Arthur T. Benjamin

Self-avoiding walks and Fibonacci numbers,
Fibonacci Quart. 44 (2006), no. 4, 330-334.

Abstract

By combinatorial arguments, we prove that the number of self-avoiding walks on the strip $\{0,1\} \times \mathbb{Z}$ is $8 F_{n}-4$ when n is odd and is $8 F_{n}-n$ when n is even. Also, when backwards moves are prohibited, we derive simple expressions for the number of length n self-avoiding walks on $\{0,1\} \times \mathbb{Z}, \mathbb{Z} \times \mathbb{Z}$, the triangular lattice, and the cubic lattice.

