John M. Holte

Fractal dimension of arithmetical structures of generalized binomial coefficients modulo a prime,
Fibonacci Quart. 44 (2006), no. 1, 46-58.

## Abstract

Given a sequence ( $u_{n}$ ) of positive integers generated by $u_{1}=1, u_{2}=$ $a, u_{n}=a u_{n-1}+b u_{n-2}(n \geq 3)$, define the generalized factorial by $[n]!=u_{1} u_{2} \cdots u_{n}$ and the generalized binomial coefficient by $C(i, j)=$ $[i+j]!/([i]![j]!)$. Assume that the prime $p$ does not divide $b$. Let $r=\min \left\{n: p \mid u_{n}\right\}$. Theorem 1 (Asymptotic abundance of residues): $\#\left\{(i, j) \mid 0 \leq i, j<r p^{k}\right.$ and $\left.C(i, j) \equiv \rho(\bmod p)\right\} \sim$ $\frac{r(r+1)}{2(p-1)}\binom{p+1}{2}^{k}$ as $k \rightarrow \infty$ for $\rho=1, \ldots, p-1$. Theorem 2 (Fractal dimension): Let $s_{k}=r p^{k}$. The Hausdorff dimension of $\cap_{k} \cup_{i, j<s_{k}}$ $\left\{\left[i / s_{k},(i+1) / s_{k}\right) \times\left[j / s_{k},(j+1) / s_{k}\right): p \bigvee C(i, j)\right\}$ is $\log \binom{p+1}{2} / \log p$.

