
Assignment 2, Solutions

(1) Consider the planar vector field:

A = x
∂

∂x
− y ∂

∂y
,

and the function f(x, y) = xy.
(a) Using directional derivatives show that f(x, y) is a first integral.

Solution: Calculating, we obtain

A[xy] = x∂x(xy)− y∂y(xy) = xy − yx = 0.

(b) Use this fist integral to rectify A.
Solution: First, let us take ξ = x, η = xy as coordinates. Since

A[ξ] = x = ξ,

we have

A = ξ∂ξ.

Taking coordinates

u =

∫ ξ ds

s
= log(ξ) = log(x), v = η = xy,

we obtain A = ∂u.
(c) Determine the flow Φ generated by A. Using an explicit calculation, verify that

(f ◦ Φ)(t, x, y) = f(x, y).

Solution: The flow generated by A is obtained by integrating the ODE

ẋ = x, ẏ = y.

Hence, the flow is

Φ(t, x, y) = (etx, e−ty).

We have

(f ◦ Φ)(t, x, y) = etxe−ty = xy = f(x, y).

(2) Let (r, θ) = F (x, y) be the transformation from Cartesian to polar coordinates. Let A be
as in question 1, and let Φ be the flow generated by A. Let B = F ∗A and Ψ = F ∗Φ be
the indicated pushforwards.
(a) Verify the principle of covariance: by direct calculation show that B generates Ψ.

Solution:First, we must express A and Φ using polar coordinates. Direct calculation
shows that

A[r] =
x2 − y2

r
= r cos(2θ), A[θ] = A[tan−1(y/x)] = −2xy

r2
= − sin(2θ).
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Hence,

A = r cos(2θ)∂r − 2 sin(θ)∂θ.

To express the flow, we write

Ψ(t, r, θ) = (F ◦ Φ)(t, r cos(θ), r sin(θ) = F (etr cos(θ), e−tr sin(θ))

=

(
r
√
e2t cos2(θ) + e−2t sin2(θ), tan−1(e−2t tan(θ))

)
.

Taking the partial derivative with respect to t and setting t = 0 gives

Ψ̇(0, r, θ) =

(
r(cos2 θ − sin2 θ),

2 tan(θ)

1 + tan2(θ)

)
= (r cos(2θ),− sin(2θ)) .

(b) Use the principle of covariance to rectify the vector field

B = x cos(2y)
∂

∂x
− sin(2y)

∂

∂y
.

Solution:We recognize above the pushforward of the radial vector field via the polar
coordinate transformation. We therefore introduce

ξ = x cos y, η = x sin y

so that B = ξ∂ξ + η∂η. We can therefore rectify B by taking coordinates

u = 2ηξ = x2 sin(2y), v = log(ξ) = log(x) + log(cos(y)).

In these coordinates, B = ∂v.
(3) Let g(x, y) = x2−y2, and let (x, y) = G(r, θ) be the transformation from polar to Cartesian

coordinates. Let A,B,Φ,Ψ be as above.
(a) Let h = G∗g. By direct calculation, verify the principle of covariance for directional

derivatives by showing that

B[h](r, θ) = A[g](x, y).

Solution: We have

h(r, θ) = g(x, y) = x2 − y2 = r2 cos(2θ);

A[g](x, y) = x∂x(x
2 − y2)− y∂y(x2 − y2) = 2(x2 + y2);

B[h](r, θ) = r cos(2θ)∂r(r
2 cos(2θ))− sin(2θ)∂θ(r

2 cos(2θ))

= 2r2 cos2(2θ) + 2r2 sin2(2θ)

= 2r2 = 2(x2 + y2).
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(b) Let u(t, x, y) = (Φ∗
tg)(x, y) and v(t, r, θ) = (Ψ∗

th)(r, θ). Verify by explicit calculation
that

u(t, x, y) = v(t, r, θ).

Solution: We have

u(t, x, y) = (g ◦ Φt)(x, y) = g(etx, e−ty) = e2tx2 − e−2ty2;

v(t, r, θ) = (h ◦Ψt)(r, θ)

= r2(e2t cos2(θ) + e−2t sin2(θ)) cos(2φ),

where

tan(φ) = e−2t tan(θ),

cos2(φ) = 1/(1 + e−4t tan2(θ)),

cos(2φ) = (1− e−4t tan2(θ))/(1 + e−4t tan2(θ)).

Hence,

v(t, r, θ) = r2(e2t cos2(θ)− e−2t sin2(θ)) = u(t, x, y)

(c) Finally, verify the geometric definition of the directional derivative by showing that

A[g](x, y) = u̇(0, x, y)

B[h](r, θ) = v̇(0, r, θ).

Solution:

u̇(0, x, y) = 2x2 + 2y2;

v̇(0, r, θ) = 2r2 cos2(2θ) + 2r2 sin2(2θ) = 2r2.

(4) Let (r, θ) be the usual polar coordinates. We showed in lecture that

x√
x2 + y2

∂

∂x
+

y√
x2 + y2

∂

∂y
=

∂

∂r
.

(a) Use the above rectification to determine the flow for the vector field ∂/∂r.
(b) Verify that this flow gives the general solution for the ODE

ẋ =
x√

x2 + y2
, ẏ =

y√
x2 + y2

.

Solution: In polar coordinates, the flow is given by

r = r0 + t, θ = θ0.
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Converting to Cartesian coordinates, we have

Φ(t, x0, y0) = (x, y) = (r cos θ, r sin θ)

= ((r0 + t) cos(θ0), (r0 + t) sin(θ0)

=

(
x0 +

tx0√
x20 + y20

, y0 +
ty0√
x20 + y20

)
We then have√

x2 + y2 = t+
√
x20 + y20;

x√
x2 + y2

=
x0(t+

√
x20 + y20)√

x20 + y20

1

t+
√
x20 + y20

=
x0√
x20 + y20

It now follows that

ẋ =
x0√
x20 + y20

=
x√

x2 + y2

Similarly,

ẏ =
y0√
x20 + y20

=
y√

x2 + y2

(5) Prove Proposition 5.4 of the class notes (coherence of pullback and push-forward).
Solution:The coherence of the pullback follows directly from the definitions. Let F ,G, h
be as in the Proposition. Set g = G∗h and f = F ∗g = F ∗(G∗h). In other words,

g(y) = h(G(y)), y ∈ V,
f(x) = g(F (x)) = h(G(F (x))) = (h ◦G ◦ F )(x), x ∈ U,

= ((G ◦ F )∗h)(x).

The coherence of the push-forward follows from the chain rule. For convenience, set B =
F ∗A and C = G∗B = G∗(F ∗A). By definition of push-forward,

B ◦ F = JF ·A,
C ◦G = JG ·B.

It follows that

C ◦G ◦ F = (JG ◦ F ) · (B ◦ F )

= (JG ◦ F ) · JF ·A.
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The chain rule tells us that

J(G ◦ F ) = (JG ◦ F ) · JF .

Hence,

C ◦G ◦ F = J(G ◦ F ) ·A.

Therefore,

C = (G ◦ F )∗A,

as was to be shown.
(6) In lecture we showed that the vector field

A =
∂

∂x
+ (x+ y)

∂

∂y

generates the flow

Φ(t, x, y) = (x+ t, (x+ y + 1)et − x− t− 1).

(a) Use the flow to determine a first integral of A.
Solution: We solve the equation Φ1(τ, x, y) = 0 and substitute the solution τ =
f(x, y) into Φ2 to obtain the first integral I = Φ2(τ, x, y). We have

Φ1(τ, x, y) = x+ τ = 0,

whence τ = −x. Hence, a first integral is given by

η = (x+ y + 1)e−x − 1.

Let us verify our answer:

A[η] = ∂x((x+ y + 1)e−x − 1) + (x+ y)∂y((x+ y + 1)e−x − 1)

= e−x − e−x(x+ y + 1) + (x+ y)e−x = 0.

(b) Rectify A.
Solution: Let use coordinates

ξ = x, η = (x+ y + 1)e−x − 1.

Since A[ξ] = 1 and A[η] = 0, we have A = ∂ξ.


