Assignment 5, Solutions
(1) Let A be an n x n real matrix and
|Al| = sup {M cu e R u# 0}
Il
the operator norm, relative to the Euclidean norm
lull = Vu-u, ueR"™

(a) Prove that

A+ Bl < [[A[[+IBll, A, B € Matn, R

IAB| < [[A[l]|B]|

SOLUTION: The solution is available in most linear algebra text books. See, for
example, Section 7.2 of D. Poole’s Linear Algebra.
(b) Let S = S* be a symmetric matrix. Prove that

S| = max{|A| : det(S — AI) = 0}

SOLUTION: Since S is symmetric, there exists an orthogonal basis of eigenvectors. Let

Uq,...,u, be such a basis. Thus,
Su; = \juy,
where Aq, ..., A\, are the corresponding eigenvalues, and where
’U,Z’U,Z:l, Z:]_,,TL,

w;,-u; =0, 1#].
Let a non-zero u € R" be given. Write
U=ClU] + - Crly, C;=1U" U
and note that
Su = S(ciuy + - - cpuy,)
=c MU + -+ e A\ Uy,

Without loss of generality (rearrange the order of the eigenvalues, as appropriate)
assume that |\;| = max; |\;|]. Since u-wu = ¢} +--- + 2, we have

(||5U||>2 W <C? + (Ae/M)°G+ -+ (An/A1)20i>

] Gt

< M2



Assignment 5, Solutions 2

Hence, ||S|| < max, || where X indexes the set of eigenvalues of S. On the other hand,
we have

[Surll _ [[Avual]
Jwll ]
= [Al.
The above calculation shows that, indeed ||S|| = |A1|, where |\;| = max, || by as-

sumption.
Find the Jordan canonical form J of the matrix

-1 3 0
A= -3 -1 3
0o 3 -1

SOLUTION: The characteristic polynomial is
pa(A) = —(A+1)°

Therefore there is just one, triple eigenvalue, namely A\ = —1. Consideration of the
nullspace of A + I gives an eigenvector, namely

u;, = e+ €3, A'U,l = —Uj.

The nullspace of (A + I)? is 2 dimensional; a basis is given by u; and by e;. Observe
that

A91 = —eq + 3U1.
Hence, by setting us = (1/3)e; we have
Auy = —ug + uq.

Finally, (A + I)® = 0, hence to complete the basis we can take an arbitrary uz such
that wy, us, ug is linearly independent and such that

AUg = —U3 + Us.

One way this can be accomplished is to take uz = (1/9)es. Letting P = [uy, uz, us
be the corresponding change of basis matrix, we obtain

-1 1 0
N=P1'AP=|0 -1 1
0 0 -1

as the Jordan form for A.
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(b) Calculate exp(t.J).
SOLUTION: Using the identities derived in lecture, we have

exp(tJ) = exp(—tI +tN) = e 'exptN

I

o)
OO =
O = o+
— o

(c) What is the general solution of the linear ODE
T = Ax.
SOLUTION: The flow ® (¢, x) = exp(tA)x generated by A is given by
exp(tA) = Pexp(tJ)P~*

1—(9/2)t* 3t  (9/2)¢
=t —3t 1 3t
—(9/2)t> 3t 1+ (9/2)t?

(3) For a complex number z = a +1b, let

r_[a —b
== )
If A is an n x n complex matrix, let A® denote the (2n) x (2n) matrix obtained by replacing
each entry A;; € C with Af.
(a) Let A, B be n x n complex matrices. Prove that (AB)* = A®B"®

SOLUTION: This follows from the validity of block multiplication of matrices.
(b) Let a,b € R. Calculate exp(tB), where

a —b 1 0
b a 0 1
B=10 0 a4 —b
0 0 b a

Hint: find a 2 X 2 complex matrix A such that B = A".
SOLUTION: Set A = a + ib and note that B = A®, where

)

o |t
exp(tA) =e [0 1]

Observe that
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Hence,
cos(bt) —sin(bt) tcos(bt) —tsin(bt)
exp(tB) — exp(tA)" = et sin(bt) cos(bt) tsin(bt) tcos(bt)

0 0 cos(bt)  —sin(bt)
0 0 sin(bt)  cos(bt)

(4) In this exercise we will use Picard iteration to obtain the solution to the linear ODE:

T=-y, y=2z.
(a) Let V : R? — R? denote the above vector field function, i.e.

What is the flow generated by V7
SOLUTION:

O(t,x,y) = (xcos(t) — ysin(t), zsin(t) + y cos(t)).
(b) Let D = By(0) C R? denote the closed unit disk in R?, and let I = [—3, 3] C R. Let

F={¢pcCIxDR:¢0,2,y) = (x,y)}.
Define the operator P : F — F by

Pt 2,y) = (0,9) + / V($(s.x.0)ds, deTF

Define ¢o(t,x,y) = (x,y), and then ¢p1 = Plpx]. Explicitly determine ¢y, ¢a, 3, ¢4.

SOLUTION:
_ |ty
¢1(t7$ay) - |: tr :| ;
-—ty — x% 2 4] e
¢2(t>$ay) = 5 = |: 2 t2:| |: :|
te —yt A
[ty — 2l 4y 2 g4t
by(t ) = Yy 2 T Y3 _ 2 3| [x
e tr— g gt e e |y
2 3! 3! 2

More generally,

t2 tk
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Prove that the sequence of functions {¢x}72, converges uniformly to the flow deter-
mined in part (a). Hint: it’s possible to write ¢y (¢, z,y) using the matrix

0 —1
=[]
and its various powers. As well, in proving convergence, it may be useful to identify

R? with C and to re-express the matrix A as the imaginary number i.
SOLUTION: Note that

Ty[cos(t)] Ti[—sin(t)] I
ot [F] Bt | % v ] €20 e

where T}, denotes the kth Taylor polynomial in . Also note that the Taylor polynomials
for sin(t) and cos(t) converge uniformly to sin(t) and cos(t), respectively, for [t| < 1
(One can use the Weierstrass M-test to show this).

Let us set

ag(t) = cos(t) — Tglcos(t)], be(t) = sin(t) — Tk[sin(t)].
We are trying to prove that

{ak(t) _bk@] m el m cD

br(t) ax(t) | |y (0

converges uniformly to (0,0) as k — co. In doing this, it will be convenient to identify
R? with C and to write

wi(t) = ag(t) +ibk(t), z=x+1y.
In this reformulation, we are trying to prove that the complex sequence
wilt)e, <5 <t
converges uniformly to 0 € C. However,
[wi(t)z] = [wi(t)|]2] < Jwp(t)] = Var(t)? + bi(t)%.
Since ag(t), bx(t) — 0 uniformly, it follows that
|w(t)] =0

uniformly as well.

Prove that V : R? — R? is a Lipschitz function with Lipschitz constant 1.
SOLUTION: Let z; = x1 + iy, 22 = @9 + iys be given. As above, we identify V(zq, ;)
with the complex number iz; and V(z,y2) with the complex number iz,. We are
asked to shown that

|i21 — ZZQ| S |2’1 — ZQl.
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However, using the complex number norm behaves very nicely under multiplication.
Indeed

lizg — izo| = |i||21 — 22| = |21 — 22];
and we are done.
Prove explicitly that P is a contraction operator and that ¢, the flow generated by V
is its unique fixed point.
SoLUTION: Note that since the domain of V is all of R?, there is no difficulty in defining
P as an operator on the function space €(I x D,R?). Evidently, for a continuous
function ¢(t, z,y) we have

Ple(0, z,y) = (z,y).
Hence P : & — ¥ is a well-defined operator.
Next, let ¢1, 92 € F be given, and set

<131 = Plgn], 952 = Pla].
Let t € [ and uw € D be given. We have

162t ) — da(t, )] = | / Ady(s,u) ds — / Ado(s,u) ds|
.y / Al (s, ) — (s, w)) ds|
< / | A(n(5,) — (s, )| ds

t
= [ o, w) — on(s. w)ds
0
the last equality follows by the same argument used in part (d). Next, let
M = d((bla ¢2) = Stup ‘|¢1(t7u> - ¢2<t7 u)”

Hence, for all ¢t € I and all ©w € D, we have
t
. ~ 1
lo1(t, w) — @o(t,u)|| < / Mds = Mt < §M
0
Hence,
PN A A 1
d(¢1, 2) = StUP [p1(t, u) — do(t,u)| < 3 d(¢1, ¢2),

as was to be shown.

In lecture we showed that C(1 x D, R?) is a complete metric space. The same argument
shows that F is a complete metric space. To wit, a sequence of functions ¢y (t, z,y) € F
(i.e., each ¢y is continuous, and furthermore ¢;(0,z,y) = (x,y)) that is a Cauchy
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sequence relative to the supremum norm, converges uniformly to some continuous
limit ¢(t,z,y). However, since uniform convergence implies point convergence, we
must have ¢(0,z,y) = (z,y), as well.

Since T' is a contraction operator (with contraction constant 1/2) on the complete
metric space F, it has a unique fixed point, by the Fixed Point Theorem. However,
the conditions

0o
E(t’ I? y) = V(Q(t7‘/‘v7 y))? ©(07 a:.’ y) = (:'U7 y)? t E I7 (I’, y) E ‘D’

are equivalent to the conditions

ot u) = Plo)(t, u) = u + / V(e(s,w)ds, 6(0,u) = u,

where
u=(z,y) €D, tel.

Therefore, ¢(t,z,y) is the unique fixed point of the Picard operator P.

Note: in particular, the Fixed Point Theorem gives us another proof that the above
approximations ¢ (¢, x,y) converge uniformly to ¢(¢,x,y).

Find the general solution of the time-dependent linear ODE

&= —cos(t)y, y = cos(t)z.

Hint: decouple the equations.
SOLUTION: Let us rewrite the above ODE in matrix form as

] =0 s)

where A is the rotation generator matrix used in question 4. The eigenvalues of A
are +¢ with eigenvectors e; F iey, respectively. Let us therefore introduce complex
variables

u=x+1iy, vV=—1y
and rewrite the above ODE (formally) in terms of these variables. We have
U =&+ iy =icos(t)(x + iy) = icos(t)u
0 =1 —1y = —icos(t)(xz —iy) = —icos(t)v
Formally solving the above complex ODEs using separation of variables gives
u = exp(isin(t))ug

v = exp(—isin(t))vg
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Switching back to z,y coordinates we obtain the following real solution
x = R(u) = cos(sin(t))xy — sin(sin(t))yo,
y = S(u) = sin(sin(t))zo + cos(sin(t))yo.

This can easily be verified to be the desired solution, in flow, form of the given ODE.
(b) Autonomize the above ODE and give the flow generated by the corresponding 3-

dimensional vector field.

SoLuTION: We introduce an auxilliary variable 7 and rewrite our ODE as

T = —cos(T)y,

y = cos(T)z,

7T=1
The flow is given by the above general solution, appropriately written. Indeed, the
desired 3D flow is just

(I)t(x> Y, T) =
(cos(sin(t + 7))z — sin(sin(t + 7))y, sin(sin(t + 7))z + cos(sin(t + 7))y, 7 + t).



