Sean Bradley, Patrick Brewer, and Christopher Brazfield Generalized arithmetic triangles via convolution, Fibonacci Quart. 44 (2006), no. 1, 13-19.


#### Abstract

Pascal's Triangle is a convolution triangle; each polynomial that forms a diagonal can be generated by repeatedly convolving the polynomial $f(x)=1$ with itself. We consider Generalized Pascal Triangles, convolution triangles whose generating polynomials are $f(x)=m$, where $m$ is a positive integer. These generalized triangles share much in common with their progenitor. We investigate other means of generation and consider self-similarity along the same lines as C.T. Long's investigation of Pascal's Triangle in his 1981 article in The Fibonacci Quarterly.


