H. W. Gould

The inverse of a finite series and a third-order recurrent sequence, Fibonacci Quart. 44 (2006), no. 4, 302-315.

Abstract

It is apparently not well-known that $g(n)=f(n)+f(n-1)+f(n-2)$ if and only if

$$
f(n)=\sum_{k=0}^{n} g(n-k) \sum_{j=0}^{\left[\frac{k}{2}\right]}(-1)^{k-j}\binom{k-j}{j},
$$

where we suppose that $f(n)=0$ for $n<0$. This may also be expressed as

$$
f(n)=\sum_{k=0}^{n}(-1)^{k} g(n-k) \frac{1}{2}\left((-1)^{\left[\frac{k}{3}\right]}+(-1)^{\left[\frac{k+1}{3}\right]}\right) .
$$

We show how to solve for $f(n)$ in the general case

$$
g(n)=\sum_{k=0}^{r} f(n-k), \text { where } f(n)=0 \text { for } n<0, \text { with } 1 \leq r \leq n \text {. }
$$

We shall also see that the values at which g is evaluated in forming the inverse satisfy a third-order recurrence relation of the form

$$
a_{n}=a_{n-1}+a_{n-2}-a_{n-3}
$$

