
Assignment 4, Solutions
(1) (a) Let U, V,W ⊂ R2 be 2-dimensional domains and F : U → V and G : V → W

diffeomorphisms. Prove that

(G ◦ F )(1) = G(1) ◦ F (1)

Hint: note that for (u, v) = F (x, y) the transformation of the derivative

v1 =
vx + vyy1
ux + uyy1

is a fractional linear transformation.
Solution: Let us write (ξ, η, η1) = G(u, v, v1) where (ξ, η) = G(u, v) and where

η1 =
ηu + ηvv1
ξu + ξvv1

,

and where

ηu =
∂η

∂u
, ηv =

∂η

∂v
, etc.

We also have (ξ, η) = (G ◦ F )(x, y) and

J(G ◦ F )(x, y) =

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
.

Therefore, we want to show that

η1 =
ηx + ηyy1
ξx + ξyy1

(1)

As for fractional linear transformations, recall that if we compose the transformations

w =
c+ dz

a+ bz
, v =

γ + δw

α + βw
,

we obtain the transformation

v =
γ(a+ bz) + δ(c+ dz)

α(a+ bz) + β(c+ dz)

=
p+ qz

r + sz
,

where (
p q
r s

)
=

(
α β
γ δ

)(
a b
c d

)
.

The chain rule gives us

J(G ◦ F ) = (JG ◦ F ) · JF
1
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or equivalently (
ξx ξy
ηx ηy

)
=

(
ξu ξv
ηu ηv

)(
ux uy
vx vy

)
,

because

(JG ◦ F )(x, y) =

(
∂ξ
∂u

∂ξ
∂v

∂η
∂u

∂η
∂v

)
, JF (x, y) =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

Equation (1) follows immediately.
(b) Let A = ξ(x, y)∂x + η(x, y)∂y be a C2 vector-field defined on a 2-dimensional domain

with coordinates (x, y). Let Φt be the C2 flow generated by A. Prove that the 1-

parameter family of prolonged transformations Φ
(1)
t defines a flow.

Solution: Let us write (u, v, v1) = Φ
(1)
t (x, y, y1) where (u, v) = Φt(x, y) and where

v1 = ν(t, x, y, y1) =
vx + y1vy
ux + y1uy

,

as per the prolongation formula. We wish to prove two claims: First, that

ν(0, x, y, y1) = y1

and second, that

Φ
(1)
t+s = Φ

(1)
t ◦ Φ(1)

s ,

or equivalently that

ν(t+ s, x, y, y1) = ν(t, us, vs, v1s),

where as usual we use the notation ft(x, y) = f(t, x, y). Regarding the first claim,
observe that

u0 = x, v0 = y.

We immediately have v1|t=0 = y1. The second claim follows from the fact that Φt+s =
Φt ◦ Φs and from part (a).

(c) Prove that the prolonged vector field A(1) generates the prolonged flow Φ
(1)
t . Hint:

first, write (u, v) = Φt(x, y) and prove that(
u̇x u̇y
v̇x v̇y

) ∣∣∣
t=0

=

(
ξx ξy
ηx ηy

)
.

Solution: Since we have already that Φ
(1)
t is a flow, by the uniquenes of flows, the assertion

in question reduces the claim that

v̇1|t=0 = (D1ν)(0, x, y, y1) = ηx + y1(ηy − ξx)− y21ξy.

Note the above RHS is the ∂y1 component of A(1). Recall that

Φ̇t = A ◦ Φt.
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Since the partial derivative with respect to time and the partial derivatives with respect to
position commute, we have by the multi-variable chain rule,(

u̇x u̇y
v̇x v̇y

)
= J Φ̇t = (JA ◦ Φt) · JΦt

Since Φ0 is the identity transformation, and JΦ0 the identity matrix, we have(
u̇x u̇y
v̇x v̇y

) ∣∣∣
t=0

= JA =

(
ξx ξy
ηx ηy

)
Observe that

v̇1 = (D1ν)(t, x, y, y1) =
v̇x + y1v̇y
ux + y1uy

− (vx + y1vy)(u̇x + y1u̇y)

(ux + y1uy)2
,

Since JΦ0 is the identity transformation, we have(
ux uy
vx vy

) ∣∣∣
t=0

=

(
1 0
0 1

)
.

Therefore,

v̇1|t=0 = (D1ν)(0, x, y, y1) = ηx + y1ηy − y1(ξx + y1ξy),

as was to be shown.
(2) Let A = ξ(x, y)∂x + η(x, y)∂y be a vector field on a 2-dimensional domain with coordinates

(x, y). Let

A(1) = ξ(x, y)∂x + η(x, y)∂y + ν(x, y, y1)∂y1

where

ν(x, y, y1) = (∂x + y1∂y)[η(x, y)− y1ξ(x, y)]

be the prolongation of A, a vector field in the 3-dimensional domain with coordinates
(x, y, y1). Let Sω be the surface in this 3-dimensional domain defined by the equation
y1 = ω(x, y) . Prove that A is an infinitesimal symmetry of a 1st-order ODE

dy

dx
= ω(x, y)

if and only if A(1) is tangent to the surface Sω. Hint: review the symmetry determining
equation.
Solution: Let

νω(x, y) = ν(x, y, ω(x, y))
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denote the above-defined function restricted to the surface S = Sω. Note, we are using
(x, y) as coordinates on the surface. Thus,

νω(x, y) = ηx + ω(ηy − ξx)− ω2ξy.

Also observe that the vector field A(1) is tangent to the surface S if and only if the directional
derivative A(1)[y1 − ω(x, y)] vanishes on the surface S. We have

A(1)[y1 − ω(x, y)] = ν(x, y, y1)− (ξωx + ηωy)(x, y)

To restrict this function to the surface S, we make the substitution y1 7→ ω(x, y) and obtain

A(1)[y1 − ω(x, y)]
∣∣∣
y1=ω(x,y)

= ηx + ω(ηy − ξx)− ω2ξy − (ξωx + ηωy)

Setting the RHS to zero we obtain the symmetry determining equaton. In lecture, we
showed that this equation holds if and only if A is an infinitesimal symmetry.

(3) (a) Show that ∂y is an infinitesimal symmetry of the second-order ODE having the form

d2y

dx2
= ω

(
x,
dy

dx

)
. (2)

Solution: The vector field ∂y generates the flow

(x̂, ŷ) = Φt(x, y) = (x, y + t).

Hence, a solution y = f(x) is related to a solution ŷ = f̂(x̂) by

f̂(x̂) = f(x̂) + t.

Hence, the prolonged transformation is

ŷ1 = y1, ŷ2 = y2.

Therefore,

ω̂(x̂, ŷ, ŷ1) = ω(x̂, ŷ − t, ŷ1).
In order for ∂y to be an infinitesimal symmetry we ask that

ω̂(x̂, ŷ, ŷ1) = ω(x̂, ŷ, ŷ1)

for all t. This is true if and only if ω(x, y, y1) is independent of y.
Here is an alternate solution. Note that the prolongation of ∂y is just ∂y+0∂y1 . Observe
that

[∂y, ∂x + y1∂y + ω(x, y, y1)∂y1 ] = ωy∂y1 .

The RHS is proportional to ∂x + y1∂y + ω∂y1 if and only if ω does not depend on y.
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(b) Show that the above ODE admits the following reduction of order:

dy1
dx

= ω(x, y1),
dy

dx
= y1.

Solution: Suppose that y1 = g(x) is a solution of the first ODE, i.e., g′(x) =
ω(x, g(x)), and that y = f(x) is a solution of the second ODE, i.e., f ′(x) = g(x).
Then,

f ′′(x) = ω(x, f ′(x)).

Therefore, y = f(x) is a solution of (2).
(4) Let y = f(x) be a non-zero solution of the second-order homogeneous linear ODE

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0. (3)

(a) Consult a standard ODE text and describe the usual procedure for reduction of order
in such situations.
Solution: Seting v = y/f(x), we have

dy

dx
=
dv

dx
f(x) + vf ′(x),

0 =
d2y

dx2
+ p(x)f(x)

dv

dx
+ (p(x)f ′(x) + q(x)f(x))v

=
d2v

dx2
f(x) + (2f ′(x) + p(x)f(x))

dv

dx
+

+ (f ′′(x) + p(x)f ′(x) + q(x)f(x))v

= f(x)

(
d2v

dx2
+

(
2
f ′(x)

f(x)
+ p(x)

)
dv

dx

)
One then solves the equation

dv1
dx

= −
(

2
f ′(x)

f(x)
+ p(x)

)
v1 (4)

by setting

v1 = g(x) = exp

(
−
∫ x

p(s)ds

)
/f(x)2. (5)

Finally, the general solution of the 2nd order equation (3) is

y = f(x)

∫ x

g(s)ds.

(b) Show that f(x)∂y is a symmetry of the above ODE.
Solution: Note that f(x)∂y is the infinitesimal generator of the flow

(x̂, ŷ) = Φ(t, x, y) = (x, y + f(x)t).
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Calculating the prolongation, we have

ŷ1 = y1 + f ′(x)t,

ŷ2 = y2 + f ′′(x)t.

Hence, the transformed equation is given by

ŷ2 = y2 − f ′′(x)t

= p(x)y1 + q(x)y − f ′′(x)t

= p(x)(ŷ1 − f ′(x)t) + q(x)(ŷ − tf(x))− f ′′(x)t

Since, by assumption,

f ′′(x) = p(x)f ′(x) + q(x)f(x),

we have

ŷ2 = p(x)ŷ1 + q(x)ŷ

Since f(x)∂y generates a symmetry of (3) for all t, it is an infinitesimal symmetry.
Here is an alternate solution. Calculating the prolongation of A = f(x)∂y gives

A(1) = f(x)∂y + (∂x − y1∂y)[f(x)]

= f(x)∂y + f ′(x)∂y1 .

In lecture we shoed that A is an infinitesimal symmetry if and only if A is a infinites-
imal conformal symmetry of ∂x + y1∂y + (p(x)y1 + q(x)y)∂y1 . Calculating the bracket,
we have

[f(x)∂y + f ′(x)∂y1 , ∂x + y1∂y + (p(x)y1 + q(x)y)∂y1 ] =

= f ′(x)∂y + (p(x)f ′(x) + q(x)f(x))∂y1 − f ′(x)∂y − f ′′(x)∂y1

= (p(x)f ′(x) + q(x)f(x)− f ′′(x))∂y1 = 0.

(c) Show that f(x)∂y = ∂v where u = x, v = y/f(x), and that correspondingly the ODE
in question takes the form

d2v

du2
= ω

(
u,
dv

du

)
.

Conclude by showing that the reduction of order described in question 6 is equivalent
to the standard reduction of order procedure described in part (a) of the present
question.
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Solution: As was shown in part (a), making the above change of coordinates trans-
forms (3) into

d2v

du2
= −

(
2
f ′(x)

f(x)
+ p(x)

)
dv

du
.

With v1 = dv/du the procedure we followed in part (a) is the same reduction of order
procedure described in question 3.
Let us give the details. The calculations will be simpler if we write x = u, y = vf(u).
By the prolongation formulas,

y1 =
yu + v1yv
xu + v1xv

= vf ′(u) + v1f(u)

y2 =
(∂u + v1∂v)[y1]

xu + v1xv
+
xuyv − xvyu
(xu + v1xv)3

v2

= (vf ′′(u) + v1f
′(u) + v1f

′(u)) + f(u)v2

Substituting the above relations into y2 +p(x)y1 +q(x)y = 0 and using the assumption
about f ′′(x) gives

0 = v(−p(u)f ′(u)− q(u)f(u)) + 2v1f
′(u) + f(u)v2+

+(vf ′(u) + v1f(u))p(u) + vf(u)q(u)

= f(u)v2 + v1(2f
′(u) + p(u)f(u))

v2 = (−2f ′(u)/f(u)− p(u))v1

(5) A hodograph transformation is a change of coordinates that reverses the roles of the de-
pendent and independent variables. For scalar ODEs the hodograph transformation is
simply

x̂ = y, ŷ = x.

In particular we say that functions y = f(x) and ŷ = f̂(x̂) are related by a hodograph
transformation if

x = ŷ = f̂(x̂) = f̂(y) = f̂(f(x));

in other words if f and f̂ are functional inverses.
(a) Show that second-order ODEs

d2y

dx2
= ω

(
x, y,

dy

dx

)
,

d2ŷ

dx̂2
= ω̂

(
x̂, ŷ,

dŷ

dx̂

)
are related by a hodograph transformation if and only if

ω̂(x̂, ŷ, ŷ1) = −(ŷ1)
3 ω(ŷ, x̂, 1/ŷ1)
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Solution: Letting y1 = dy
dx

and y2 = d2y
dx2

, and similarly ŷ1 = dŷ
dx̂

and ŷ2 = d2ŷ
dx̂2

, we have

y1ŷ1 = 1,

y2 ŷ1 + ŷ2(y1)
2 = 0

Hence,

ŷ2 = −(ŷ1)
3y2,

as was to be shown.
(b) Use the hodograph transformation to solve the ODE

d2y

dx2
=

(
dy

dx

)3

.

Solution: The transformed equation is

d2ŷ

dx̂2
= −1.

The solution is

ŷ = −1

2
x̂2 + C1x̂+ C0.

In (x, y) coordinates, the above solution is described, implicitly, by the relation

x = −1

2
y2 + C1y + C0.

Solving for y gives the explicit solution:

y = C1 ±
√
C2 − 2x,

where C2 = C2
1 + 2C0.

(c) Use the above transformation law to show that the hodograph transformation relates
an ODE of the form

d2y

dx2
= ω

(
x,
dy

dx

)
(6)

(see Question 6) to an autonomous ODE.
Solution: Using part (a), a hodograph transformation changes (6) into

d2ŷ

dx̂2
= (ŷ1)

3ω

(
ŷ,

1

ŷ1

)
. (7)

The right hand side does not depend on x̂; therefore, the above ODE is autonomous
in x̂, ŷ coordinates.
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(6) (a) Let y be a real number, and consider the function T̂y : R→ R defined by

T̂y : x 7→ x+ (y − sin(x)) , x ∈ R.

Fix a value of y between −1 and 1 (your choice), set x0 = 0, and inductively define

xk+1 = T̂y(xk). Write down the first few elements of the xk sequence. Compare these
numbers to arcsin(y). Report your findings. Next, fix a value of y > 1, and again
write down the first few elements of the sequence xk. Report your findings.
Solution: We have

x1 = x0 + (y − sin(x0)) = y,

x2 = x1 + (y − sin(x1)) = 2y − sin y,

x3 = x2 + (y − sin(x2)) = 3y − sin(2y − sin(y)),

x4 = x3 + (y − sin(x3)) = 4y − sin(3y − sin(2y − sin(y))).

By way of illustration, let’s set y = 0.5. The sequence xk assumes the values

0, 0.5, 0.520574, 0.523196, 0.523545, 0.523592, . . . .

We see that the above sequence is drawing closer to the value arcsin(0.5) = 0.523599...
Next, let’s take y = 1.5. The sequence xk then assumes the values

0, 1.5, 2.00251, 2.59425, 3.57384, 5.49274, . . .

The latter does not appear to be converging to anything.
(b) Let Cε = C([−ε, ε],R) and consider the operator T : Cε → Cε defined by

T [g](y) = g(y) + (y − sin(g(y))), g ∈ Cε .

Let g0 = 0 ∈ Cε be the zero function and inductively define gk+1 = T [gk]. Write out
the first few functions in the sequence {gk}∞k=0

Solution: We have

g1(y) = y,

g2(y) = g1(y) + (y − sin(g1(y))) = 2y − sin y,

g3(y) = g2(y) + (y − sin(g2(y))) = 3y − sin(2y − sin(y)),

g4(y) = g3(y) + (y − sin(g3(y))) = 4y − sin(3y − sin(2y − sin(y))).

Note the great similarity to the formulas in part (a).
(c) Use Maple to plot the first few elements of the sequence gk(y) over the range −1.5 ≤

y ≤ 1.5. Describe the apparent convergence properties. Use Maple to plot the differ-
ence gk(y) − arcsin(y) over the range −1 ≤ y ≤ 1 and, again, describe the apparent
convergence properties.
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Solution:

-1.5 -1 -0.5 0.5 1 1.5
y

-7.5

-5

-2.5

2.5

5

7.5

gk@yD

We see that the functions gk(y) appear to exhibit convergent behaviour over the range
−1 < y < 1, and divergent behaviour outside that range.

-1 -0.5 0.5 1
y

-0.00006

-0.00004

-0.00002

0.00002

0.00004

0.00006

-ArcSin@yD + gk@yD

We see that the functions gk(y) appear to furnish an approximation of arcsin(y). The
approximation improves as k gets larger, and gets worse for y further away from y0 = 0.

(d) Let K be a real number strictly between 0 and 1. Set δ =
√

2K. Show that for
x1, x2 ∈ Bδ(0) and for every y we have

|T̂y(x1)− T̂y(x2)| ≤ K|x1 − x2|.

Hint: use the mean value theorem and the fact (explain) that

x2

2
> 1− cos(x).
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Solution: Let x1, x2, both within a distance of δ of 0, be given. Hence, by the mean
value theorem, there exists a ξ between x1, x2 such that

T̂y(x1)− T̂y(x2) = x1 − x2 + (sin(x2)− sin(x1)) = (1− cos(ξ))(x1 − x2).

Note that, since

1− cos(x) =
x2

2!
− x4

4!
+
x6

6!
− . . .

is, for all x, an alternating series, we have that

x2

2!
> 1− cos(x)

for all x. Also note that ξ is within a distance δ of 0. Hence,

|T̂y(x1)− T̂y(x2)| ≤
ξ2

2
|x1 − x2| ≤

δ2

2
|x1 − x2| ≤ K|x1 − x2|,

as was to be shown.
(e) Set ε = δ(1 − K). Let x ∈ Bδ(0) and y ∈ Bε(0), and set x̂ = T̂y(x). Prove that

x̂ ∈ Bδ(0) also. Hint, you will need to show that

|x− sin(x)| ≤ K|x|.

Solution: Let x, y, x̂ be as above. Applying the result in part (d) with x1 = x, x2 = 0,
we obtain that

|x− sin(x)| ≤ K|x|.
Hence,

|x̂− 0| = |x− sin(x) + y| ≤ |x− sinx|+ |y| ≤ Kδ + ε = δ,

as was to be shown.
(f) Fix δ > 0 and let Cε,δ ⊂ Cε be the closed subset consisting of functions whose absolute

value is bounded by δ, i.e., the closed ball of radius δ around the zero function in Cε.
With T as above, show that T : Cε,δ → Cε,δ is a well defined operator Hint: use part
(e).
Solution: Let g(y) ∈ F be a continuous function as per the above definition. Since
T [g](y) is obtained from g(y) by addition and by composition with continuous func-
tions, T [g] is continuous also. Thus, T [g] ∈ C(Bε(0),R). It remains to show that
T [g] ∈ F. Let y ∈ Bε(0) be given, set x = g(y), x̂ = T [g](y). Note that, by definition,

x̂ = T̂y(x).

By assumption, |x| ≤ δ. Hence, by part (e), |x̂| ≤ δ also. It follows that |T [g](y)− 0|
is bounded above by δ, as was to be shown.
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(g) Show that T : Cε,δ → Cε,δ is a contraction operator with Lipschitz constant K. Hint:
use part (d).
Solution: Let g1, g2 ∈ F be given. Let y ∈ Bε(0) be given, and set

x1 = g1(y), x2 = g2(y)

ĝ1 = T [g1], ĝ2 = T [g2]

x̂1 = ĝ1(y) = T̂y(x1),

x̂2 = ĝ2(y) = T̂y(x2).

We showed in part (d) that

|x̂1 − x̂2| ≤ K|x1 − x2|.
Hence, for all y ∈ Bε(0) we have

|ĝ1(y)− ĝ2(y)| ≤ K|g1(y)− g2(y)| ≤ Kd(g1, g2).

Since the above holds for all y, we have that

d(ĝ1, ĝ2) = sup
y
|ĝ1(y)− ĝ2(y)| ≤ Kd(g1, g2),

as was to be shown.
(h) Use the fixed point theorem to conclude that the function g(y) = arcsin(y), |y| ≤ ε is

the unique fixed point of the operator T : Cε,δ → Cε,δ
Solution: Note that T [g] = g; this is essentially the same statement as sin(g(y)) = y.
Note that F is the set of all functions in C(Bε(0),R) within a distance δ of the zero
function. Thus, by 2(a), F is a complete metric space. We’ve already shown that
T : F → F is a contracting operator. Therefore, by the fixed point theorem, T
possesses a unique fixed point; that fixed point must be the g(y) = arcsin(y) function.


