
Assignment 3, Solutions

(1) Consider the following planar vector fields:

A = x∂x − y∂y, B = −y∂x + x∂y.

(a) Reexpress A,B in polar coordinates.
Solution:

x∂x − y∂y = (xrx − yry) ∂r + (xθx − yθy) ∂θ

=
x2 − y2√
x2 + y2

∂r −
2xy

x2 + y2
∂θ

= r cos(2θ)∂r − sin(2θ)∂θ;

−y∂x + x∂y = ∂θ.

(b) Calculate the Lie bracket using Cartesian and polar coordinates, and verify the prin-
ciple of covariance by showing that the two calculations agree.
Solution:

[r cos(2θ)∂r − sin(2θ)∂θ, ∂θ] = − [∂θ, r cos(2θ)∂r − sin(2θ)∂θ]

= 2r sin(2θ)∂r + 2 cos(2θ)∂θ.

[x∂x − y∂y,−y∂x + x∂y] = x∂y + y∂x + y∂x + x∂y

= 2x∂y + 2y∂x

= (yrx + xry) ∂r + (yθx + xθy) ∂θ

=
2xy√
x2 + y2

∂r +
x2 − y2

x2 + y2
∂θ

= 2r sin(2θ)∂r + 2 cos(2θ)∂θ.

(2) Let A,B be the vector fields of question 1 and let Φt,Ψt be the corresponding flows.
(a) Calculate the time dependent vector fields

Ct = Φt∗B, Et = Ψt∗A

Solution: Recall that

Φ(t, x, y) = (etx, e−ty)

Ψ(t, x, y) = (cos(t)x− sin(t)y, sin(t)x+ cos(t)y)
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Hence,

Ct = Φt∗B = (JΦt ·B) ◦ Φ−t

=

((
et 0
0 et

)(
−y
x

))
◦ Φ−t

= −e2ty∂x + e−2tx∂y.

Et = Ψt∗A = (JΨt ·A) ◦Ψ−t

=

((
cos t − sin t
sin t cos t

)(
x
−y

))
◦Ψ−t

= (cos(2t)x+ sin(2t)y)∂x + (sin(2t)x− cos(2t)y)∂y

(b) Verify that

Ċt = [Ct,A]

Ėt = [Et,B].

Solution: We have

[Ct,A] = [−e2ty∂x + e−2tx∂y, x∂x − y∂y]
= −2e2ty∂x − 2e−2tx∂y.

[Et,B] = [(cos(2t)x+ sin(2t)y)∂x + (sin(2t)x− cos(2t)y)∂y,−y∂x + x∂y]

= (cos(2t)x+ sin(2t)y)∂y + (− sin(2t)x+ cos(2t)y)∂x

+ (y cos(2t)− sin(2t)x)∂x + (sin(2t)y + cos(2t)x)∂y

= 2(− sin(2t)x+ cos(2t)y)∂x + 2(cos(2t)x+ sin(2t)y)∂y

(c) Finally, verify that

Ċ0 = [B,A]

Ė0 = [A,B].

Solution: Set t = 0 in the above formulas. By inspection C0 = B and E0 = A.
(3) (a) Find the most general infinitesimal symmetry of ∂x. In other words, describe all planar

vector fields A such that

[A, ∂x] = 0.

Solution: Write A = ξ∂x + η∂y. Note that

[A, ∂x] = − [∂x,A] = −ξx∂x − ηx∂y.

Hence A is a symmetry if and only if ξ and η are functions of y only, say ξ = a(y), η =
b(y).
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(b) Find the most general symmetry of ∂x. In other words, find the most general trans-
formation (u, v) = F (x, y) such that F ∗∂x = ∂x, or what is equivalent such that
∂x = ∂u.
Solution: We are seeking functions u = F 1(x, y) and v = F 2(x, y) such that

∂x(u) = 1, ∂x(v) = 0.

Hence v is a function of y only, say v = f(y), such that f ′(y) 6= 0. As for the first
condition, it implies that

u = x+ g(y)

where g(y) is an arbitrary (but sufficiently differentiable) function of 1 variable.
(c) Find the most general infinitesimal conformal symmetry of ∂x. In other words, describe

all planar vector fields A such that

[A, ∂x] = f(x, y)∂x.

Solution: Write A as above. We want ∂xη = 0. Therefore, A is a conformal
symmetry if and only if it has the form

A = A(x, y)∂x + b(y)∂y,

where A is an arbitrary C1 function of two variables related to f(x, y) according to

A(x, y) = −
∫ x

f(u, y)du,

and where b(y) is an arbitrary C1 function of one variable.
(d) Find the most general form of an ODE dy/dx = ω(x, y) for which ∂x is an infinitesimal

symmetry.
Solution: We ask that [∂x, ∂x +ω(x, y)∂y] = ωx∂y be proportional to ∂x +ω∂y. This
is true if and only if ω is a function of y only. Thus ∂x is a symmetry of ODE having
the form

dy

dx
= f(y),

where f(y) is a sufficiently differentiable function of 1 variable.
(4) (a) What is the most general vector field A for which −y∂x + x∂y is an infinitesimal

symmetry? In other words, describe all planar vector fields A such that

[−y∂x + x∂y,A] = 0.

Hint: switch to polar coordindates and utilize the principle of covariance.
Solution: We use polar coordinates and write A = A(r, θ)∂r + B(r, θ)∂θ. Since
−y∂x + x∂y = ∂θ, we have, by the principle of covariance,

[∂θ,A] = (D2A)(r, θ)∂r + (D2B)(r, θ)∂θ.
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Hence, the above bracket vanishes if and only if

A = a(r)∂r + b(r)∂θ

= a(
√
x2 + y2)

(
x√

x2 + y2
∂x +

y√
x2 + y2

∂y

)
+

+ b(
√
x2 + y2) (−y∂x + x∂y)

= (xã(x2 + y2)− yb̃(x2 + y2)∂x + (yã(x2 + y2) + xb̃(x2 + y2))∂y,

where ã, b̃ are arbitrary C1 functions of one variable and where

a(u) = u ã(u2), b(u) = b̃(u2).

(b) What is the most general vector field A for which −y∂x + x∂y is an infinitesimal
conformal symmetry? In other words, describe all planar vector fields A such that
[−y∂x + x∂y,A] is proportional to A.
Solution: Proceeding as above, we see that A,B must be functions of two variables
that satisfy

(D2A)B = (D2B)A.

Equivalently,

D2 ln(A/B) = 0,

which means that

A(r, θ) = B(r, θ)g(r),

where g is an arbitrary function of one variable. Therefore, −y∂x + x∂y is a conformal
symmetry of A if and only if

A = B(r, θ) (g(r)∂r + ∂θ)

= B̃(x, y)g(
√
x2 + y2)

(
x√

x2 + y2
∂x +

y√
x2 + y2

∂y

)
+ b̃(x, y) (−y∂x + x∂y)

= B̃(x, y)
(
(xg̃(x2 + y2)− y)∂x + (−yg̃(x2 + y2) + x)∂y

)
,

where B̃(x, y) = B(r, θ) is an arbitrary function of 2 variables, where g̃ is an arbitrary
function of one variable, and where g(u) = u g̃(u2).
Here’s is an alternative solution. We showed in class that a vector fieldB is a conformal
symmetry of A if and only if there exists a function f such that [B, fA] = 0. This
means that it suffices to take the general solution of the preceding question, and
multiply it by an arbitrary function of two variables. Thus, the desired A has the
form

A = f(x, y)
(

(xã(x2 + y2)− yb̃(x2 + y2)∂x + (yã(x2 + y2) + xb̃(x2 + y2))∂y

)
,
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where f is an arbitrary function of 2 variables, and ã, b̃ are arbitrary functions of
1 variable. However, this answer is not entirely satisfactory, because we can absorb
either ã or b̃ into f as follows:

A = f(x, y)b̃(x2 + y2)

((
x
ã(x2 + y2)

b̃(x2 + y2)
− y
)
∂x +

(
y
ã(x2 + y2)

b̃(x2 + y2)
+ x

)
∂y

)
.

In other words, by setting

B̃(x, y) = f(x, y)b̃(x2 + y2), g̃(u) =
ã(u)

b̃(u)

we recover the preceding answer.
(5) Prove that the Lie bracket obeys the Jacobi identity.

Solution: Let A,B,C be vector fields. We use the commutator relation to prove the
Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

Let f be a twice differentiable function. We then have

[B,C][f ] = B[C[f ]]−C[B[f ]]

[A, [B,C]][f ] = A[[B,C][f ]]− [B,C][A[f ]] (1)

= A[B[C[f ]]]−A[C[B[f ]]]−B[C[A[f ]]] +C[B[A[f ]]] (2)

Similarly,

[B, [C,A]][f ] = B[C[A[f ]]]−B[A[C[f ]]]−C[A[B[f ]]] +A[C[B[f ]]] (3)

[C, [A,B]][f ] = C[A[B[f ]]]−C[B[A[f ]]]−A[B[C[f ]]] +B[A[C[f ]]] (4)

Adding (1) (3) (4) together, gives the Jacobi identity.
(6) Prove the following Proposition. Let F : U → V be a diffeomorphism and G : V → U the

inverse transformation. For A : U → Rn, a vector field, and f : U → R, a function

F ∗(gB) = G∗(g)F ∗(B). (5)

(7) A Bernoulli equation is a first-order ODE having the form

dy

dx
+ p(x)y = q(x)yn, n = 1, 2, . . .

(a) Consult a standard ODE text and describe the usual “cookbook” procedure for inte-
grating a Bernoulli equation.
Solution: One rewrites the equation as

d

dx
(y1−n) + (1− n)p(x)y1−n = (1− n)q(x)
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The above is an inhomogeneous linear equation. The integrating factor is φ(x) where

φ(x) = exp

(
(1− n)

∫
p(x) dx

)
, (6)

or equivalently,
φ′(x)

φ(x)
= (1− n)p(x). (7)

The differential equation can now be written as

d

dx

(
φ(x)y1−n

)
= (1− n)φ(x)q(x).

The solution can now be given as

y =

(
(1− n)

∫
φ(x)q(x) dx+ C

φ(x)

) 1
1−n

.

(b) Show that a Bernoulli equation admits a symmetry of the form

f(x)yn∂y.

Recover the standard integration method by using the symmetry.
Solution: We must show that the above vector field is a conformal symmetry of the
vector field ∂x + (−p(x)y + q(x)yn)∂y. Calculating the Lie bracket gives

[f(x)yn∂y, ∂x + (−p(x)y + q(x)yn)∂y] = ((n− 1)f(x)p(x)− f ′(x)) yn∂y

Therefore, if
f ′(x)

f(x)
= (n− 1)p(x),

or what is equivalent, if f(x) = 1/φ(x) where φ(x) is given by (6), then the given
vector field is a conformal symmetry of the Bernoulli equation. Writing the ODE in
differential form

dy + (p(x)y − q(x)yn)dx = 0

and contracting the left-hand side with the symmetry vector field gives φ(x)/yn as the
integrating factor. Multiplying through and using (7) gives the ODE in exact form:

dy

f(x)yn
+

(
f ′(x)y1−n

(n− 1)f(x)2
− q(x)

f(x)

)
dx = 0.

Integrating the above gives

y1−n

(1− n)f(x)
−
∫ x q(u)

f(u)
du = C

By inspection, the above is equivalent to the solution shown in part (a).
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(8) (a) Describe the most general first-order ODE that admits −y∂x + x∂y as a symmetry.
Describe the integration procedure for such equations. Hint: see question 4.
Solution: The most general vector field that commutes with the above vector field
is

∂θ + f̃(r)∂r = −y∂x + x∂y + f(x2 + y2) (x∂x + y∂y) ,

= (f(x2 + y2)x− y)∂x + (x+ f(x2 + y2)y)∂y

= (f(x2 + y2)x− y)

(
∂x +

x+ f(x2 + y2)y

f(x2 + y2)x− y
∂y

)
where (r, θ) are the usual polar coordinates, and where f̃(r) = rf(r2). Therefore, the
most general ODE preserved by −y∂x + x∂y = ∂θ has the form

dy

dx
=
x+ f(x2 + y2)y

f(x2 + y2)x− y
.

In differential form the above ODE reads

α = (f(x2 + y2)x− y)dy − (x+ f(x2 + y2)y)dx = 0.

Contracting the LHS with the symmetry ODE and taking the reciprocal gives the
integrating factor, namely

1

α(A)
=

1

(x2 + y2)f(x2 + y2)
.

Therefore, the exact form of the equation is

−
(

y

x2 + y2
+

x

(x2 + y2)f(x2 + y2)

)
dx+

(
x

x2 + y2
− y

(x2 + y2)f(x2 + y2)

)
dy

Integrating the above yields

tan−1(y/x)− 1

2

∫ x2+y2 du

uf(u)
= C

(b) Use this method to integrate

dy

dx
=
x3 + xy2 + y

x− y3 − x2y
=
x(x2 + y2) + y

x− y(x2 + y2)
.

Solution: To put the above equation in the form of part (a) we take f(u) = 1/u.
Applying the above method gives the (implicit) solution

tan−1(y/x)− 1

2
(x2 + y2) = C.
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Using polar coordinates, we see that the solution curves (see Figure 1) are spirals,
described by the equation

r = ±
√

2θ − 2C, θ > C.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 1. r = ±
√

2θ − 2C

(9) (a) Let A = g(x)(x∂x + y∂y). Show that

dy

dx
= y/x+

f(y/x)

g(x)

is the most general ODE that admits A as an infinitesimal symmetry. Hint: review
the derivation of symmetries for homogeneous first-order ODEs.
Solution: Recall that

[x∂x + y∂y, x∂y] = 0.

Hence, A commutes with x∂y also. Since, y/x is annihilated by A, the most general
vector field commuting with A has the form

(x∂x + y∂y) /g(x) + f̃ (y/x)x∂y = (x/g(x))∂x +
(
f̃ (y/x) y + (y/g(x))

)
∂y

= (x/g(x)) {∂x + (y/x+ f(y/x)/g(x)) ∂y} ,

where f(u) = f̃(u)u. Therefore, the most general ODE admitting A as a symmetry
has the form indicated above.
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(b) Describe the corresponding integration method.
Solution: In differential form the above ODE reads

α = dy − (y/x+ f (y/x) g(x)) dx = 0.

Contracting α with the symmetry generator A and taking the reciprocal gives the
integrating factor, namely

1

α(A)
=

g(x)

y − (y + f(y/x)g(x)x)
= − 1

xf(y/x)
.

Therefore, the exact form of the equation is(
g(x)

x
+

y

x2f(y/x)

)
dx− dy

xf(y/x)

Integrating the above yields∫
g(x)

x
dx−

∫ y/x du

f(u)
= C

(c) Use the method to integrate the ODE

dy

dx
= y/x+ ey/x ln(x).

Solution: We apply the above method with f(u) = eu and g(x) = ln(x). Solving for
y, we obtain

y = −x log

(
C − 1

2
log(x)2

)
.


