψ(s + t, x, y).

The corresponding vector field and ODE are

Ψ̇(0, x, y) = (y, x) = y
∂

∂x
+ x

∂

∂y
.

ẋ = y, ẏ = x. (4)

Writing the general solution as

x = cosh(t)x0 + sinh(t)y0, y = sinh(t)x0 + cosh(t)y0,

we verify by direct calculation that (4) holds.
(c) Fix t, and let (u, v) = Φt(x, y) be a change of coordinates. Rewrite the corresponding

vector field A(x) = Φ̇(0,x) using the (u, v) coordinates. Repeat this exercise for Ψt and

the vector field B(x) = Ψ̇(0,x). What does this exercise have to do with equation (3)?
Discuss.

Solution: Fixing t and writing

u = x + t, v = y − f(x) + f(x + t),
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we obtain
∂

∂x
=

∂

∂u
+ (−f ′(x) + f ′(x + t))

∂

∂v
,

∂

∂y
=

∂

∂v
,

∂

∂x
+ f ′(x)

∂

∂y
=

∂

∂u
+ (f ′(x) − f ′(x) + f ′(x + t))

∂

∂v
=

∂

∂u
+ f ′(u)

∂

∂v

For the second flow we fix t and write

u = cosh(t)x + sinh(t)y, v = sinh(t)x + cosh(t)y.

Hence,

∂

∂x
= cosh(t)

∂

∂u
+ sinh(t)

∂

∂v
,

∂

∂y
= sinh(t)

∂

∂u
+ cosh(t)

∂

∂v
,

y
∂

∂x
+ x

∂

∂y
= v

∂

∂u
+ u

∂

∂v
,

as was to be shown.
Recall that the transformation law for the components of a vector field is given by the
pushforward of the vector field in question by the transformation that relates the two
coordinate systems. Equation (3) tells us that the transformation Φt preserves the vector
field Φ̇0. Note that in both cases the form of the vector field is the same in the old and
the new coordinates.

(2) (a) Calculate the flow Φ(t, x, y), respectively Ψ(t, x, y), for the following vector fields:

A =
∂

∂x
+ 2

y

x

∂

∂y
, x > 0, (5)

B = x
∂

∂x
+ 2y

∂

∂y
. (6)

Solution: The vector field A is the autonomization of the ODE
dy

dx
=

2y

x
.

The general solution of the latter is

y = Kx2.

Rewriting the solution as a flow, we obtain

Φ(t, x, y) = (x + t,
y

x2
(x + t)2).

The vector field B describes the decoupled linear ODE

ẋ = x, ẏ = 2y.

The corresponding flow is

Ψ(t, x, y) = (xet, ye2t).

(b) Show that f(x, y) = x2/y is a first integral of the corresponding ODEs in two ways.
(i) Verify that

A[x2/y] = B[x2/y] = 0. (7)
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(ii) Verify that f(Φ(t, x, y)) and f(Ψ(t, x, y)) are constant with respect to t.

Solution: We have

A[x2/y] =
∂f(x, y)

∂x
+

2y

x

∂f(x, y)

∂y

=
2x

y
−

2y

x

x2

y2
= 0,

B[x2/y] = x
∂f(x, y)

∂x
+ 2y

∂f(x, y)

∂y

=
2x2

y
− 2y

x2

y2
= 0.

Composing f(x, y) with the two flows, we obtain

f(Φ(t, x, y)) =
(x + t)2

y

x2 (x + t)2
=

x2

y
,

f(Ψ(t, x, y)) =
x2e2t

ye2t
=

x2

y
.

In both cases, we obtain expressions that are independent of t.
(c) Note that B = xA. Hence, there exists a reparameterization function τ(s, x, y) such that

Ψ(s, x, y) = Φ(τ(s, x, y), x, y). (8)

Determine τ(s, x, y) using the formula given in the proof of Theorem 2.1 of the handout,
and verify equation (8).

Solution: Set f(x, y) = x. According to the proof, we first calculate

σ(t, x, y) =

∫ t

0

du

(f ◦ Φ)(u, x, y))

=

∫ t

0

du

x + u

= ln(x + t) − ln(x).

Setting s = σ(t, x, y), and solving for t, gives

t = τ(s, x, y) = xes
− x.

Composing this function with the first flow gives

Φ(τ(s, x, y), x, y) = (x + xes
− x,

y

x2
(x + xes

− x)2

= (xes, ye2s),

as was to be shown.
We could also calculate τ(s, x, y) directly by reversing the order of the vector fields. Note
that A = g(x, y)B where g(x, y) = 1/x. Hence,

τ(s, x, y) =

∫ s

0

du

(g ◦ Ψ)(u, x, y)

=

∫ s

0

xeu du

= xes
− x.
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(3) (a) Let Φ(t,x) be an analytic (can be expanded in power series) flow on n-dimensional space
and let V(x) be the corresponding vector field. Use equation (2) to show that

Φ(t,x) = x + V(x) t + (JV)(x) · V(x)
t2

2
+ o(t2).

Solution: Taylor’s theorem tells us that

Φ(t,x) = Φ(0,x) + Φ̇(0,x) t + Φ̈(0,x)
t2

2
+ ...

By definition, Φ̇(0,x) = V(x); this gives the expression for the coefficient of t. Taking the
derivative with respect to t in (2) and using the chain rule gives

Φ̈(t,x) = (JV)(Φ(t,x)) · Φ̇(t,x).

Setting t = 0 gives the expression for t2 coefficient.
(b) In the older literature, a vector field is often referred to as an infinitesimal transformation

and as an infinitesimal generator of a flow. Discuss this terminology in light of the linear
approximation

Φ(t,x) = x + V(x) t + o(t).

Answer: Note that for small times, say t = ǫ, the flow is given, approximately, as

Φ(ǫ,x) ≈ x + ǫV(x).

Thus for small times, the flow acts on an imaginary particle by “nudging” it in the direction
specified by the vector field. Of course, this is only a linear approximation, subject to
higher order corrections. These higher order corrections are also determined by the vector
field, and correspond to “instantaneous course corrections” imposed by variation in the
vector field. This variation is expressed by the directional derivative of the vector field
with respect to itself; the corresponding expression is (JV) · V, the directional derivative
of V with respect to itself.

(4) Consider the following systems of coordinates in 2-dimensional space:

u = x, v = y/x (9)

x̂ =
x

x2 + y2
, ŷ =

y

x2 + y2
(10)

(a) In each case, determine the form of the corresponding fundamental vector fields.

Solution: For the first coordinate system, we have

x = u, y = uv,
(

∂

∂u
,

∂

∂v

)

=

(

∂

∂x
,

∂

∂y

) (

1 0
v u

)

=

(

∂

∂x
,

∂

∂y

) (

1 0
y/x x

)

.
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For the second coordinate system, we have

x =
x̂

x̂2 + ŷ2
, y =

ŷ

x̂2 + ŷ2
, x2 + y2 = 1/(x̂2 + ŷ2),

x̂ =
x

x2 + y2
, ŷ =

y

x2 + y2
,

(

∂

∂x̂
,

∂

∂ŷ

)

=

(

∂

∂x
,

∂

∂y

)









ŷ2 − x̂2

(x̂2 + ŷ2)2
−

2x̂ŷ

(x̂2 + ŷ2)2

−
2x̂ŷ

(x̂2 + ŷ2)2

x̂2 − ŷ2

(x̂2 + ŷ2)2









=

(

∂

∂x
,

∂

∂y

) (

y2 − x2 −2xy
−2xy x2 − y2

)

(b) Express each of the following vector fields using the above coordinate systems:

x
∂

∂x
+ y

∂

∂y
, (11)

y
∂

∂x
− x

∂

∂y
(12)

Solution: Taking inverses of the above 2 × 2 matrices gives
(

∂

∂x
,

∂

∂y

)

=

(

∂

∂u
,

∂

∂v

) (

1 0
−v/u 1/u

)

,

x
∂

∂x
+ y

∂

∂y
=

(

∂

∂x
,

∂

∂y

) (

x
y

)

=

(

∂

∂u
,

∂

∂v

) (

1 0
−v/u 1/u

)(

u
uv

)

= u
∂

∂u
,

y
∂

∂x
− x

∂

∂y
=

(

∂

∂x
,

∂

∂y

) (

y
−x

)

=

(

∂

∂u
,

∂

∂v

) (

1 0
−v/u 1/u

)(

uv
−u

)

= uv
∂

∂u
− (1 + v2)

∂

∂v
.

For the second coordinate system, we have

x
∂

∂x
+ y

∂

∂y
=

(

∂

∂x̂
,

∂

∂ŷ

) (

ŷ2 − x̂2 −2x̂ŷ
−2x̂ŷ x̂2 − ŷ2

) (

x̂/(x̂2 + ŷ)
ŷ/(x̂2 + ŷ2)

)

= −x̂
∂

∂x̂
− ŷ

∂

∂ŷ
,

y
∂

∂x
− x

∂

∂y
=

(

∂

∂x̂
,

∂

∂ŷ

) (

ŷ2 − x̂2 −2x̂ŷ
−2x̂ŷ x̂2 − ŷ2

) (

ŷ/(x̂2 + ŷ)
−x̂/(x̂2 + ŷ2)

)

= ŷ
∂

∂x̂
− x̂

∂

∂ŷ

(5) (a) Give the definition of a group and a transformation group (use a reference of your choice).
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(b) Write out the multiplication table for D4, the group of symmetries of the square.

Solution: Label the vertices of the square counterclockwise A, B, C, D, with A labelling
the top, left vertex and D labelling the bottom left vertex. The 8 possible rearrangements
and their labels are indicated below

AB DA CD BC BA CB DC AD
DC CB BA AD CD DA AB BC
1 R1 R2 R3 M1 M2 M3 M4

The group multiplication table, the column transformations are followed by the row trans-
formations, is given below:

1 R1 R2 R3 M1 M2 M3 M4
1 1 R1 R2 R3 M1 M2 M3 M4

R1 R1 R2 R3 1 M2 M3 M4 M1
R2 R2 R3 1 R1 M3 M4 M1 M2
R3 R3 1 R1 R2 M4 M1 M2 M3
M1 M1 M4 M3 M2 1 R3 R2 R1
M2 M2 M3 M4 M1 R1 1 R3 R2
M3 M3 M4 M1 M2 R2 R1 1 R3
M4 M4 M1 M2 M3 R3 R2 R1 1

(6) Consider the differential equation

dy

dx
= −2xy2. (13)

(a) Autonomize this ODE and give the corresponding planar vector field. Integrate the ODE
and write down the corresponding flow.

Solution: The autonomized ODE and the corresponding vector field, call it V, are:

dx

dt
= 1,

dy

dt
= −2xy2, (14)

∂

∂x
− 2xy2

∂

∂y
. (15)

The general solution of the ODE (obtained by separation of variables) is

y =
1

K + x2
.

Rewriting this as a flow, call it Φ(t, x, y), we obtain

Φ(t, x, y) =

(

x + t,
1

K + (x + t)2

)

.

We want Φ(0, x, y) = (x, y), and this gives us

1

K + x2
= y, K =

1

y
− x2.

Thus, the flow is given by

Φ(t, x, y) =

(

x + t,
y

y(x + t)2 − yx2 + 1

)

.
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(b) Plot the vector field (Maple would be nice, otherwise graphpaper will do) and some of the
integral curves.
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(c) What is the domain of the flow? Determine the maximum and minimum time functions.
Hint: the curves x2y = 1 and y = 0 divide the plane into 4 regions. The domain of the
flow behaves differentily in each region.

Solution: There are 4 cases to consider. Case (1) corresponds to the region defined by
y ≥ 0 and x2y < 1. In this case, the flow is defined for all t. Hence, the maximum and
minimum time are +∞ and −∞, respectively.
Case (2) corresponds to the region defined by y > 0, x > 0 and x2y ≥ 1. For such initial
conditions, the flow is defined for

t >

√

x2 −
1

y
− x.

The minimum time is
√

x2 −
1

y
− x and the maximum time is +∞.

Case (3) corresponds to the region defined by y > 0, x < 0 and x2y ≥ 1. For such initial
conditions, the flow is defined for

t < −x −

√

x2 −
1

y
.

The minimum time is −∞. The maximum time is −

√

x2 −
1

y
− x.

Case (4) corresponds to the region defined by y < 0. For such initial conditions, the flow
is defined for

−

√

x2 −
1

y
− x < t <

√

x2 −
1

y
− x

The indicated bounds are the minimum and maximum time, respectively.


